Coarse-Grained Parallel Computing
on Heterogeneous Systems*

Pat Morin

School of Computer Science
Carleton University
Ottawa, ON
Canada, K1S 5B6
morin@scs.carleton.ca

*This work was partially funded by a scholarship from the Natural Sciences and Engineering Research
Council of Canada.

Heterogeneous Coarse-Grained Parallel Computing
Pat Morin

School of Computer Science
Carleton University
Ottawa, ON

Canada, K1S 5B6
morin@scs.carleton.ca

Abstract

We consider the problem of finding efficient parallel algorithms for heterogeneous
parallel computers, i.e., parallel computers in which different processors have differ-
ent computational potential. To this end, we define a formal computational model
for heterogeneous systems and develop algorithms for commonly used communication
operations. The result is that many existing parallel algorithms which use these com-
munication operations can be adapted to our model with little or no modifications.
Experimental results are give which show that our algorithms are of considerable prac-
tical relevance.

Keywords: Parallel algorithms, heterogeneous systems, bulk synchronous parallel, coarse
grained multicomputer.

1 Introduction

In recent years, parallel computing has been increasing in popularity. Individuals with lim-
ited budgets can now build workstation clusters from off-the-shelf processing components
and interconnection networks [10, 28, 31]. High speed networks are being used to inter-
connect traditional supercomputers in order to direct large amounts of computing power at
Grand Challenge problems [8]. Even traditional supercomputers usually consist of a very
fast workstation host connected to a number of slower in-the-box processors.

The three situations above, which cover nearly all modern parallel computing systems,
are all potential examples of heterogeneous systems, i.e., systems in which different processors
have different computational potential. In the case of workstation clusters, the processing
components may be different because the system was grown incrementally and newly added
processors are more modern than the originals. The same may be true in the case of super-
computer clusters, or the supercomputers may have even come from different manufacturers.
Finally, even in the case of traditional supercomputers, it may be beneficial to use the host
processor, particularly for sequential portions of computations.

Traditionally, there have been two approaches to dealing with the varying processor
speeds in such systems. The first and simplest approach, which we call the ostrich approach
is to simply ignore the difference in processor speeds and use standard parallel algorithms.
In many cases, this leads to the slowest processor becoming a bottleneck, and effectively
reduces performance to that of a machine in which all processors are equally slow. This can
result in decreased performance when slow processors are added to a system.

Figure 1 shows an example of a sorting algorithm in which the overall performance of
a system decreases with the addition of slow processors. The first seven processors are fast
processors, while all other processors are slow processors. Important to note is the decrease
in performance when the first slow processor is added to the system.

The second approach, which we call the overpartitioning approach is to break the problem
into small subproblems, so that there are many more subproblems than processors, and
assign subproblems to processors whenever they become idle, either by having a master
processor assign all subproblems, or by having processors request subproblems from other
processors when they become idle. This approach also has its disadvantages. Decomposing

the problem and merging the solutions to subproblems is not always easy, nor is coordinating

500000 T T T T T T T T T T T

400000

300000

200000

Speed (items/sec)

100000

O 1 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Processors

Figure 1: Performance of sorting algorithm with slow processors

the processors, and these tasks have an overhead associated with them. Even worse, because
of the high latency of communications networks, many processor cycles are wasted waiting for
the network to deliver subproblems. In most cases, a healthy dose of performance testing,
algorithm analysis, and common sense is required to determine the optimum subproblem
size, and this procedure must be repeated when the system configuration changes.

In this paper, we take a third approach. Namely that of modifying fast parallel algo-
rithms which have been shown to be efficient in homogeneous systems to run efficiently on
heterogeneous systems. The class of algorithms we choose as our starting point is the class
of coarse grained parallel (CGP) algorithms. Examples include algorithms for the bulk syn-
chronous parallel (BSP) [32], coarse grained multicomputer (cGM) [15], and LogP [14] models
of parallel computation.

In these models a parallel computer is composed of p processors and is being used to
solve a problem of size n where, typically, p < n. The basic communication operation is
the h-relation, an all-to-all communication operation in which no processor is the source or
destination of more than h words. Algorithms based on these models work in supersteps,

where a superstep consists of local computation, followed by global communication (routing

an h-relation). The goal of algorithm design is to simultaneously minimize communication
and computation.

The heterogeneous networks described above present a problem for standard CGP algo-
rithms, since the slow processors in the network become a bottleneck for the computation.
This is due to the fact that CGP algorithms are designed to distribute computation load
evenly across processors. However, through careful modifications, these algorithms can be
made to distribute computation load according to processor speeds without sacrificing effi-
ciency.

This approach has the obvious advantage over the ostrich approach that it balances the
computation according to processor speed and therefore improves performance (Section 4
bears this out with empirical evidence). This approach has two advantages over the overpar-
titioning approach. The first is that it minimizes the effects of latency (most of the algorithms
described in Section 4 perform only a constant number of communication operations). The
second is that it doesn’t require extensive testing and measurements to determine optimum
algorithm parameters. In fact, the only parameters used by the algorithms are the processor
speeds.

The main contributions of this part of the paper are the following:

1. The definition of a parallel computation model called the heterogeneous coarse grained
multicomputer (HCGM) which takes into account varying processor speeds—The model
is simple enough to be easy to use, accurate enough to allow for the development of
efficient algorithms, and portable enough to allow these algorithms to run efficiently

on a wide variety of parallel architectures.

2. The identification of a number of communication patterns most commonly used in CGP
algorithms and efficient HCGM algorithms for their implementation—These algorithms

form the basis for translating existing CGP algorithms into HCGM algorithms.

3. A number of algorithms for the HCGM model—These algorithms are arrived at by
describing existing ¢GM and BSP algorithms in terms of the previously mentioned

communication patterns.

4. An implementation of these ideas—The implementation consists of a library of the

previously mentioned communication patterns and some algorithms.

1.1 Comparisons with Related Work

In order to differentiate this work from other research on heterogeneous parallel computing,
we compare it with previous work in this area.

The topic of data partitioning in heterogeneous systems with simple fixed communication
patterns is addressed in [13, 27|, and semi-automatic methods of choosing the best parti-
tioning scheme and parameters are described. Methods for the compile time scheduling of
various types of parallel loops are described in [11]. The results in this paper go beyond
these in that the problems addressed have much less structure than simple stenciling opera-
tions on 2D grids or uniform parallel loops whose communication patterns can be analyzed
at compile time. In Section 4 algorithms are presented for sorting, median finding, and a
number of computational geometry problems.

Methods for dynamic load balancing such as those described in [24, 29, 34] can also be
applied to heterogeneous systems. All these methods fall into the category of overpatitioning
strategies. The advantages of our strategy over such overpartitioning strategies have been
described above. These are the minimization of the effects latency and simplicity of the
algorithm parameters.

In [36] a mathematical model of a network of workstations is described. In [35], the
authors describe a stochastic performance prediction methodology for this model based on
the task graph of the parallel application. Although this model is an accurate predictor of
performance, it is not clear that the model leads to the development of efficient algorithms.
In fact, in the matrix multiplication tests described in [35], a 12 processor configuration
actually performs worse than a 2 processor configuration (although the model correctly
predicted this).

The main difference between the model in [36, 35| and the HCGM model is that the
HCGM model is not intended to predict exact running times of parallel algorithms on parallel
machines. Rather, it is designed to distinguish between “good” and “bad” algorithms, i.e., if
the model says that algorithm A is better than algorithm B, then A should perform better
than B when implemented. This makes the HCGM model simpler, which in turn leads to a

much simpler algorithms analysis procedure.

m=1000

Figure 2: An example of an HCGM(m,p,s) with m = 1000, p = 4, s = 6, P™* = P,

s™ =2 and P™" = Py, and s™" = 1.
2 A Heterogeneous Computing Model

This section defines a generalization of the cGM model of Dehne et al. [15] which takes the
presence of heterogeneous processors into account. This model, called the heterogeneous
coarse grained multicomputer (HCGM) model maintains the simplicity of the cGM model
while providing a means of modelling the effects of heterogeneous processors such as the

anomaly described in Section 1.

2.1 The Heterogeneous Coarse Grained Multicomputer

A heterogeneous coarse grained multicomputer HCGM(m, p, s) consists of p possibly hetero-
geneous processors labelled Fy, ..., P,_;. The value s = f:_é s; represents the total speed
of the parallel machine, where s; represents the speed of P; and is an integer. Each proces-
sor, P;, can perform w units of work in sﬂ time units. Each processor knows the values of
50,--.,8p_1 as well as the value of s.

For conciseness, we define s™*® = max{s; : 0 <i < p— 1} and s™" = min{s; : 0 < i <
p— 1}, i.e., s™ and s™" are the speeds of the fastest and slowest processors, respectively.
Similarly, we define P™* = P iig;=gmery and P™" = Pt _gminy. That is, P™* is a
representative fastest processor, and P™™" is a representative slowest processor. An example

of an HCGM(m, p, s) is shown in Figure 2.

m s
pls

processors of an HCGM(m, p, s) are interconnected by a network capable of routing any all-

Each processor, P;, in an HCGM(m,p, s) has ©(max{ m}) local memory. The p
to-all communication in which the total amount of data exchanged is O(m). However, these
communication operations incur a penalty in computation time. If P; is the source (resp.
destination) of b words of information, then P; incurs a penalty in computation time of sﬁ
This represents the local computation needed to pack (resp. unpack) messages into (resp.
from) buffers. For example, the computation time associated with routing an h-relation is

max{%:0<i<p-1} =2

Because the memory and communication speeds of the processors are proportional to the
processor speeds, HCGM algorithms can take advantage of faster processors by having them
process and communicate more data. If, as in the caM(m, p) model, each processor has only
O(%) memory, it may not be possible to improve the performance of algorithms and avoid
the anomaly described in Section 1. Such is the case when the problem size, n, is equal to
the size of the total memory, m.

We assume that the input to an HCGM(m, p, s) algorithm is initially distributed in a load
balanced manner, that is, each P initially holds *n input elements. At this point we note
that the HCGM(m, p, s) model is equivalent to the cam(m, p) model when sy = sy = --- =
Sp—1=1.

Like a caMm algorithm, the performance of an HCGM algorithm is measured in terms of
computation time and the number of supersteps. Both of these quantities can be functions of
n, p, s, and s, ..., s,—1. However, rather than measuring the amount of local computation,
w, it is the local computation time, sﬂi, that is measured. Ideally, an HCGM(m, p, s) algorithm
gives a speedup of s when compared to a uniprocessor machine with unit speed running the
fastest sequential algorithm for the same problem. If at all possible, this speedup should be
independent of the values of sg,...,s,_1.

One possible way of obtaining HCGM algorithms directly from BSP and cGM algorithms
is to have each processor, P;, simulate s;/ged(so,...,Sp_1) virtual CGM processors, where
ged(so, - -, 8p—1) is the greatest common divisor of sg,...,s,—1. There are at least three

problems with this approach.

1. The overheads associated with automatically simulating virtual processors can have

a significant negative impact on real running times. These overheads can be avoided

by having implementors code the simulation by hand, but this adds complexity to the
already difficult task of implementing parallel algorithms.

2. In some cases the number of supersteps in a cGM algorithm is a function of the number
of processors, so increasing the number of processors by creating virtual processors

increases the number of supersteps.

3. Many coarse grained parallel algorithms rely on some version of the coarse grained

assumption p < n, and introducing virtual processors may violate this assumption.

2.2 A Simple Example: Prefix Sum

We consider the problem of computing the prefix sum of n elements using the following

algorithm.

HCGM-PREFIX-SUM()

1. Each processor locally computes the prefix sum of its *n input elements.

2. Each processor, P;, sends the total sum of its input elements to P™* in a single

communication superstep.
3. P™* computes the prefix sum of the p elements received in Step 2.

4. For 1 <i < p—1, P™ sends the (i — 1)st element computed in Step 3 to P; in a

single communication superstep.

5. Each processor computes its final portion of the prefix sum by adding the value received
in Step 4 to each of the values computed in Step 1.
This algorithm provides our first result for the HCGM model.

Theorem 1. The prefir sum of n elements can be computed on an HCGM(n,p,s), using

O(%) computation time and O(1) supersteps, provided that 2> p.

Proof. In Step 1 and Step 5, each processor P; does O(%n) work and this work can be done

in O(%) time. Steps 2 and 4 each processor uses O(1) computation time except P™* which

uses O(;kz) computation time. Step 3 takes O(;k7) computation time. Since p < %, and

gmaz gmaz

by pigeonhole principle s™* > 2 all steps can be performed in O(%) time. O

9

In [16], Ferreira and Ubéda describe an algorithm for computing the medial axis trans-
form of a digital image using 8 prefix sum operations and O(%) local computation on a
caM(n, p). By using the HCGM(n, p, s) version of the prefix sum algorithm described above,

this algorithm is readily adapted to an HCGM(n, p, s), yielding the following result.

Corollary 1. The medial azis transform of a \/n X \/n image can be computed using O(%)

computation time and O(1) supersteps on a HCGM(n, p, s) with p < >

Corollary 1 is the first example of a technique which will be used repeatedly in this part
of the paper. Namely, to obtain HCGM algorithms from existing cGM algorithms, one need
only find HCGM algorithms for the primitive communication operations performed by the
cGM algorithm. When these operations are replaced in the cGm algorithm by their HCGM

counterparts, the resulting algorithm is an efficient HCGM algorithm.

3 Communication Patterns

This section discusses common communication patterns used in coarse grained parallel algo-
rithms and gives their implementations both in the cGM and HCGM models. The motivation
for this is that by implementing HCGM versions of these patterns, we obtain a number of
HCGM algorithms directly from cGM algorithms which use these patterns.

This work also has applications outside of heterogeneous parallel computing. As is well
known in the field of software engineering, the study of software patterns is a field in itself
(see e.g., [17]). By identifying common patterns used in coarse grained parallel algorithms
we provide a good starting point for the development of libraries and frameworks supporting

the implementation of such algorithms.

3.1 Random-Sample

The technique of random sampling is one of the most useful tools used in the design of
randomized parallel algorithms. In random sampling, a random subset of size O(r) is chosen
from the n input values.

In the context of coarse grained parallel computing, random sampling involves choosing
O(r) samples from the input and routing them to a designated processor, usually Py. This

processor then typically performs some computation on these elements and broadcasts the

10

results of this computation to all processors. The algorithm for the Random-Sample pattern

proceeds as follows:

CGM-RANDOM-SAMPLE(T)

1. Each processor, P;, tosses a biased coin with success probability = for each of its input

elements.

2. The elements for which the coin toss was successful are routed to F.

Using Chernoff bounds (see Appendix A), it is easily shown (see, e.g., [2]) that the number

of elements which arrive at P, is O(r), for r > logn.! Thus, if r € O(%), the computation
time used by the Random-Sample pattern is O(%) and the number of supersteps is O(1) on
a CGM(n, p).

In order to modify the random sample pattern for the HcGM(n, p, s) model we need only
change the designated processor to which the sample are routed. Rather than routing the

samples to Py, we route the samples to P™**. This results in the following implementation:

HCGM-RANDOM-SAMPLE(T)

1. Each processor, P;, tosses a biased coin with success probability - for each of its input

elements.

2. The elements for which the coin toss was successful are routed to P™*,

Theorem 2. The HCGM-RANDOM-SAMPLE(r) algorithm uses ON(%) computation time

smaz

and O(1) supersteps on an HCGM(n, p, s), provided that *—n > r > 3lnn.

S

Proof. In Step 1, each processor, P; must perform *n coin tosses and can do these in O(%)
time. In Step 2, each processor P; sends at most %n elements and can do this in O(%) time.
Let r' be the number of elements received by P™* in Step 2. Then 7’ is a random variable
following the binomial distribution b(n, Z). Applying Theorem 14, Equation 1 we get that
1 (c—1)2r/3
Prir' >cr] = (E)

< e for r > 31nn.

1Gee Appendix A for a definition of the O notation.

11

Therefore, during Step 2 P™ receives O(r) elements and can do this in O(-4=) C O(2)
time. 0

3.2 Random-Assign

Random assignment is a tool used in a number of CGP algorithms to achieve load balancing.
The idea behind random assignment is to assign elements of the input to processors in a
random fashion. In this way, if the work performed on each element is variable, then one
expects that all processors will be assigned roughly the same amount of work. This idea is

realized in the following procedure.

CGM-RANDOM-ASSIGN()

1. Each processor, P;, randomly assigns each of its elements to one of p buckets, b; g, ..., b;p 1

with equal probability.

2. Each processor, P;, routes the contents of each bucket, b; ;, to P;.

Once again, using Chernoff bounds it is not difficult to show that the number of elements
routed to any processor is O(%) (see, e.g., [2]). Thus, the algorithm uses O(%) computation
time and O(1) communication rounds.

The HCGM version of the Random-Assign pattern is similar to the cGM version except
that each processor, P, should receive O(%n) elements in Step 2. To achieve this, we change
the probability to which elements are assigned to buckets in Step 1. The modified algorithm

works as follows.

12

HCGM-RANDOM-ASSIGN()

1. Each processor, P;, randomly assigns each of its elements to one of p buckets, b; o, ..., b; 1.

P; assigns an element to bucket b; ; with probability S;J

2. Each processor, P;, routes the contents of each bucket, b; ;, to P;.

Theorem 3. The HCGM-RANDOM-ASSIGN() algorithm uses ON(% logp) computation time

S > 3lnn.

and O(1) supersteps on an HCGM(n, p, s), with p < n and

S

Proof. Step 1 can be accomplished by performing a binary search on the p buckets for each
of the input elements, and can therefore be done in O(%2logp) time.

Next we show that the number of elements received by F; in Step 2 is é(%n) Let n; be
the number of elements received by P; in Step 2. Then clearly n; is a random variable which

follows the binomial distribution b(%,7n). Applying Theorem 14, Equation 1, we get

; 1 (c—1)2%n/3
ot < ()
S e

1 .
S W, for ?n231nn

Therefore, the probability that any processor, P;, receives more than c*n elements is

bounded by

Si
Pr|dist. n; > c—n| < Lz
S n(c_l)
S n(c—l)z—l’ for p S n.

Therefore Step 2 can be done using O(%) computation time and the entire algorithm uses

O(% logp) computation time. O

3.3 Linear-Partition

Let S be a be a set of keys and < be a relation that defines a total order on S. A linear
partition of S is a partitioning of S into p disjoint subsets Sy,...,S,—1 such that z < y
for all z € S;, y € S; and 7 < j. Linear partitioning is one of the most commonly used
communication patterns in parallel computing. This is due simply to the fact that sorting is

a special case of linear partitioning in which the keys are sorted locally after being partitioned.

13

Here we describe a randomized linear partitioning algorithm based on the sample sort
algorithm described in [21]. We assume that the n keys are all distinct since if they are not,
they can be made so by, e.g., concatenating their value with their processor number and

memory location. The algorithm proceeds as follows.

CGM-LINEAR-PARTITION()

1. All processors take a random sample of size O(r) using the CGM-RANDOM-SAMPLE

algorithm and route the sample keys to F.

2. Py sorts the sample keys. Denote these keys by sample,, ..., sample,,_, where sample;

is the sample with rank ¢ in the sorted order.

3. Py defines p + 1 splitters, splittery, ..., splitter,,, where

—00 ifi=0
splitter; = § sample;,;, if0<i<p
00 ifi=p
4. Py broadcasts splittery, ..., splitter, to all processors.

5. Each processor, P;, places each of its keys into one of p buckets, where a key x is placed

in bucket b;; if and only if splitter; < x < splitter; .

6. Each processor, P;, routes the contents of bucket b;; to P; for all 7, j.

That this algorithm produces a valid linear partition is clear since (1) all keys are assigned
to exactly one bucket, and hence one processor, (2) all keys in bucket ¢ are strictly less than
all keys in bucket j for all + < j. Less clear is the running time of the algorithm, since it
is conceivable that some processor receives significantly more than O(%) elements in Step 6.
Gerbessiotis and Valiant [21] showed that for properly chosen values of s, n, and p such a
situation does not occur.

When adapting this algorithm to the HCGM model, we change the way in which the
splitters are chosen. In order to balance the work according to sg,...,s,—1 it is necessary
that O(%n) input keys fall between splitter; and splitter,,;. In order to achieve this, we

choose the splitters so that O(%r) sample keys fall between splitter; and splitter;, ;. This
leads to the following algorithm.

14

HCGM-LINEAR-PARTITION()

1. All processors take a random sample of size O(r), r to be defined later, using the

HCGM-RANDOM-SAMPLE algorithm and route the sample keys to P™*.

2. P™* sorts the sample keys. Denote these keys by sample,, ..., sample,._; where

sample, is the sample with rank ¢ in the sorted order.

3. P™* defines p + 1 splitters, splittery, ..., splitter,,, where

—00 ifz=0
splitter; = sample [(E i)”1 fo<i<p
j=0 s
o0 iti=p
4. P™* broadcasts splittery, ..., splz'tterp to all processors.

5. Each processor, P;, places each of its keys into one of p buckets, where a key z is placed

in bucket b;; if and only if splitter; < x < sphitter,, ;.

6. Each processor, P;, routes the contents of bucket b;; to P; for all ¢, j.

Theorem 4. The HCGM-LINEAR-PARTITION() algorithm uses ON(% log p) computation time

1
mazx gmin

and O(1) supersteps on an HCGM(n, p, s), with r = *—n,

r>2lnn, and p < n.

E]

Proof. By Theorem 2, Step 1 of the algorithm uses ON(%) computation time. Step 2 of

T
smazr

the algorithm uses O(—% logr) C O(%logn) computation time. Steps 3 and 4 use O(2)
computation time. Step 5 uses O(%logp) computation time.

Next we consider the possibility that some processor receives too many keys in Step 6.
Let n; be the number of keys received by P, in Step 6. Let r; be the number of samples
chosen from the c*n keys following splitter; in the overall sorted order. Now note that
n; > c%n only if 7; < 2%r. That is, the number of keys between splitter; and splitter;,; can
only exceed c*n if less than *r samples are chosen from these keys.

Since r; is a random variable that follows the binomial distribution b(c%n, %), Theo-
rem 14, Equation 2 can be applied to get

s 1\ (122 (5)(cEn)/2
rlast] < (2
S €

15

1\ (1= 1)2e(%in)/2
- (2)

1
= W,for %r > 2lnn.
n\toe)e

Therefore, the probability that any processor, P;, receives more than c*n elements is
bounded by

: Si p
Pr |3s s.t. q; S ;T S m
< D1 for p < mn,
and Step 6 can be done using O(%) computation time. O

Since sorting is a special case of Linear-Partition in which elements are sorted locally

after partitioning, we obtain the following corollary.

Corollary 2. Sorting n keys can be done using O(%log n) computation time and O(1) su-

maz man
S S

sn’

persteps on an HCGM(n, p, s), with r = r>2lnn, and p < n.

S

3.4 PRAM-Simulation

PRAM simulations on the BsP model were introduced by Valiant [32], and by Gerbessiotis
and Valiant [21] as a means of obtaining BSP algorithms from PRAM algorithms , and it was
shown that if the BSP parameter ¢ is close to unity, the resulting BSP algorithms would be
optimal. Unfortunately, this condition is not usually met in practice and the performance
of the resulting algorithms is often disappointing. More recently, PRAM simulations have
been revived in the form of clipping [9]. Clipping involves simulating a PRAM algorithm for
O(log p) rounds, stopping the algorithm (clipping it), and completing the computation with
a specialized CGP algorithm.

In doing PRAM simulations on a CGM, each processor simulates % EREW-PRAM Processors
and stores % data elements. Each round of the simulation consists of a read phase and a
write phase. The following algorithm performs 1 step of an EREW-PRAM simulation on a

ceM(n, p):

CGM-PRAM-SIMULATION()

16

1. Each processor, P;, formulates O(%) read requests and sends each request to the pro-

cessor holding the element to be read.

2. Each processor, P;, responds to the O(%) read requests received in Step 1.

3. Each processor, P;, formulates O(;) write requests and sends each request to the

processor holding the element to be written.

4. Fach processor, P;, responds to the O(%) write requests received in Step 3.

Theorem 5. The CGM-PRAM-SIMULATION() algorithm uses O(%) computation time and
O(1) supersteps on a CGM(n, p).
Proof. Determining which processor, P;, services a read or write request for memory location
j can be done in constant time using the formula i = |j/(n/p)]. Therefore Step 1 and Step 3
take O(%) time. Since an EREW-PRAM is being simulated, no processor receives more than
O(%) requests in Step 2 and Step 4. Therefore these steps can be done in O(%) time, yielding
the stated time bound. O
The HCGM(n, p, s) version of the PRAM-SIMULATION procedure is nearly identical to

the cGM version, though it only holds for a restricted range of parameters. The algorithm

proceeds as follows.
HCGM-PRAM-SIMULATION()

1. Each processor, P;, formulates O(%n) read requests and sends each request to the

processor holding the element to be read.
2. Each processor, P;, responds to the O(%n) read requests received in Step 1.

3. Each processor, P;, formulates O(%n) write requests and sends each request to the

processor holding the element to be written.

4. Each processor, P;, responds to the O(%n) write requests received in Step 3.

The extra restriction on the range of parameters comes from the fact that the processor,

P;, which corresponds to PRAM memory location j can not be determined using a simple

17

formula as it is in the cGM procedure. A simple workaround to this is to use binary search to
find the correct processor but this leads to an O(log p) slowdown. A more efficient method

can be obtained using integer sorting.

Theorem 6. The HCGM-PRAM-SIMULATION() algom'thm uses O(%) computation time

and O(1) supersteps on an HCGM(n,p,s), provided that = < cp® for some constants

s™

c1,c9 >0, and n>p

Proof. Clearly the proof of Theorem 5 extends to this theorem with the exception of finding
the processors which service requests. Thus we need only show how this is done. By first
sorting the requests locally at each processor, the relevant processors can be determined by
(sequentially) scanning the sorted lists using O(%n +p) = O(%n) work at each processor P,
and can therefore be done using O(%) computation time. Thus we need only consider how

to sort the requests.

Fact 1 (Radix Sort [23]). It is possible to sort (sequentially) k integers in the range [0,1—

1] using O(loglk) computation and O(k) memory.

Each processor P; must sort %n elements in the range [0,n —1]. By substituting & = %n

and [=n in Fact 1, we see that the sorting can be done using

o < 0f(22))
log 2t s

log %n + lo
- of (=) ()
log *n s
log = :
= of(1+15) ()
log %n /) \'s
1 1
c o ((1 + 0g01;l-62 ng> _n>> for = < ¢p
_'bn S 3
1 1
- O<<1+ 0gC1 + Co ng> < n)) for Sn > p
log p S
o3
= —n
s
work at each processor, P;, and O(%) time. O

For an algorithm which uses PRAM simulation to be useful in practice, the simulation must

be done as efficiently as possible. If we have the extra restriction that s/ ged(so, ..., Sp—1) €

18

O(2~n) we can simulate the CGM-PRAM-SIMULATION algorithm by having each proces-

s

sor, P;, simulate s;/ gecd(so, ..., s,—1) CGM processors thereby reducing the constants in the

running time of the HCGM-PRAM-SIMULATION algorithm.

If we have the weaker restriction that - € O(Smm n) then the same game can be played

gmin s

S4

by having each processor, P;, simulate O(-7i7) CGM processors. Although this leads to an
algorithm with running time O(%), the big-Oh notation hides the fact that the processors
are not doing work which is exactly proportional to their speeds. This may or may not be
acceptable in practice.

In many cases, PRAM algorithms operate on pointer-based data structures such as lists
or graphs and the memory locations accessed by the PRAM processors are dictated by the
values of pointers in the data structure. In such cases the data structure can be preprocessed
so that the pointers are modified to contain a processor/address pair to allow addressing in
constant time. This preprocessing can easily be done in time O(% log p), and will most likely
yield the most efficient simulations in practice.

Using the more sophisticated techniques in [21, 32|, it is possible to simulate other types
of PRAMs on the HCGM model. In particular, extensions of the randomized EREW-PRAM and
CRCW-PRAM simulations described by Gerbessiotis and Valiant [21] to the HCGM model are

possible.

3.5 Circulate

Scientific computations often use a very regular communication pattern in which a set of
items is “rotated” or “circulated” through the processors in rounds, so that after p rounds,
every processor has seen every item. Examples include dense matrix multiplication, in which
the rows of the matrix are rotated, and solutions to the so-called n-body problem, in which
the n bodies in question are rotated.

The Circulate pattern takes two ordered lists A and B of size O(n) as input. The
computation proceeds in p rounds. During each round each processor sends and receives
some portion of B of size ?—), and performs some computation on its locally stored portions
of A and B. After the p rounds, each element of B has been stored in the same processor

as each element in A during exactly one round. The nature of the computation performed

in each round may vary, but the running time must be of the form O(|A;| - |B;| - n¢), where

19

A; (resp. B;) is the sublist of A (resp. B) stored at P;. This is captured by the following

algorithm.
CGM-CIRCULATE(A, B)
1. Repeats Steps 2 and 3 p times.
2. Each processor P; performs computation on A; and B;.

3. Each processor P; send B; 10 Pit1) mod p-

The number of supersteps used by the CGM-PARTITION algorithm is clearly O(p). Ini-
tially, A and B are distributed evenly among the processors, and so the amount of compu-

tation done during each of the p computation supersteps is

c+2
o(3-5-)-o(5)
p p p

c+2
np)

and the overall computation time is O(
To implement an HCGM version of the Circulate pattern, we need only change the way in

which A and B are distributed among the processors. This leads to the following algorithm:

HCGM-CIRCULATE(A, B)

1. Distribute A and B so that P; stores

Al elements of A and % elements of B.

DN

. Repeats Steps 2 and 3 p times.
3. Each processor P; performs computation on A; and B;.

4. Each processor P; send B; 10 Pit1) mod p-

Theorem 7. The HCGM-CIRCULATE(A, B) algorithm uses O("Csi) computation time and
n)] >1.

min
S

O(p) supersteps on an HCGM(n, p, s), provided that 52>, and |

S

Proof. Redistributing A and B in Step 1 is a straightforward matter using the prefix sum
algorithm of Theorem 1, and takes O(-—%:) computation time and O(1) supersteps.

psmin

During each execution of Step 2, the work done by P; is given by

. aCt+2
O<ﬂ|A|'@-nc> :O(sm)
S D pSs

20

and this work can be done in time O(%Jj) time. Therefore, over the p rounds, the total

computation time is O(%H), and this dominates the overall computation time. O

4 HCGM Algorithms

This section provides a sampling of algorithms for the HCGM model, and describes some
empirical results which show that these algorithms work well. These algorithm are arrived
at by expressing existing CGM and BSP algorithms in terms of the communication patterns

described in Section 3. We present algorithms for the following problems:

1. Parallel insertion and deletion operations on a priority queue illustrate the RANDOM-

AssIGN and LINEAR-PARTITION patterns.

2. Computing the lower envelope of non-intersecting line segments illustrates the LINEAR-

PARTITION pattern.
3. List ranking illustrates the PRAM-SIMULATION pattern.

4. Matrix multiplication illustrates the CIRCULATE pattern.

Rather than give a superficial treatment of a large number of algorithms, we have chosen
to examine a few algorithms in detail. A consequence of this approach is that we do not
provide an exhaustive list of possible HCGM algorithms based on the communication patterns
in Section 3. However, after presenting each algorithm, we make note of other BSP and cGm

algorithms which could be converted to HCGM algorithms in a similar manner.

4.1 Priority Queue Operations

Priority queues are a fundamental data structure used in a large number of graph and
optimization algorithms. A common example is the class of “Branch and Bound” algorithms
used in combinatorial optimization.

In this section, we consider the problem of performing a batch of m priority queue
operations on a priority queue,), of size n. Throughout the following discussion, we will

assume that n > m. The two operations we wish to support are:

21

1. MULTIINSERT(kg, - - - , km—1, Q). Insert the keys ko, ..., k,_1 into Q.

2. MULTIDELETE(m, Q). Delete the m smallest keys from Q.

The algorithms presented in this section are a generalization of the algorithms discovered
by Béumker et. al. [4] and by Gerbessiotis and Siniolakis [20]. In these schemes, each
processor, P; maintains a local priority queue (); which contains O(%) of the keys in the
overall priority queue. When inserting keys into the priority queues, the keys are assigned

to processors at random. The Multilnsert algorithm is given below:

MULTIINSERT (ko, - . - , km_1, Q)

1. All processors use the Random-Assign algorithm to randomly assign the keys to pro-

CeSssors.

2. Each processor, P;, inserts the keys received in Step 1 into Q;.

Theorem 8. The algorithm MULTIINSERT (ko, . . ., k1, Q) runs uses ON(% logn) computa-

gman

tion time and O(1) supersteps on an HCGM(n, p, s), provided that m > 31lnm.

S

Proof. By Theorem 3, Step 1 takes O(% log p) computation time and O(1) supersteps. Fur-

thermore, each processor, P;, receives O(%m) keys. Therefore, Step 2 takes O(7 logn)

computation time and dominates the computation time. O

Assigning the keys to processors using the Random-Assign pattern not only ensures
load balancing during insertion, but also ensures load balancing during deletion. This is
because each local queue, @Q;, contains no more than c*m of the m smallest keys, with high
probability. Thus, the strategy used when deleting keys is to delete too many keys from @);
and then reinsert those keys which should not have been deleted. This leads to the following

algorithm.

MULTIDELETE(m, Q)
1. Each processor P; removes the minimum c*m keys from Q;.

2. All processors globally sort the keys removed in Step 1.

22

3. The keys with rank less than m in the sorted order are deleted, while the keys with

rank greater than m in the sorted order are reinserted using the Multilnsert algorithm.

Note that the MULTIDELETE(m,)) algorithm is a Monte Carlo algorithm as well as a
Las Vegas algorithm. It is possible that some @); contains more than c*m of the m smallest
keys, in which case the algorithm produces an incorrect result. However, as Theorem 9

shows, this is highly unlikely.
Theorem 9. Let m; be the number of the m smallest keys which are stored in Q;. Then

S; 1
Pr [mi > c—m] <
s mle—1)

provided that >m > 31nm.
Proof. Note that any key is assigned to (); with probability * and that this probability is

independent of any other key being assigned to ;. Therefore the value of m; follows the

binomial distribution b(m, %). Applying Equation 1, we get that

s; 1 (cfl)Q%m/Zi 1
Pr [mz > c—m] < (—) < ——
s e mfe=1)

O

Theorem 10. The algorithm MULTIDELETE(m, Q) uses O(™logn) computation time and

gmaz gmun

O(1) supersteps on an HCGM(n, p, s), provided that r = r>2lnn, and p < n.

s ’ s

Proof. In Step 1, each processor P; deletes *m items from @;, and can do this using
O(™ logn) computation time. By Corollary 2, Step 2 can be done using O(1) supersteps and
O(% logm) computation time. By Theorem 8, Step 3 can be done using O(1) supersteps
and O(Zlogn) computation time. Thus, all steps can be completed in the stated resource
bounds. 0

A number of BSP and cGM algorithms exist which use the Random-Assign pattern. These
include the randomized sorting algorithm of Bader et. al. [2], the tree multisearch algorithms
of Bdumker et. al. [3, 5, 6, 7], and the DAG multisearch algorithms of Gerbessiotis and
Siniolakis [18, 19].

23

\
/

Figure 3: The lower envelope of a set of line segments. The portions of the line segments

which form the lower envelope are shown in bold.

4.2 Lower Envelopes

Computing the lower envelope of non-intersecting line segments is a classic problem in com-
putational geometry. Given a set of non-intersecting line segments in the plane, the lower
envelope problem is to determine which portions of these segments are visible to a viewer
standing at (0, —oo) (see Figure 3). A number of (more realistic) visibility problems can be
reduced to the lower envelope problem through standard geometric transformations. The
sequential complexity of the lower envelope problem is O(nlogn).

The algorithm we describe relies on the following property of the lower envelope of line

segments.

Observation 1 (z-Monotonicity). Any lower envelope, L, is x-monotone, i.e., any ver-
tical line intersects L at most once.

Dehne, Fabri, and Rau-Chaplin [15] describe a cGm algorithm for the lower envelope

problem which uses O(1) supersteps and O(”l‘;#) computation time. The algorithm we
describe is arrived at by simply replacing the global sort operation used in [15] with the
LINEAR-PARTITION algorithm in Section 3.

The algorithm works by first computing p individual lower envelopes. Next, the plane
is partitioned into p vertical slabs, where each slab intersects at most O(%) of the segments
of the lower envelopes computed above. Finally, the lower envelope of the segments in each
slab is computed, and the overall lower envelope is the union of the lower envelopes of all

slabs.

24

LOWERENVELOPE(S)

1. Each processor P; computes the lower envelope of it’s locally stored segments, call this

L;.

2. All processors globally perform a linear partition of the L; computed in Step 1, using

the z-coordinate of the right endpoint of each segment as the key.

3. Each processor, P;, determines the vertical line, /;, through the rightmost segment

received in Step 2, and broadcasts this line to all other processors.
4. Each processor, P;, sends the segments s € L; to P; if and only if s intersects [;.

5. Each processor, F;, computes the lower envelope of the segments received in Steps 2

and 4.

Theorem 11. The lower envelope of n non-intersecting line segments can be computed using

O(1) supersteps and O(%logn) computation time on an HCGM(n,p,s) provided that r =

maz man min
S S S

r > 2lnn, and n > p.

Proof. The correctness of the algorithm follows from the correctness of the algorithm in [15].
At the beginning of Step 1 each processor, P;, contains O(%n) segments and can therefore
compute the lower envelope of these segments in O(%logn) time. By Theorem 4, Step 2 can
be done in O(1) supersteps and O(% log p) computation time. Step 3 consists of routing an

h-relation with h = p. As noted in [15], during Step 4, each processor sends and receives at

gman

most p < n segments. This is due to Observation 1, since each L; intersects each [; at

S
most once. At the beginning of Step 5 each processor, P;, contains O(%n) segments and can

therefore compute the lower envelope of these segments in é(% logn) time. O

The LINEAR-PARTITION algorithm is extremely useful in adapting cGMm and BsP al-
gorithms to the HCGM model. The only communication operation used by the geometric
algorithms in [15] is global sorting. A first step in generalizing almost any cGM and BSP
algorithms to the HCcGM model is to replace all calls to global sort with calls to Linear-
Partition. In some cases, the resulting algorithm is in fact more efficient than the original
since global sort is often used when a linear partition will suffice. (This is the case with
the LOWERENVELOPE algorithm if a sequential algorithm is used in Step 5 that does not

require sorting.)

25

4.3 List Ranking

The list ranking problem takes as input a linked list and returns as output the distance of
each list element to the last element of the list. This list ranking problem has been studied
extensively for the PRAM model and optimal randomized and deterministic algorithms have
been devised [30].

The simplest (near-optimal) solution to the list ranking problem uses a recursive doubling
technique known as pointer jumping (see, e.g., [22]. In pointer jumping, each element is
initially assigned a rank of 1, with the exception of the last list element which is assigned a
rank of 0. Each element then gets assigned the pointer of its successor, and adds to its rank,
the rank of its successor. After repeating this procedure logn times, each element has the
last list element as its successor and is correctly ranked.

In [9], Céceres et. al. describe a caM algorithm for the list ranking problem. The al-
gorithm begins by finding a p?-ruling set of size O(%). This is a subset of the original list
elements such that no two consecutive elements are further than distance p? apart. At the
same time, the algorithm determines for each list element x, nextrs(x) the first ruling set ele-
ment which occurs after z in the list, and dist(x) the distance between x and nextrs(x). The
ruling set elements are then broadcast to all processors and are ranked sequentially. Elements
not in the ruling set are then ranked using the formula rank(z) = rank(neztrs(z)) + dist(x).

For the HCGM model we obtain the following algorithm.

HCGM-LisT-RANK()
1. All processors compute a p? ruling set of size O(%) using the EREW-PRAM simulation
procedure described in [9].
2. All processors gather the ruling set elements into P™.

3. P™* ranks the ruling set elements.

4. P™* sends each (now ranked) ruling set element back to the processor from which it

was received.

5. All processors simulate pointer jumping to determine, for each list element x, the values

nextrs(x), dist(z), and rank(nextrs(x)).

26

6. Each processor, P;, ranks the elements it contains which are not in the ruling set using

the formula rank(x) = rank(nextrs(z)) + dist(z).

Theorem 12. The list ranking problem can be solved on an HCGM(n, p, 5) using O(% log p)

computation time and O(logp) supersteps.

Proof. In a preprocessing step, each processor, P;, can preprocess its subarray in O(% logp)
time, so that rather than containing indices, the subarray contains processor/index pairs. In
this way, the PRAM simulation in Step 1 and the pointer jumping in Step 5 can be done in
O(% logp) time. Steps 2-4 can clearly be done using O(1) supersteps and O(%) computation
time. U

List ranking is used as a subroutine in a number of parallel tree and graph algorithms.
In [9], Céceres et. al. describe a number of cGM graph algorithms based on existing PRAM
algorithms. Using the PRAM simulation technique of Section 3, most of these algorithms can

be adapted to the HCGM model.

4.4 Matrix Multiplication

Matrix multiplication is perhaps one of the most common operations used in large-scale
scientific computing. Given two n X n matrices A and B, we define the matrix C = A x B
as

n—1

Cij =Y AwiBjpk-

k=0
In this section, we show how to implement matrix multiplication using the CIRCULATE
pattern. We assume that the matrix A is partitioned among the processors so that each
processor, I; holds *n rows of A and % columns of B. At the completion of the computation,
P; will hold *n rows of C (see Figure 4). We denote the parts of A, B, and C held by P; as
A;, B;, and C; respectively.

The matrix multiplication algorithm consists of circulating the columns of B among the

processors. Note that when P; receives column j of B, it can compute column j of C;. Thus,

once P; has seen all columns of B, it will have computed all of C;. Although, by now the

operation of the algorithm should be obvious, we include it here for the sake of completeness.

HCGM-MATRIX-MULTIPLY (A, B)

27

P, P,
Pl Pl
P2 PZ
P, P,

Po P1 P Py

Figure 4: Partitioning matrices A, B, and C in a 4 processor system.

1. Apply the HCGM-CIRCULATE algorithm, where the A set consists of the rows of A,
and the B set consists of the columns of B. When processor P; receives some columns

of B, it computes the corresponding columns of C;.

Theorem 13. The HCGM-MATRIX-MULTIPLY(A, B) algorithm computes the matriz C
using O(%S) computation time and O(p) supersteps on an HCGM(n?, p, s), provided that % >
n] > 1.

min
S

p, and |

s

Proof. The correctness of the algorithm follows from the fact that the CIRCULATE pattern
ensures that every processor P;, sees every column of B exactly once, thereby enabling it to

correctly compute C;. The running time follows from Theorem 7 and from the fact that the

work done by P; during each round is of the form O(|A;| - |B;| - n) O

4.5 Empirical Results

The algorithms for the communication patterns described in Section 3 and some of the
algorithms in this section have been implemented as part of the PLEDA library, an ongoing
project whose goal is to supply a portable library of efficient parallel data structures and
algorithms [25]. This work builds on the LEDA library of sequential data structures and
algorithms [26]. The library is written in C++ and uses MPI for message passing.

Timing results are presented for a sorting algorithm, which uses the RANDOM-SAMPLE
and LINEAR-PARTITION patterns (see Corollary 2), and for a parallel version of the Floyd-
Warshall all pairs shortest path algorithm (see, e.g., [12]), which is based on the CIRCULATE
pattern. These results were obtained on a dedicated cluster of workstations consisting of 14

166MHz Pentium processors interconnected by a 100MHz Ethernet switch, running Linux,

28

500000

With Load-Balancing <—

450000 L Without Load-Balancing -+--

400000

350000

300000 [

Speed (items/sec)

250000
200000

150000 - /

100000 Il Il Il Il Il Il Il Il Il Il Il
2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Processors

Figure 5: Performance of cGM and HCGM versions of Sample Sort.

and using the LAM MPI implementation. In order to simulate slow processors, a crippling
process was launched on those processors in order to reduce their effective speed. Crippling
processes do nothing but spin in a tight loop performing useless calculations, effectively
reducing the speed of the processor to % its usual speed. For these tests up to 14 processors
were used. Py through FPs were run at the regular speed, while P; through P35 were crippled.

Figure 5 compares the results of using the HCGM Linear-Partition algorithm and then
sorting locally against the results obtained by standard Sample Sort [21]. The test sorts a
list of 2.5 - 10° integers, using the LEDA implementation of quicksort as the local sorting
function. In both cases, the input is initially distributed in a load balanced manner. It is
clear from Figure 5 that the HCGM version (labelled “With Load-Balancing”) of the algorithm
performs much better than the standard version (labelled “Without Load-Balancing”) when
slow processors are introduced into the system.

In order measure the performance of another class of HCGM algorithms we implemented a
CGP version of the Floyd-Warshall all pairs shortest path algorithm which uses the Circulate
pattern on the columns of the adjacency matrix. The results of running this test with
n = 1.0-10% are shown in Figure 6. As we would expect, the HCGM version of the algorithm
performs much better. With the cGM version it is faster to run the application with 7 fast
processors than it is to run it with 7 fast processors and 4 slow processors, while with the

HCGM version the performance improves each time a processor is added to the cluster.

29

3500

With Load-Balancing <—
Without Load-Balancing -+--

3000 |

2500 |

2000

Speed (items/sec)

1500

1000

500 Il Il Il Il Il Il Il Il Il Il Il
2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Processors

Figure 6: Performance of cGM and HCGM versions of Floyd-Warshall algorithm

5 Conclusions

We have defined a model for parallel computing on heterogeneous systems, and described
a number of algorithms for this model. Although this model is very simple, the empirical
results in Section 4 suggest that it captures the most important aspects of actual systems,
and algorithms which the model predicts as being fast tend to work well in practice.

There are several directions in which this work could be extended. Although the HCGM
model appears to be a fairly good model for developing algorithms, it is not (nor is it intended
to be) an accurate predictor of exact running times. One could argue that the asymptotic
analyses used in this thesis are not strong enough, since in practice processor speeds do
not vary by more than constant factors. To this end, it might be useful to define an HBSP
model which incorporates the Bsp parameters g and L. Tests like those done by Wijshoff
and Juurlink [33] could then be performed to determine whether the resulting model is an
accurate predictor of performance.

We note that such extensions to the BSP model are not entirely trivial. The question of
whether to apply a bandwith limitation locally, by e.g., charging a cost of s% for each word
sent or received by P;, or globally as is done in the HCGM model is not an easy one. In
a recent paper, Adler et. al. [1] have shown that a model in which bandwidth is restricted

globally is significantly more powerful than a model in which bandwidth is restricted locally.

30

Empirical testing is necessary to determine which is more appropriate, and it may be the case
that the choice of global versus local bandwidth restriction depends on the actual parallel
machine being modelled.

Another direction for future work is a direct comparison of the algorithms described in
this thesis with algorithms based on the overparitioning approach described in Section 1. The
difficulty with this is that although algorithms which use the overpartitioning approach exist
for some problems, most of the algorithms described in Section 4 do not have counterparts
based on overpartitioning. Thus, regardless of the results of the outcome of such tests, most
of the algorithms in Section 4 are the only algorithms currently available for such problems.

One advantage which algorithms based on overpartitioning may have over HCGM algo-
rithms is that they can adjust to changing load in systems in which processors are shared
among users. Although the HCGM model could be extended to incorporate dynamically
changing processor speeds, the algorithms for this model would have to be very different
than those presented in this thesis. This is due to the fact that HCGM algorithms attempt to
minimize the number of supersteps, which means maximizing (within reason) the amount of
computation performed between communication operations. Therefore, if processor speeds
change frequently and drastically, most of the computation will be non-optimal. It seems
that the CGP paradigm of algorithm design is simply not suited for a scenario in which
processor speeds change dynamically.

The communication patterns of Section 3 are also interesting in their own right. Since
most existing CGP algorithms can be expressed in terms of these patterns, they are an
excellent starting point for a software framework which is to support the development of
CGP algorithms. This is the direction being pursued in the PLEDA project [25]. Ongoing
work in this area includes the implementation and testing of more algorithms, as well as
keeping the list of communication patterns up-to-date as new algorithms are developed
which use different patterns. On a more theoretical note, it may be interesting to develop

algorithms for the patterns of Section 3 which do not rely on randomization.

Acknowledgements

The author would like to thank Silvia Gotz, Anil Maheshwari, Ben Juurlink, Jorg Sack, and

Frank Dehne for several helpful discussions, and for having read and commented on earlier

31

versions of this paper.

References

[1]

M. Adler, P. B. Gibbons, Y. Matias, and V. Ramachandran. Modelling parallel band-
width: Local vs. global restrictions. In Proceedings of the 9th Annual ACM Symposium

on Parallel Algorithms and Architectures, pages 94-105, 1997.

D. Bader, D. Hellman, and J. JaJ4. Parallel algorithms for personalized communication
and sorting with an experimental study. In Proceedings of the ACM Symposium on

Parallel Algorithms and Architectures, pages 211-222, 1996.

A. Baumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP
model. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,
pages 233-242, 1996.

A. Baumker, W. Dittrich, F. Meyer auf def Heide, and I. Rieping. Realistic parallel
algorithms: Priority queue operations and selection for the BSP* model. In Proceedings

of Euro-Par 96, pages 27-29, 1996.

A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms:
c-optimal multisearch for an extension of the BSP model. In Proceedings of the European

Symposium on Algorithms, pages 17-30, 1995.

A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms:
1-optimal multisearch for an extension of the BSP model. Technical report, University

of Paderborn, 1996.

A. Baumker, W. Dittrich, and A. Pietracaprina. The deterministic complexity of parallel
multisearch. In Proc. 5th SWAT, 1996.

A. Beguelin, J. Dongarra, A. Geist, B. Manchek, and V. Sunderam. Solving computa-
tional grand challenges using a network of heterogeneous supercomputers. In Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing, pages
596-601, 1991.

32

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

E. Céceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato, N. Santoro, and
S. Song. Efficient parallel graph algorithms for coarse grained multicomputers and BSP.
In Proceedings of International conference on Automata, Languages, and Programming,

1997.

A. L. Cheung and A. P. Reeves. High performance computing on a cluster of worksta-
tions. In Proceedings of 1st International Symposium on High Performance Distributed

Computing, pages 152-160, 1992.

M. Cierniak, W. Li, and M. J. Zaki. Loop scheduling for heterogeneity. In Proceedings
of 4th International Symposium on High Performance Distributed Computing, 1995.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-
Hill, 1990.

P. E. Crandall and M. J. Quinn. A decomposition advisory system for heterogeneous
data-parallel processing. In Proceedings of 3rd International Symposium on High Per-

formance Distributed Computing, pages 114-121, 1994.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Snatos, R. Subramonian,
and T. von Eicken. LogP: Towards a realistic model of parallel computation. In ACM

Symposium on Principles and Practices of Parallel Programming, pages 1-12, 1993.

F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry
for coarse grained multicomputers. International journal on Computational Geometry,

6(3):379-400, 1996.

A. Ferreira and S. Ub’eda. Computing the medial axis transform with 8 scan operations.

In IEEE International Conference on Image Processing, 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: FElements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

A. V. Gerbessiotis and C. J. Siniolakis. Communication efficient data structures on the
BSP model with applications to computational geometry. In Proceedings of EuroPar’96,

1996.

33

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

A. V. Gerbessiotis and C. J. Siniolakis. Communication efficient data structures on
the BSP model with applications to computational geometry. Technical report, Oxford

Computing Laboratory, 1996.

A. V. Gerbessiotis and C. J. Siniolakis. Selection on the bulk-synchronous parallel model
with applications to priority queues. In Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications (PDPTA ’96), 1996.

A. V. Gerbessiotis and L. Valiant. Direct bulk-synchronous parallel algorithms. In 3rd
Scandinavian Workshop on Algorithm Theory, pages 1-18, 1992.

J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

D. Knuth. The Art of Computer Programming — Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

E. P. Markatos and T. J. LeBlanc. Using processor affinity in loop scheduling on
shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Sys-

tems, 5(4):379-400, April 1994.
P. Morin. The PLEDA User’s Guide. Carleton University, 1.0 edition, 1997.

S. Naer. The LEDA manual. Technical Report MPI-I-93-109, Max-Planck Institut fiir
Informatik, 1993.

N. Nedeljkovi¢ and M. J. Quinn. Data parallel programming on a network of heteroge-

neous workstations. Concurrency: Practice and Experience, 5(4):257-268, June 1993.

M. V. Nibhanupudi, C. D. Norton, and B. K. Szymanski. Plasma simulation on networks
of workstations using the bulk-synchronous parallel model. In International Conference

on Parallel and Distributed Techniques and Applications, 1995.

S. Orlando and R. Perego. A template for non-uniform parallel loops based on dynamic
scheduling and prefetching techniques. In Proceedings of the 10th ACM International

Conference on Supercomputing, 1996.

J. Reif, editor. Synthesis of parallel algorithms. Morgan Kaufmann, 1993.

34

[31]

32]

[33]

[34]

[35]

[36]

D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: Harnessing the power of
parallelism in a pile-of-pcs. In Proceedings of IEEE Aerospace, 1997.

L. Valiant. A bridging model for parallel computation. Communications of the ACM,
33:103-111, 1990.

H. A. G. Wijshoff and B. H. H. Juurlink. A quantitative comparison of parallel computa-
tion models. In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 13-24, 1996.

M. H. Willebeck-LeMair and A. P. Reeves. Strategies for dynamic load balancing on
highly parallel computers. [EEE Transactions on Parallel and Distributed Systems,
4(9):979-993, September 1993.

Y. Yan, X. Zhang, and Y. Song. An effective and practical performance prediction model
for parallel computing on non-dedicated heterogeneous NOW. Journal of Parallel and

Distributed Computing, 38(1):63-80, 1996.

X. Zhang and Y. Yan. Modeling and characterizing parallel computing performance on
heterogeneous networks of workstations. In Proceedings of the 7th IEEE Symposium on

Parallel and Distributed Processing, pages 25-34, 1995.

Biographical Note

Pat Morin received his B.C.S. degree from Carleton University in 1996, and his M.C.S. degree

in 1998. His research interests include parallel algorithms and computational geometry. He

is currently enrolled in the PhD program at Carleton.

A

High Probability Bounds

When discussing randomized algorithms of any type it is usually not enough to give the

expected running time of the algorithm. The reason for this is that, while the expected

running time may be good, any particular execution of the algorithm may take significantly

longer.

35

This is where high probability bounds are used. The idea behind such bounds is to show
that the execution time of an algorithm rarely differs significantly from its expected running
time, at least in the case where the input size is large. The definition of high probability
is usually applied to a random variable. However, in order to emphasize its application, we

describe it in terms of the running time of a randomized algorithm.

Definition 1. We say that a randomized algorithm A has running time O(f(n)) with high
probability, denoted O(f(n)) if

1

Pr [Ezecution time of A > cf(n)] < a0 -

It is worth noting that no assumption is made about the input to 4, and so A must rely

strictly on the randomization to achieve this running time.

A.1 The Binomial Distribution

A Bernoulli trial is any experiment with only two possible outcomes, success or failure. In
such a trial we define ¢ as the probability of success and 1 — ¢ as the probability of failure.

If we denote success by 1 and failure by 0 we see that a Bernoulli trial X is defined by
PrlX=1]=g¢gand Pri X =0]=1—g¢.

If we define X(n) as the number of successes during n Bernoulli trials with success

probability ¢ then we have
Pr(b(n,q) = k] = C(n, k)g"(1 — ¢)" .

We say that b(n, q) follows a binomial distribution with success probability ¢ and number of
trials equal to n.

Binomial distributions occur frequently when giving high probability bounds for random-
ized algorithms. The nice property of the binomial distribution is that if the running time of
an algorithm follows the distribution b(n, ¢), then for certain values of n and ¢, the running
time of the algorithm is O(ng). The following theorem of Chernoff is useful in proving such

results.

36

Theorem 14 (Chernoff Bounds). Let X be a random variable which follows the distri-

bution b(n,q), then
1\ (c=1)%an/3
) , force>1

Pr[X > cqn| < (—
e

and
1)(1—6)2q'n/2

Pr(X <cgn] < (—
e

37

, for c < 1.

(1)

