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Abstract. We consider the problem of testing the roundness of a man-
ufactured object using the finger probing model of Cole and Yap [1].
When the object being tested is a disk and it’s center is known, we de-
scribe a procedure which uses O(n) probes and O(n) computation time.
(Here n = |1/q|, where g is the quality of the object.) When the center of
the object is not known, a procedure using O(n) probes and O(nlogn)
computation time is described. When the object being tested is a cylin-
der of length [, a procedure is described which uses O(In?) probes and
O(In*log In) computation time. Lower bounds are also given which show
that these procedures are optimal in terms of the number of probes used.

1 Introduction

The field of metrology is concerned with measuring the quality of manufactured
objects. A basic task in metrology is that of determining whether a given manu-
factured object is of acceptable quality. Usually this involves probing the surface
of the object using a measuring device such as a coordinate measuring machine
to get a set S of sample points, and then verifying, algorithmically, how well S
approximates an ideal object.

A special case of this problem is determining whether an object is round, or
circle like. For our purposes, an object I is good if the boundary of I can be
contained in an annulus of inner radius 1 — € and outer radius 1 + €, for some
quality parameter € > 0, and is bad otherwise. See Fig. 1 for examples of good
and bad objects. We call this problem the roundness classification problem.

Little research has been done on probing strategies for the roundness classi-
fication problem. A notable exception is the work by Mehlhorn, Shermer, and
Yap [4], in which a probing strategy for manufactured disks is coupled with a
roundness testing algorithm. Unfortunately, the procedure described in [4] relies
on the assumption that the object I is convex. It is usually not the case that the
manufacturing process can guarantee this.

In this paper we describe strategies for testing the roundness of manufactured
disks and cylinders. We use the finger probing model of Cole and Yap [1]. In this
model, the measurement device can identify a point in the interior of I and can
probe along any ray originating outside of I, i.e., determine the first point on the
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Fig. 1. Examples of good and bad objects.

ray which intersects the boundary of I. The finger probing model is a reasonable
abstract model of a coordinate measuring machine [5].

This work extends the results of [4] in several ways. The assumption that the
object I is convex is replaced by a much weaker assumption related to visibility.
Using this assumption, we give a procedure for testing the roundness of a man-
ufactured disk I using O(|1/qual(I)|) probes and O(]|1/qual(I)|log|1/qual(I)|)
computation time. Here |qual(I)| measures how far the object I is from the
boundary between good and bad. For testing the roundness of a manufac-
tured cylinder J we describe a procedure that uses O(l/qual(J)?) probes and
O(1/qual(J)?log(l/qual(.J)?)) computation time, where [ is the length of J. We
also give lower bounds which show that our procedures are optimal, up to con-
stant factors, in terms of the number of probes used.

The remainder of the paper is organized as follows: Section 2 introduces
definitions and notation used throughout the remainder of the paper. Section 3
describes procedures for testing the quality of manufactured disks. Section 4
presents a procedure for testing the quality of manufactured cylinders. Section 5
gives lower bounds on the number of probes needed to solve these problems.

2 Definitions, Notation, and Assumptions

In this section, we introduce definitions and notation used throughout the re-
mainder of this paper, and state the assumptions we make on the object being
tested. For the most part, notation and definitions are consistent with [4].

For a point p, we use the notation x(p), y(p), and z(p) to denote the z, y, and
z coordinates of p, respectively. The letter O is used to denote the origin of the
coordinate system. We use the notation dist(a,b) to denote Euclidean distance
between two objects. When a and b are sets of points, dist(a, b) is the minimum
distance between all pairs of points in a and b. The angle formed by three points
a, b, and ¢, is denoted by Zabc, and we always mean the smaller angle unless
stated otherwise.

A planar object I is defined to be any compact simply connected subset of
the plane, with boundary denoted by bd(I). For a point p, we use R(p,I) and



r(p,I) to denote the maximal and minimal distance, respectively, from p to a
point in bd(I). Le.,

R(p,I) = max{dist(p,p) : p’ € bd(I)} (1)
r(p,I) = min{dist(p,p) : p' € bd(I)} . (2)
For a point p, let
qual(p, I) = min{r(p,I) — (1 —€),(1 +€) — R(p, 1)} (3)
qual(I) = max{qual(p,I) : p € R?} . (4)

Any point ¢; with qual(cy,I) = qual(I) is called a center of I. The value qual(I)
is called the quality of the object I. An object I with qual(I) > 0 is good while
an object I with qual(I) < 0 is bad. A procedure which determines whether a
planar object is good or bad is called a roundness classification procedure.

In order to have a testing procedure which is always correct and which termi-
nates, it is necessary to make some assumptions about the object I being tested.
The following assumption made in [4] is referred to as the minimum quality
assumption, and refers to the fact that the manufacturing process can guaran-
tee that manufactured objects have a minimum quality (although perhaps not
enough to satisfy our roundness criterion).

Assumption 1. R(cr,I) < 1+ 6 and r(cr,I) > 1 — 6, for some constant 0 <
6 < 1/21, i.e., the boundary of I is contained in an annulus of inner radius 1 —§
and outer radius 1 + 4.

The minimum quality assumption alone is not sufficient. If the object under
consideration contains oddly shaped recesses, then it may be the case that these
recesses cannot be found using finger probes. We say that an object I is star-
shaped if there exists a point k& € I such that for any point p € I, the line segment
joining k and p is a subset of I. We call the set of all points with this property
the kernel of I. The following assumption ensures that all points in bd([) can
be probed by directing probes close to the center of I.

Assumption 2. [ is a star-shaped object, and its kernel contains all points p
such that dist(cr, p) < a, for some constant 1 — 6 > a > 26.

We observe that our assumptions are weaker than those in [4].

Observation 1. The set of convex objects satisfying Assumption 1 is strictly
contained in the set of objects satisfying Assumptions 1 and 2.

3 Testing Disks

3.1 The Simplified Procedure

In this section we describe a simplified testing procedure which assumes that we
know the object being tested is centered at the origin, O. The motivation for



describing this simplified procedure is pedagogical; it is a simple example which
helps in understanding the full procedure.

Our testing procedure tests the roundness of an object I by taking a set
S of probes at uniform intervals directed at the origin. We use the notation
probe(n, p) to denote the set of points obtained by taking n probes directed at
the point p in directions 27 /n, 4w /n,...,2(n — 1) /n. The procedure repeatedly
doubles the size of the sample until either (1) a set of sample points is found
which cannot be covered by an annulus of inner radius 1 — € and outer radius
1+ ¢, in which case I is rejected, or (2) the set of sample points can be covered
by an annulus with inner radius sufficiently larger than 1 — € and outer radius
sufficiently smaller than 1 + €, in which case we can be sure that I is a good
object.

Procedure 1 Tests the roundness of the object I centered at the origin.

10 r—1

2: R—1

3: n—mngp

4: A — f(n)

5: repeat

6: S <« probe(n,O)

7. if Ip € S : dist(p,0) > 1 + € or dist(p,0) < 1 — ¢ then
8: return REJECT

9: end if

10: r—1l—c+ A

11: R«—14e¢—A

12: n+«2n

13: A« f(n)

14: until Vp € S : dist(p, O) < R and dist(p,O0) > r

—_
()]

: return ACCEPT

The function f(n) which appears in the procedure is defined as

1 ((1+68)202+1+25+62)\7 12
oy = 3 (B <2 G
and the constant ng is defined as
ng = [r/arctan(a/(1 4 6))] <70 . (6)

With these definitions, we obtain the following crucial lemma.

Lemma 1. Let I be a planar object with center cy. Let S be the set of results of
n > mg probes directed at cr in directions 0,2w /n, 47 /n,...,27(n — 1)/n. Then
for any point p € bd(I), there exists a point p' € S such that dist(p,p’) < f(n).

Proof. Assume wlog that ¢; = O, x(p) =0,and 1 — 6 < y(p) <1+ 6. We will
upper-bound [x(p) — x(p')| and |y(p) — y(p')|- Refer to Fig. 2 for an illustration.
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Fig. 2. Constraints on the position of p'. The point p’ must be in the shaded region,
and dist(p, p') is maximized when p’ is placed as shown.

First note that there exists a sample point p’ € S such that 0 < /Zpcrp' < 7/n.
By Assumption 1, dist(O,p’) < 1+ 6, so an upper bound on |[x(p) — x(p')| is
(1+6)sin(n/n) (7)
(1+8)m/n (8)

[x(p) — x(p")| = Ix(p)] <
<

Since /pcrp’ < w/n, p’ must lie in the cone defined by the inequality

v(®) > [x(0)| (M) . (9)

sin(m/n)

Next we note that the slope of the line through p’ and p must be in the range
[—y(p)/a,y(p)/a], otherwise Assumption 2 is violated. If n > ng, then the region
in which p’ can be placed is bounded, and |y(p) — y(p')| is maximized when p’
lies on one of the bounding lines

fi(z) = zy(p)/a +y(p) (10)
fr(x) = —zy(p)/a+y(p) (11)

Since both lines are symmetric about = 0, assume that x(p') lies on f;, giving

ly(p) = y(@)| < [y(p) — fi(x(p"))] (12)
= [x(p")y(p)/el (13)
< [x(»")(1 +8) /o (14)
< (1+6)*n/an (15)

Substituting (8) and (15) into the Euclidean distance formula and simplifying
yields the stated inequality. O

Theorem 1. There exists a roundness classification procedure that can correctly
classify any planar object I with center c; = O and satisfying Assumptions 1
and 2 using O(|1/qual(I)|) probes and O(|1/qual(I)|) computation time.



Proof. We begin by showing that the procedure is correct. We need to show that
the procedure never rejects a good object and never accepts a bad object. The
former follows from the fact that the procedure only ever rejects an object when
it finds a point on the object’s boundary which is not contained in the annulus
of inner radius 1 — € and outer radius 1 + € centered at ¢;.

Next we prove that the procedure never accepts an bad object. Lemma 1
shows that there is no point in bd(I) which is of distance greater than f(n) from
all points in S. The procedure only accepts I when all points in .S are of distance
at least A = f(n) from the boundary of the annulus of inner radius 1 — ¢ and
outer radius 1+ € centered at O. Therefore, if the procedure accepts I, all points
in bd(I) are contained in an annulus of inner radius 1 — e and outer radius 1+,
i.e., the object is good.

Next we prove that the running time is O(|1/qual(7)|). First we observe that
f(n) € O(1/n). Next, note that the computation time and number of probes
used during each iteration is linear with respect to the value of n, and the value
of n doubles after each iteration. Thus, asymptotically, the computation time
and number of probes used are dominated by the value of n during the last
iteration. There are two cases to consider.

Case 1: Procedure 1 accepts I. In this case, the procedure will certainly termi-
nate once A < qual(I). This takes O(log(1/qual(I))) iterations. During the final
iteration, n € O(1/qual([)).

Case 2: Procedure 1 rejects I. In this case, there is a point on bd(I) at distance
qual(I) outside the circle with radius 1 + € centered at O, or there is a point in
bd(I) at distance qual([) inside of the circle with radius 1 — € centered at O.
In either case, Lemma, 1 ensures that the procedure will find a bad point within
O(log |1/qual([)|) iterations. During the final iteration, n € O(|1/qual()|). O

3.2 The Full Procedure

The difficulty in implementing Procedure 1 is that we may not know the position
of the exact center, ¢y, of I. However, the following result from [4] allows us to
use this procedure anyhow.

Theorem 2 (Near-Center). Let I be a planar object with center ¢ and which
satisfies Assumption 1. Then 6 probes and constant computation time suffice to
determine a point co such that dist(cy,co) < 26.

We call any such point ¢y a near-center of I. As the following lemmata show,
knowing a near center is almost as useful as knowing the true center. Before we
state the lemma, we need the following definitions.

1 1+ 36)47r2> 3 15)

f'(n) - ((1 + 35)27r2 + m
ng = [r/arctan(a/(1 + 36))] (17)



Lemma 2. Let I be a planar object with center cr and near-center ¢o. Let S be
the set of results of n > ny probes directed at cq in directions 0, 2w /n, 47 /n, ..., 27(n—
1)/n. Then for any point p € bd(I), there exists a point p' € S such that

dist(p,p') < f'(n).

Proof. The proof is almost a verbatim translation of the proof of Lemma 1,
except that we assume that ¢g = O. With this assumption we derive the bounds

()
y(®)
Substituting these values into the formula for the Euclidean distance and sim-
plifying yields the desired result. O

(1+ 36)(n/n) (18)

[x(p) —x
- (14 36)*7/n(a — 26)| (19)

| <
ly(p) | <

Lemma 3. Let I be a planar object with center c; and near-center cy. Let S be
the set of results of n probes directed at ¢y in directions 0,2w /n, 47 /n, ..., 2x(n—
1)/n, and let cs be the center of S. Then

R(057S) S R(057I)
T(CS,S) - fl(n) < T(057I)

Proof. We prove only the bounds on the R(cg,I) as the proof of the bounds
on 7(cg,I) are symmetric. The lower bound on R(cg,I) is immediate, since
S C bd(I). To see the upper bound, choose any point p € bd(I) such that
dist(cs,p) = R(cs,I). By Lemma 1 there exists p' € S such that dist(p’,p) <
f'(n). Therefore dist(cg,p) < dist(cs,p’) + f'(n), which implies that R(cg, ) <
R(cs,S) + f'(n). ]

R(cs, §) + f'(n) (20)

<
<r(cs,S) - (21)

Lemma 4. Let I be a planar object with center ¢y and near-center ¢o. Let S be
the set of results of n probes directed at co in directions 0,27 /n, 4w /n, ..., 27x(n—
1)/n. Then qual(S) — f'(n) < qual(I) < qual(S)

Proof. The proof can be found in [4].

Theorem 3. There exists a roundness classification procedure that can correctly
classify any planar object I satisfying Assumptions 1 and 2 using O(1/|qual(I)]|)
probes and O(|1/qual(I)|log|1/qual(I)|) computation time.

Proof. We make the following modifications to Procedure 1. In Line 3, we set
the value of n to ny. In Lines 4 and 13, we replace f(n) with f'(n). In Line 6 we
directed our probes at ¢ rather than O. In Lines 7 and 14, we replace the simple
test with a call to one of the O(nlogn) time referenced roundness algorithms in
[2] or [3], to test whether the sample set S can be covered by an annulus with
the specified inner and outer radius.

Lemma 4 ensures that the procedure never accepts a bad object and never
rejects a good object. i.e., the procedure is correct. The procedure terminates
once f'(n) < |qual(I)|. This happens after O(log |1/qual(I)|) iterations, at which
point n € O(|1/qual(I)|. O



4 Testing Cylinders

Before we can describe a quality testing procedure for cylinders, we must gen-
eralize the notion of quality to cylinders. In this work, we are concerned with
the roundess of cylinders, and not their height, or the flatness of their ends. For
these reasons, we will assume that our manufactured cylinders have length I,
and that their ends are perfectly flat. The object, J, that we are interested in
testing is a compact simply connected subset of the space (z,y,[0,1]).

We assume that J is resting on the (x,%) plane and that we know the ori-
entation of the cylinder. Define J, to be the set of all points (z,y) such that
(z,y,h) € J. Note that Jj, is a planar object. We define the outer boundary of J
as Jout = Uoghgl Jn, and we define the inner boundary of J as Ji, = ﬂoghgl Jp.
For a point p on the plane, we use R(p,J) and r(p, J) to denote the maximal
and minimal distance, respectively, from p to a point in bd(Jout) and bd(Ji,),
respectively. For a point p, let

qual(p, J) = min{r(p, J) — (1 —€),(1 +€) — R(p, J)} (22)
qual(J) = max{qual(p,J):p € R3} . (23)

We call any point ¢; with qual(cy, J) = qual(J) a center of J. Note that accord-

ing to these definitions J is an good object if there exists an annulus of inner

radius 1 — € and outer radius 1 + € which covers both bd(Ji,) and bd(Jout)-
We require the following minimum quality assumptions.

Assumption 3. R(c;,J) < 1+ 6 and r(cs,J) > 1 — 6, for some constant
0<6<1/21.

Assumption 4. For all 0 < h < [, J, is a star-shaped object, and its kernel
contains all points p such that dist(cs,p) < a, for some constant 1 —§ > a > 26.

Assumption 5. Let J be an object with center ¢z, and let J[h—a, h+a] be the
subset of points in J with z coordinate in [h—a, h+a]. Let K be the intersection
of the infinite length cylinder of radius «, which is perpendicular to the (z,y)
plane and is centered at O with J[h — a, h + @]. Then J[h — o, h + @] is a star
shaped object with kernel K.

Note that Assumptions 3 and 4 allow us to find a near-center ¢y of J in
constant time. Our procedure for testing cylinders is exactly the same as the
procedure for testing disks described in Sect. 3.2, except that during each iter-
ation, we perform In/27 sets of probes along the planes z = 0,z = 27/n, 2z =
dr/n,...,z = I, where each set contains n probes directed at c¢g. Note that
the number of probes performed is O(In?). After collecting these sample points,
they are projected onto the (z,y)-plane, and the algorithm of [2] or [3], deter-
mine whether there exists an annulus of inner radius r and outer radius R which
contains them.

As in Sect. 3, let us define the function

1
2

7() = /() + = (1 +30)n/a)? + 77) (24)



Lemma 5. Let J be an object of length | with center ¢y, and satisfying Assump-
tions 3, 4, and 5. Let co be any point such that dist(cr,co) < 26, and let S be
a set of In/2w, n > myg, probes directed at ¢y as described above. Then for any
point p € bd(J) there exists a point p' € S such that dist(p,p") < f"(n).

Proof (Sketch). Note that S contains a ring of probes S’ such that for all p’ € S,

|2(p") — 2(p)| < 7/n. With reference to Fig. 3, one can prove that dist(p,p”) <

f'(n) using the same arguments used in the proof of Lemma 2. Using Assump-
1

tion 5, once can also prove that dist(p”,p’) < L (((1+38)w/a)? +7%)?. The

stated bound then follows from the triangle inequality. O

Fig. 3. The proof of Lemma 5.

With this result, and following the arguments of Sect. 3.2, it is not difficult
to prove the correctness and running time of the testing procedure for cylinders.

Theorem 4. There exists a roundness classification procedure for cylinders that
can correctly classify any object J of length | and satisfying Assumptions 3, 4,
and 5 using O(l/qual(J)?) probes and O(l/qual(J)?log(l/qual(J)?)) computa-
tion time.

5 Lower Bounds

In this section, we give lower bounds which show that the number of probes used
in our testing procedures is optimal up to a constant factor. These lower bounds
hold even if the center of the object is known in advance. We begin with a lower
bound for planar objects.

Theorem 5. Any roundness classification procedure that is always correct re-
quires, in the worst case, 2(|1/qual(I)|) probes to classify a planar object I with
center c; = O and satisfying Assumption 1 and Assumption 2.

Proof (Sketch). Let I and I' be the two objects depicted in Fig. 4. For any
0 <9 <e qual(l) = —qual(I') = 9. It is not difficult to see that if a procedure
uses o(|1/4]) probes, then by rotating I’ appropriately, it is possible to “hide”
the recess in I' so that the procedure cannot differentiate between I and I'. O
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Fig. 4. The proof of Theorem 5.

A similar argument can be used for cylinders. The difference being that the
recess in the object J' is a circular cone. That the recess in J’ can be hidden
comes from the fact that a set of n? points in the unit square always contains
an empty circle of radius £2(1/n).!

Theorem 6. Any roundness classification procedure for cylinders that is always
correct requires, in the worst case, 2(1/qual(J)?) probes to classify an object J
with center c; = O and satisfying Assumptions 3, 4, and 5.
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! To see this, divide the square into a (n + 1) x (n + 1) grid. Some cells in this grid
must have no points in them, therefore an empty circle of diameter 1/(n+ 1) can be
placed in one of these empty cells.



