
Spanners of Complete k-Partite

Geometric Graphs

Prosenjit Bose∗ Paz Carmi∗ Mathieu Couture∗ Anil Maheshwari∗ Pat Morin∗

Michiel Smid∗

September 25, 2007

Abstract

We address the following problem: Given a complete k-partite geometric graph K whose
vertex set is a set of n points in Rd, compute a spanner of K that has a “small” stretch factor
and “few” edges. We present two algorithms for this problem. The first algorithm computes
a (5 + ε)-spanner of K with O(n) edges in O(n log n) time. The second algorithm computes a
(3 + ε)-spanner of K with O(n log n) edges in O(n log n) time. The latter result is optimal: We
show that there exist complete k-partite geometric graphs K such that every subgraph of K
with a subquadratic number of edges has stretch factor at least 3.

1 Introduction

Let S be a set of n points in Rd. A geometric graph with vertex set S is an undirected graph H
whose edges are line segments pq that are weighted by the Euclidean distance |pq| between p and
q. For any two points p and q in S, we denote by δH(p, q) the length of a shortest path in H
between p and q. For a real number t ≥ 1, a subgraph G of H is said to be a t-spanner of H, if
δG(p, q) ≤ t · δH(p, q) for all points p and q in S. The smallest t for which this property holds is
called the stretch factor of G. Thus, a subgraph G of H with stretch factor t approximates the

(
n
2

)
pairwise shortest-path lengths in H within a factor of t. If H is the complete geometric graph with
vertex set S, then G is also called a t-spanner of the point set S.

Most of the work on constructing spanners has been done for the case when H is the complete
graph. It is well known that for any set S of n points in Rd and for any real constant ε > 0, there
exists a (1 + ε)-spanner of S containing O(n) edges. Moreover, such spanners can be computed in
O(n log n) time; see Salowe [8] and Vaidya [9]. For a detailed overview of results on spanners for
point sets, see the book by Narasimhan and Smid [6].

For spanners of arbitrary geometric graphs, much less is known. Althöfer et al. [1] have shown
that for any t > 1, every weighted graph H with n vertices contains a subgraph with O(n1+2/(t−1))
edges, which is a t-spanner of H. Observe that this result holds for any weighted graph; in particular,
it is valid for any geometric graph. For geometric graphs, a lower bound was given by Gudmundsson
and Smid [5]: They proved that for every real number t with 1 < t < 1

4 log n, there exists a geometric
graph H with n vertices, such that every t-spanner of H contains Ω(n1+1/t) edges. Thus, if we are

∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. Research partially sup-
ported by HPCVL, NSERC, MRI, CFI, and MITACS.

1

looking for spanners with O(n) edges of arbitrary geometric graphs, then the best stretch factor
we can obtain is Θ(log n).

In this paper, we consider the case when the input graph is a complete k-partite Euclidean
graph. Let S be a set of n points in Rd, and let S be partitioned into subsets S1, S2, . . . , Sk. Let
KS1...Sk

denote the complete k-partite graph on S. This graph has S as its vertex set and two points
p and q are connected by an edge (of length |pq|) if and only if p and q are in different subsets of
the partition. The problem we address is formally defined as follows:

Problem 1.1 Let k > 1 be an integer, let S be a set of n points in Rd, and let S be partitioned
into subsets S1, S2, . . . , Sk. Compute a t-spanner of the k-partite complete graph KS1...Sk

that has
a “small” number of edges and whose stretch factor t is “small”.

The main contribution of this paper is to present an algorithm that computes such a t-spanner
with O(n) edges in O(n log n) time, where t = 5 + ε for any constant ε > 0. We also show that if
one is willing to use O(n log n) edges, then our algorithm adapts easily to reach a stretch factor of
t = 3 + ε. Finally, we show that the latter result is optimal: We give an example of a complete
k-partite geometric graph K such that every subgraph of K with a subquadratic number of edges
has stretch factor at least 3.

We remark that in a recent paper, Bose et al. [2] considered the problem of constructing spanners
of point sets that have O(n) edges and whose chromatic number is a most k. This problem is
different from ours: Bose et al. compute a spanner of the complete graph and their algorithm can
choose a “good” k-partition of the vertices. In our problem, the k-partition is given and we want
to compute a spanner of the complete k-partite graph.

Possible applications of our algorithm are in wireless networks having the property that com-
municating nodes are partitioned into sets such that two nodes can communicate if and only if
they do not belong to the same set. This would be the case, for example, when Time Division
Multiplexing (TDMA) is used. Since the wireless medium prohibits simultaneous transmission and
reception at one node, two nodes communicating during the same time slots cannot communicate
with each other; see Raman and Chebrolu [7].

The rest of this paper is organized as follows. In Section 2, we recall properties of the Well-
Separated Pair Decomposition (WSPD) that we use in our algorithm. In Section 3, we provide
an algorithm that solves the problem of constructing a spanner of the complete k-partite graph.
In Section 4, we show that the spanner constructed by this algorithm has O(n) edges and that
its stretch factor is bounded from above by a constant that depends only on the dimension d. In
Section 5, we show how a simple modification to our algorithm improves the stretch factor to 5 + ε
while still having O(n) edges. In Section 6, we show how to achieve a stretch factor of 3 + ε using
O(n log n) edges. We also provide a lower bound of 3 on the stretch factor for the general geometric
k-partite spanner problem.

For ease of presentation, we will present all our results for the case when k = 2. The general-
ization to arbitrary values of k is a little bit more involved and will be given in the full version.

2 The Well-Separated Pair Decomposition

In this section, we recall crucial properties of the Well-Separated Pair Decomposition (WSPD) of
Callahan and Kosaraju [4] that we use for our construction. Our presentation follows the one in
Narasimhan and Smid [6].

2

Definition 2.1 Let S be a set of points in Rd. The bounding box β(S) of S is the smallest
axes-parallel hyperrectangle that contains S.

Definition 2.2 Let X and Y be two sets of points in Rd and let s > 0 be a real number. We
say that X and Y are well-separated with respect to s if there exists two balls B1 and B2 such
that (i) B1 and B2 have the same radius, say ρ, (ii) β(X) ⊆ B1, (iii) β(Y) ⊆ B2, and (iv)
min{|xy| : x ∈ B1 ∩ Rd, y ∈ B2 ∩ Rd} ≥ sρ.

Definition 2.3 Let S be a set of points in Rd and let s > 0 be a real number. A well-separated
pair decomposition (WSPD) of S with separation constant s is a set of unordered pairs of subsets
of S that are well-separated with respect to s, such that for any two distinct points p, q ∈ S there is
a unique pair {X, Y } in the WSPD such that p ∈ X and q ∈ Y .

Lemma 2.4 (Lemma 9.1.2 in [6]) Let s > 0 be a real number and let X and Y be two point sets
that are well-separated with respect to s.

1. If p, p′, p′′ ∈ X and q ∈ Y , then |p′p′′| ≤ (2/s)|pq|.

2. If p, p′ ∈ X and q, q′ ∈ Y , then |p′q′| ≤ (1 + 4/s)|pq|.

Callahan and Kosaraju [3] have shown how to construct a t-spanner of S from a WSPD: All
one has to do is pick from each pair {X, Y } an arbitrary edge (p, q) with p ∈ X and q ∈ Y . In
order to compute a spanner of S that has a linear number of edges, one needs a WSPD that has a
linear number of pairs. Callahan and Kosaraju [4] showed that a WSPD with a linear number of
pairs always exists and can be computed in time O(n log n). Their algorithm uses a split-tree.

Definition 2.5 Let S be a non-empty set of points in Rd. The split-tree of S is defined as follows:
if S contains only one point, then the split-tree is a single node that stores that point. Otherwise,
the split-tree has a root that stores the bounding box β(S) of S, as well as an arbitrary point of S
called the representative of S and denoted by rep(S). Split β(S) into two hyperrectangles by cutting
its longest interval into two equal parts, and let S1 and S2 be the subsets of S contained in the
two hyperrectangles. The root of the split-tree of S has two sub-trees, which are recursively defined
split-trees of S1 and S2.

The precise way Callahan and Kosaraju used the split-tree to compute a WSPD with a linear
number of pairs is of no importance to us. The only important aspect we need to retain is that
each pair is uniquely determined by a pair of nodes in the tree. More precisely, for each pair {X, Y }
in the WSPD that is output by their algorithm, there are unique internal nodes u and v in the
split-tree such that the sets Su and Sv of points stored at the leaves of the subtrees rooted at u
and v are precisely X and Y . Since there is such a unique correspondence, we will denote pairs in
the WSPD by {Su, Sv}, meaning that u and v are the nodes corresponding to the sets X = Su and
Y = Sv.

If R is an axes-parallel hyperrectangle in Rd, then we use Lmax(R) to denote the length of a
longest side of R.

Lemma 2.6 (Lemma 9.5.3 in [6]) Let u be a node in the split-tree and let u′ be a node in the
subtree of u such that the path between them contains at least d edges. Then

Lmax(β(Su′)) ≤
1
2
· Lmax(β(Su)).

3

Lemma 2.7 (Lemma 11.3.1 in [6]) Let {Su, Sv} be a pair in the WSPD, let ` be the distance
between the centers of β(Su) and β(Sv), and let π(u) be the parent of u in the split-tree. Then

Lmax(β(Sπ(u))) ≥
2`√

d(s + 4)
.

3 A First Algorithm

We now show how the WSPD can be used to address the problem of computing a spanner of a
complete bipartite graph. In this section, we introduce an algorithm that outputs a graph with
constant stretch factor and O(n) edges. The analysis of this algorithm is presented in Section 4.
In Section 5, we show how this algorithm can be improved to achieve a stretch factor of 5 + ε.

The input set S ⊆ Rd is the disjoint union of two sets R and B containing red and blue points,
respectively. The graph KRB is the complete bipartite geometric graph. We first need a definition.

Definition 3.1 Let T be the split-tree of S that is used to compute the WSPD.

1. For a node u in T , we denote by Su the set of all points in the subtree rooted at u.

2. We define BWSPD to be the subset of the WSPD obtained by removing all pairs {Su, Sv}
such that Su ∪ Sv ⊆ R or Su ∪ Sv ⊆ B.

3. A node u in T is bichromatic if there exist points r and b in Su and a node v in T such that
r ∈ R, b ∈ B, and {Su, Sv} is in the BWSPD.

4. A node u in T is a red-node if Su ⊆ R and there exists a node v in T such that {Su, Sv} is
in the BWSPD.

5. A red-node u in T is a red-root if it does not have a proper ancestor that is a red-node in T .

6. A red-node u in T is a red-leaf if it does not have another red-node in its subtree.

7. A red-node u′ in T is a red-child of a red-node u in T if u′ is in the subtree rooted at u and
there is no red-node on the path strictly between u and u′.

8. The notions of blue-node, blue-root, blue-leaf, and blue-child are defined as above, by re-
placing red by blue.

9. For each set Su that contains at least one red point, repR(Su) denotes a fixed arbitrary red
point in Su. For each set Su that contains at least one blue point, repB(Su) denotes a fixed
arbitrary blue point in Su.

10. The distance between two sets Sv and Sw, denoted by dist(Sv, Sw), is defined to be the distance
between the centers of their bounding boxes.

11. Let u be a red-node or a blue-node in T . Consider all pairs {Sv, Sw} in the BWSPD, where v
is a red-node on the path in T from u to the root (this path includes u). Let {Sv, Sw} be such
a pair for which dist(Sv, Sw) is minimum. We define cl(Su) to be the set Sw.

4

Algorithm 1 computes a spanner of a complete bipartite geometric graph. It considers each
pair {Su, Sv} of the WSPD, and decides whether or not it adds a red-blue and/or a blue-red edge
between Su and Sv. The outcome of this decision is based on the following three cases.
Case 1: All points of Su ∪ Sv are of the same color. In this case, there is no edge of KRB to
approximate, so the algorithm just ignores this pair.
Case 2: Both Su and Sv are bichromatic. In this case, the algorithm adds the two edges
(repR(Su), repB(Sv)) and (repB(Su), repR(Sv)); see line 21. These two edges will allow us to ap-
proximate each edge of KRB having one vertex in Su and the other vertex in Sv.
Case 3: All points in Su are of the same color, say red. In this case, only the edge (repR(Su), repB(Sv))
is added; see line 11. In order to approximate each edge of KRB having one (red) vertex in Su and
the other (blue) vertex in Sv, other edges have to be added. This is done in such a way that our final
graph contains a “short” path between every red point r of Su and the red representative repR(Su)
of Su. Observe that this path must contain blue points that are not in Su. One way to achieve
this is to add an edge between each point of Su and repB(cl(Su)); we call this construction a star.
However, since the subtree rooted at u may contain other red-nodes, many edges may be added
for each point in Su, which could possibly lead to a quadratic number of edges in the final graph.
To guarantee that the algorithm does not add too many edges, it introduces a star only if u is a
red-leaf; see line 7. If u is a red-node, the algorithm only adds the edge (repR(Su), repB(cl(Su)));
see line 10. Then, the algorithm links each red-node u′′ that is not a red-root to its red-parent u′.
This is done through the edge (repR(Su′′), repB(cl(u′))); see line 13.

Algorithm 1
Input: S = R ∪B, where R and B are two disjoint sets of red and blue points in Rd, respectively.
Output: A spanner G = (S, E) of the complete bipartite graph KRB .
1: compute the split-tree T of R ∪B
2: using T , compute the WSPD with respect to a separation constant s > 0
3: using the WSPD, compute the BWSPD
4: E ← ∅
5: for each red-root u in T do
6: for each red-leaf u′ in the subtree of u do
7: for each r ∈ Su′ , add to E the edge (r, repB(cl(Su′)))
8: end for
9: for each red-node u′ that is in the subtree of u (including u) do

10: add to E the edge (repR(Su′), repB(cl(Su′)))
11: for each pair {Su′ , Sv′} in the BWSPD, add to E the edge (repR(Su′), repB(Sv′))
12: for each red-child u′′ of u′ do
13: add to E the edge (repR(Su′′), repB(cl(Su′)))
14: end for
15: end for
16: end for
17: for each blue-root u in T do
18: //do the same as on lines 5–16, with red and blue interchanged
19: end for
20: for each {Su, Sv} in the BWSPD for which both u and v are bichromatic do
21: add to E the edges (repR(Su), repB(Sv)) and (repB(Su), repR(Sv))
22: end for
23: return the graph G = (R ∪B,E)

5

4 Analysis of Algorithm 1

Lemma 4.1 The graph G computed by Algorithm 1 has O(|R ∪B|) edges.

Proof: See the appendix. �

Lemma 4.2 Let r be a point of R, let b be a point of B, and let {Su, Sv} be the pair in the BWSPD
for which r ∈ Su and b ∈ Sv. Assume that u is a red-node. Then there is a path in G between r
and repR(Su) whose length is at most c|rb|, where

c = 4
√

d(µd + 1)(1 + 4/s)3, µ =
⌈
log

(√
d(1 + 4/s)

)⌉
+ 1,

and s is the separation constant of the WSPD.

Proof: Let w be the red-leaf such that r ∈ Sw, and let w = w0, . . . , wk = u be the sequence of
red-nodes that are on the path in T from w to u. Let Π be the path

r → repB(cl(Sw0)) → repR(Sw0) → repB(cl(Sw1)) → repR(Sw1)
→ . . . → repB(cl(Swk

)) → repR(Swk
) = repR(Su).

The first edge on this path, i.e., (r, repB(cl(Sw0))), is added to the graph G in line 7 of the algorithm.
The edges (repB(cl(Swi)), repR(Swi)), 0 ≤ i ≤ k, are added to G in line 10. Finally, the edges
(repR(Swi−1), repB(cl(Swi))), 1 ≤ i ≤ k, are added to G in line 13. It follows that Π is a path in G.
We will show that the length of Π is at most c|rb|.

Let 0 ≤ i ≤ k. Recall the definition of cl(Swi); see Definition 3.1: We consider all pairs {Sx, Sy}
in the BWSPD, where x is a red-node on the path in T from wi to the root, and pick the pair for
which dist(Sx, Sy) is minimum. We denote the pair picked by (Sxi , Syi). Thus, xi is a red-node on
the path in T from wi to the root, {Sxi , Syi} is pair in the BWSPD, and cl(Swi) = Syi . We define

`i = dist(Sxi , Syi).

Consider the first edge (r, repB(cl(Sw0))) on the path Π. Since r ∈ Sw0 ⊆ Sx0 and repB(cl(Sw0)) ∈
Sy0 , it follows from Lemma 2.4 that

|r, repB(cl(Sw0))| ≤ (1 + 4/s)dist(Sx0 , Sy0) = (1 + 4/s)`0.

Let 0 ≤ i ≤ k and consider the edge (repB(cl(Swi)), repR(Swi)) on Π. Since repR(Swi) ∈ Swi ⊆ Sxi

and repB(cl(Swi)) ∈ Syi , it follows from Lemma 2.4 that

(1) |repB(cl(Swi)), repR(Swi)| ≤ (1 + 4/s)dist(Sxi , Syi) = (1 + 4/s)`i.

Let 1 ≤ i ≤ k and consider the edge (repR(Swi−1), repB(cl(Swi))) on Π. Since repR(Swi−1) ∈
Swi−1 ⊆ Sxi and repB(cl(Swi)) ∈ Syi , it follows from Lemma 2.4 that

|repR(Swi−1), repB(cl(Swi))| ≤ (1 + 4/s)dist(Sxi , Syi) = (1 + 4/s)`i.

Thus, the length of the path Π is at most
∑k

i=0 2(1 + 4/s)`i. Therefore, it is sufficient to prove
that

∑k
i=0 `i ≤ 2

√
d(µd + 1)(1 + 4/s)2|rb|. It follows from the definition of cl(Su) = cl(wk) that

`k = dist(Sxk
, Syk

) ≤ dist(Su, Sv). Since, by Lemma 2.4, dist(Su, Sv) ≤ (1+4/s)|rb|, it follows that

(2) `k ≤ (1 + 4/s)|rb|.

6

Thus, it is sufficient to prove that

(3)
k∑

i=0

`i ≤ 2
√

d(µd + 1)(1 + 4/s)`k.

If k = 0, then (3) obviously holds. Assume from now on that k ≥ 1. For each i with 0 ≤ i ≤ k,
we define

ai = Lmax(β(Swi)),

i.e., ai is the length of a longest side of the bounding box of Swi .
Let 0 ≤ i ≤ k. It follows from Lemma 2.4 that Lmax(β(Sxi)) ≤ 2

s`i. Since wi is in the subtree
of xi, we have Lmax(β(Swi)) ≤ Lmax(β(Sxi)). Thus, we have

(4) ai ≤
2
s
`i for 0 ≤ i ≤ k.

Lemma 2.6 states that

(5) ai ≤
1
2
ai+d for 0 ≤ i ≤ k − d.

Let 0 ≤ i ≤ k − 1. Since wi is a red-node, there is a node w′
i such that {Swi , Sw′

i
} is a pair in the

BWSPD. We have `i = dist(Sxi , Syi) ≤ dist(Swi , Sw′
i
). By applying Lemma 2.7, we obtain

dist(Swi , Sw′
i
) ≤
√

d(s + 4)
2

Lmax(β(Sπ(wi))) ≤
√

d(s + 4)
2

Lmax(β(Swi+1)) =

√
d(s + 4)

2
ai+1.

Thus, we have

(6) `i ≤
√

d(s + 4)
2

ai+1 for 0 ≤ i ≤ k − 1.

First assume that 1 ≤ k ≤ µd. Let 0 ≤ i ≤ k − 1. By using (6), the fact that the sequence
a0, a1, . . . , ak is non-decreasing, and (4), we obtain

`i ≤
√

d(s + 4)
2

ai+1 ≤
√

d(s + 4)
2

ak ≤
√

d(1 + 4/s)`k.

Therefore,

k∑
i=0

`i ≤ k
√

d(1 + 4/s)`k + `k ≤ (k + 1)
√

d(1 + 4/s)`k ≤ (µd + 1)
√

d(1 + 4/s)`k,

which is less than the right-hand side in (3).
It remains to consider the case when k > µd. Let i ≥ 0 and j ≥ 0 be integers such that

i + 1 + jd ≤ k. By applying (6) once, (5) j times, and (4) once, we obtain

`i ≤
√

d(s + 4)
2

ai+1 ≤
√

d(s + 4)
2

(
1
2

)j

ai+1+jd ≤
√

d(1 + 4/s)
(

1
2

)j

`i+1+jd.

7

For j = µ = dlog(
√

d(s+4)
s)e+ 1, this implies that, for 0 ≤ i ≤ k − 1− µd,

(7) `i ≤
1
2
`i+1+µd.

By re-arranging the terms in the summation in (3), we obtain

k∑
i=0

`i =
µd∑

h=0

b(k−h)/(µd+1)c∑
j=0

`k−h−j(µd+1).

Let j be such that 0 ≤ j ≤ b(k − h)/(µd + 1)c. By applying (7) j times, we obtain

`k−h−j(µd+1) ≤
(

1
2

)j

`k−h.

It follows that

b(k−h)/(µd+1)c∑
j=0

`k−h−j(µd+1) ≤
∞∑

j=0

(
1
2

)j

`k−h = 2`k−h.

Thus, we have

k∑
i=0

`i ≤ 2
µd∑

h=0

`k−h.

By applying (6), the fact that the sequence a0, a1, . . . , ak is non-decreasing, followed by (4), we
obtain, for 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − i,

`i ≤
√

d(s + 4)
2

ai+1 ≤
√

d(s + 4)
2

ai+j ≤
√

d(1 + 4/s)`i+j .

Obviously, the inequality `i ≤
√

d(1 + 4/s)`i+j also holds for j = 0. Thus, for i = k− h and j = h,
we get

`k−h ≤
√

d(1 + 4/s)`k for 0 ≤ h ≤ µd.

It follows that

k∑
i=0

`i ≤ 2
µd∑

h=0

√
d(1 + 4/s)`k = 2

√
d(µd + 1)(1 + 4/s)`k,

completing the proof that (3) holds. �

Lemma 4.3 Assuming that the separation constant s of the WSPD satisfies s ≥ 8+6/c, the graph
G computed by Algorithm 1 is a t-spanner of the complete bipartite graph KRB, where t = 2c+1+4/s
and c is as in Lemma 4.2.

8

Proof: It suffices to show that for each edge (r, b) of KRB, the graph G contains a path between
r and b of length at most t|rb|. We will prove this by induction on the lengths of the edges in KRB.

Let r be a point in R, let b be a point in B, and let {Su, Sv} be the pair in the BWSPD for
which r ∈ Su and b ∈ Sv.

The base case is when (r, b) is a shortest edge in KRB. Since s > 2, it follows from Lemma 2.4
that u is a red-node and v is a blue-node. In line 11 of Algorithm 1, the edge (repR(Su), repB(Sv))
is added to G. By Lemma 2.4, the length of this edge is at most (1 + 4/s)|rb|. The claim follows
from two applications of Lemma 4.2 to get from r to repR(Su) and from repB(Sv) to b.

In the induction step, we distinguish four cases.
Case 1: u is a red-node and v is a blue-node. This case is identical to the base case.
Case 2: u is a bichromatic node and v is a blue-node. In the equivalent of line 11 for the blue-
nodes, Algorithm 1 adds the edge (repR(Su), repB(Sv)) to G. By Lemma 2.4, the length of this
edge is at most (1 + 4/s)|rb|. Let b∗ be a blue node in Su. Since s > 2, it follows from Lemma 2.4
that |rb∗| < |rb|. Thus, by induction, there is a path in G between r and b∗ whose length is at most
t|rb∗|. By a similar argument, there is a path in G between b∗ and repR(Su) whose length is at most
t|b∗, repR(Su)|. Applying Lemma 2.4, it follows that there is a path in G between r and repR(Su)
whose length is at most t(|rb∗| + |b∗, repR(Su)|) ≤ t(2|rb|/s + 2|rb|/s) = 4t|rb|/s. By Lemma 4.2,
there is a path in G between b and repB(Sv) whose length is at most c|rb|. We have shown that
there is a path in G between r and b whose length is at most (1 + 4/s)|rb|+ 4t|rb|/s + c|rb|. Since
s ≥ 8 + 6/c, this quantity is at most t|rb|.
Case 3: Both u and v are bichromatic nodes. In line 21, Algorithm 1 adds the edge (repB(Su), repR(Sv))
to G. By Lemma 2.4, the length of this edge is at most (1 + 4/s)|rb|. By induction, there is a
path in G between r and repB(Su) whose length is at most t|r, repB(Su)|, which, by Lemma 2.4, is
at most 2t|rb|/s. By a symmetric argument, there is a path in G between b and repR(Sv), whose
length is at most 2t|rb|/s. We have shown that there is a path in G between r and b whose length
is at most (1 + 4/s)|rb|+ 4t|rb|/s, which is at most t|rb|. �

Lemma 4.4 The running time of Algorithm 1 is O(n log n), where n = |R ∪B|.

Proof: See the appendix. �

To summarize, we have shown the following: Algorithm 1 computes a t-spanner of the complete
bipartite graph KRB having O(n) edges, where t is given in Lemma 4.3. The running time of this
algorithm is O(n log n). By choosing the separation constant s sufficiently large, the stretch factor
t converges to

8
√

d

(
d

⌈
1
2

log d

⌉
+ d + 1

)
+ 1.

5 An Improved Algorithm

As before, we are given two disjoint sets R and B of red and blue points in Rd. Intuitively, the
way to improve the bound of Lemma 4.2 is by adding shortcuts along the path from each red-leaf
to the red-root above it. More precisely, from (7) in the proof of Lemma 4.2, we know that if we

9

go 1 + µd levels up in the split-tree, then the length of the edge along the path doubles. Thus,
for each red-node in T , we will add edges to all 2δ(1 + µd) red-nodes above it in T . Here, δ is an
integer constant that is chosen such that the best result is obtained in the improved bound.

Definition 5.1 Let u and u′ be red-nodes in the split-tree such that u′ is in the subtree rooted at
u. For an integer ζ ≥ 1, we say that u is ζ-levels above u′, if there are ζ − 1 red-nodes on the path
strictly between u and u′. We say that u′ is a ζ-red-child of u if u is at most ζ-levels above u′.
These notions are defined similarly for the blue-nodes.

The improved algorithm is given as Algorithm 2. The following lemma generalizes Lemma 4.2.

Algorithm 2
Input: S = R∪B, where R and B are two disjoint sets of red and blue points in Rd, respectively,

and a real constant 0 < ε < 1.
Output: A (5 + ε)-spanner G = (S, E) of the complete bipartite graph KRB.
1: Choose a separation constant s such that s ≥ 12/ε and (1 + 4/s)2 ≤ 1 + ε/36 and choose an

integer constant δ such that 2δ

2δ−1
≤ 1 + ε/36.

2: The rest of the algorithm is the same as Algorithm 1, except for lines 12–14, which are replaced
by the following:
let ζ = 2δ(µd + 1)
for each ζ-red-child u′′ of u′ do

add to E the edges (repR(Su′′), repB(cl(Su′))) and (repB(cl(Su′′)), repR(Su′))
end for

Lemma 5.2 Let r be a point of R, let b be a point of B, and let {Su, Sv} be the pair in the
BWSPD for which r ∈ Su and b ∈ Sv. Assume that u is a red-node. Let G be the graph computed
by Algorithm 2. There is a path in G between r and repR(Su) whose length is at most (2+ ε/3)|rb|.

Proof: The complete proof is given in the appendix. Here, we only state how the path can be
obtained. Let w be the red-leaf such that r ∈ Sw, and let w = w0, w1, . . . , wk = u be the sequence
of red-nodes that are on the path in T from w to u. Throughout the proof, we will use the variables
xi, yi, `i, and ai, for 0 ≤ i ≤ k, that were introduced in the proof of Lemma 4.2.

If 0 ≤ k ≤ 2δ(µd + 1), then the path

r → repB(cl(Sw))→ repR(Su)

satisfies the condition in the lemma. Assume that k > 2δ(µd+1). We define m = k mod (δ(µd+1))
and m′ = k−m

δ(µd+1) . We consider the sequence of red-nodes

w = w0, wδ(µd+1)+m, w2δ(µd+1)+m, w3δ(µd+1)+m, . . . , wk = u.

The path

r → repB(cl(Sw0)) → repR(Swδ(µd+1)+m
)

→ repB(cl(Sw2δ(µd+1)+m
)) → repR(Sw2δ(µd+1)+m

)
→ repB(cl(Sw3δ(µd+1)+m

)) → repR(Sw3δ(µd+1)+m
)

...
...

→ repB(cl(Swk
)) → repR(Swk

) = repR(Su)

10

satisfies the condition in the lemma. �

Lemma 5.3 Let n = |R ∪ B|. The graph G computed by Algorithm 2 is a (5 + ε)-spanner of the
complete bipartite graph KRB and the number of edges of this graph is O(n). The running time of
Algorithm 2 is O(n log n).

Proof: See the appendix. �

We have proved the following result.

Theorem 5.4 Let S be a set of n points in Rd which is partitioned into two subsets R and B,
and let 0 < ε < 1 be a real constant. In O(n log n) time, we can compute a (5 + ε)-spanner of the
complete bipartite graph KRB having O(n) edges.

6 Improving the Stretch Factor

We have shown how to compute a (5+ ε)-spanner with O(n) edges of any complete bipartite graph.
In this section, we show that if we are willing to use O(n log n) edges, the stretch factor can be
reduced to 3+ε. We start by showing that a stretch factor less than 3 using a subquadratic number
of edges is not possible.

Theorem 6.1 For every real number t < 3, there is no algorithm that, when given as input two
arbitrary disjoint sets R and B of points in Rd, computes a t-spanner of the complete bipartite
graph KRB having less than |R| · |B| edges.

Proof: Let us assume by contradiction that there exists such an algorithm A for some real number
t < 3. Let ε = 3−t, let B1 and B2 be two balls of diameter ε/6 such that the distance between their
centers is 1 + ε/6. Let R be a set of points that are contained in B1 and let B be a set of points
that are contained in B2. Let G be the graph obtained by running algorithm A on R and B. By
our hypothesis, G has less than |R| · |B| edges. Thus, there exist a point r in R and a point b in B,
such (r, b) is not an edge in G. Since any path in G between r and b contains at least three edges,
the length of the shortest path in G between r and b in G is at least three. Since |rb| ≤ 1 + ε/3, it
follows that the stretch factor of G is at least 3

1+ε/3 , which is greater than t = 3− ε, contradicting
the existence of A. �

Theorem 6.2 Let S be a set of n points in Rd which is partitioned into two subsets R and B,
and let 0 < ε < 1 be a real constant. In O(n log n) time, we can compute a (3 + ε)-spanner of the
complete bipartite graph KRB having O(n log n) edges.

Proof: Consider the following variant of the WSPD. For every pair {X, Y } in the standard
WSPD, where |X| ≤ |Y |, we replace this pair by the |X| pairs {{x}, B}, where x ranges over all
points of X. Thus, in this new WSPD, each pair contains at least one singleton set. Callahan and
Kosaraju [4] showed that this new WSPD consists of O(n log n) pairs.

11

We run Algorithm 2 on R and B, using this new WSPD. Let G be the graph that is computed
by this algorithm. Observe that Lemma 5.2 still holds for G. In the proof of Lemma 5.3 of the
upper bound on the stretch factor of G, we apply Lemma 5.2 only once. Therefore, the stretch
factor of G is at most 3 + ε. �

References

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9:81–100, 1993.

[2] Prosenjit Bose, Paz Carmi, Mathieu Couture, Anil Maheshwari, Michiel Smid, and Norbert
Zeh. Geometric spanners with small chromatic number. In Proceedings of the 5th Workshop
on Approximation and Online Algorithms, Lecture Notes in Computer Science, Berlin, 2007.
Springer-Verlag.

[3] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in
higher dimensions. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms,
pages 291–300, 1993.

[4] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.

[5] J. Gudmundsson and M. Smid. On spanners of geometric graphs. In Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory, volume 4059 of Lecture Notes in Computer Sci-
ence, pages 388–399, Berlin, 2006. Springer-Verlag.

[6] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press,
New York, NY, USA, 2007.

[7] Bhaskaran Raman and Kameswari Chebrolu. Design and evaluation of a new MAC protocol
for long-distance 802.11 mesh networks. In MobiCom ’05: Proceedings of the 11th annual
international conference on Mobile computing and networking, pages 156–169, New York, NY,
USA, 2005. ACM Press.

[8] J. S. Salowe. Constructing multidimensional spanner graphs. International Journal of Compu-
tational Geometry & Applications, 1:99–107, 1991.

[9] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K dimensions.
Discrete & Computational Geometry, 6:369–381, 1991.

12

Appendix

Proof of Lemma 4.1: For each red-leaf u′, the algorithm adds |Su′ | edges to G in line 7. Since
the sets Su′ , where u′ ranges over all red-leaves, are pairwise disjoint, the total number of edges
that are added in line 7 is O(|R|).

The total number of edges that are added in lines 11 and 21 is at most twice the number of
pairs in the BWSPD. Since the WSPD contains O(|R ∪B|) pairs (see [4]), the same upper bound
holds for the number of edges added in lines 11 and 21.

It remains to consider the edges that are added in lines 10 and 13. The total number of edges
added in these lines is at most twice the number of nodes in the split-tree, which is O(|R ∪B|).

We have shown that the total number of edges added to G, due to the red-nodes, is O(|R∪B|).
Since the algorithm works in a completely symmetric way for the blue-nodes, the proof is complete.

Proof of Lemma 4.4: Using the results of Callahan and Kosaraju [4], the split-tree T and the
WSPD can be computed in O(n log n) time. The time for the rest of the algorithm, i.e., lines 3–23,
is proportional to the sum of the size of T , the number of pairs in the WSPD and the number of
edges in the graph G. Thus, the rest of the algorithm takes O(n) time.

Proof of Lemma 5.2: Let w be the red-leaf such that r ∈ Sw, and let w = w0, w1, . . . , wk = u be
the sequence of red-nodes that are on the path in T from w to u.

Throughout the proof, we will use the variables xi, yi, `i, and ai, for 0 ≤ i ≤ k, that were
introduced in the proof of Lemma 4.2.

We first assume that 0 ≤ k ≤ 2δ(µd + 1). Let Π be the path

r → repB(cl(Sw))→ repR(Su).

It follows from Algorithm 2 that Π is a path in G. Since r ∈ Sw = Sw0 ⊆ Sx0 and repB(cl(Sw)) =
repB(cl(Sw0)) ∈ Sy0 , it follows from Lemma 2.4 that

(8) |r, repB(cl(Sw))| ≤ (1 + 4/s)dist(Sx0 , Sy0) = (1 + 4/s)`0.

Since {Su, Sv} is one of the pairs that is considered in the definition of cl(Sw0), we have dist(Sx0 , Sy0) ≤
dist(Su, Sv). Again by Lemma 2.4, we have dist(Su, Sv) ≤ (1 + 4/s)|rb|. Thus, we have shown that

|r, repB(cl(Sw))| ≤ (1 + 4/s)2|rb|.

By the triangle inequality, we have

|repB(cl(Sw)), repR(Su)| ≤ |repB(cl(Sw)), r|+ |r, repR(Su)|.

Since r and repR(Su) are both contained in Su, it follows from Lemma 2.4 that |r, repR(Su)| ≤
(2/s)|rb|. Thus, we have

|repB(cl(Sw)), repR(Su)| ≤ (1 + 4/s)2|rb|+ (2/s)|rb|.

We have shown that the length of the path Π is at most(
2(1 + 4/s)2 + 2/s

)
|rb|,

which is at most (2 + ε/3)|rb| by our choice of s.

13

In the rest of the proof, we assume that k > 2δ(µd + 1). We define

m = k mod (δ(µd + 1))

and

m′ =
k −m

δ(µd + 1)
.

We consider the sequence of red-nodes

w = w0, wδ(µd+1)+m, w2δ(µd+1)+m, w3δ(µd+1)+m, . . . , wk = u,

and define Π to be the path

r → repB(cl(Sw0)) → repR(Swδ(µd+1)+m
)

→ repB(cl(Sw2δ(µd+1)+m
)) → repR(Sw2δ(µd+1)+m

)
→ repB(cl(Sw3δ(µd+1)+m

)) → repR(Sw3δ(µd+1)+m
)

...
...

→ repB(cl(Swk
)) → repR(Swk

) = repR(Su).

It follows from Algorithm 2 that Π is a path in G. We will show that the length of this path is at
most (2 + ε/3)|rb|.

We have shown already (see (8)) that the length of the first edge on Π satisfies

|r, repB(cl(Sw0))| ≤ (1 + 4/s)`0.

The length of the second edge satisfies

|repB(cl(Sw0)), repR(Swδ(µd+1)+m
)| ≤ |repB(cl(Sw0)), r|+ |r, repR(Swδ(µd+1)+m

)|
≤ (1 + 4/s)`0 + |r, repR(Swδ(µd+1)+m

)|.

Since r and repR(Swδ(µd+1)+m
) are both contained in Su, it follows from Lemma 2.4 that

|r, repR(Swδ(µd+1)+m
)| ≤ (2/s)|rb|.

Thus, the length of the second edge on Π satisfies

|repB(cl(Sw0)), repR(Swδ(µd+1)+m
)| ≤ (1 + 4/s)`0 + (2/s)|rb|.

Let 2 ≤ j ≤ m′. We have seen in (1) in the proof of Lemma 4.2 that the length of the edge

(repB(cl(Swjδ(µd+1)+m
)), repR(Swjδ(µd+1)+m

))

satisfies

|repB(cl(Swjδ(µd+1)+m
)), repR(Swjδ(µd+1)+m

)| ≤ (1 + 4/s)`jδ(µd+1)+m.

Again, let 2 ≤ j ≤ m′. Since

repR(Sw(j−1)δ(µd+1)+m
) ∈ Swjδ(µd+1)+m

⊆ Sxjδ(µd+1)+m

14

and

repB(cl(Swjδ(µd+1)+m
)) ∈ Syjδ(µd+1)+m

,

it follows from Lemma 2.4 that the length of the edge

(repR(Sw(j−1)δ(µd+1)+m
), repB(cl(Swjδ(µd+1)+m

)))

satisfies

|repR(Sw(j−1)δ(µd+1)+m
), repB(cl(Swjδ(µd+1)+m

))| ≤ (1 + 4/s)`jδ(µd+1)+m.

We have shown that the length of Π is at most

(2/s)|rb|+ 2(1 + 4/s)

`0 +
m′∑
j=2

`jδ(µd+1)+m

 .

The definition of `0, `1, . . . , `k implies that this sequence is non-decreasing. Thus, `0 ≤ `δ(µd+1)+m

and it follows that the length of Π is at most

(2/s)|rb|+ 2(1 + 4/s)
m′∑
j=1

`jδ(µd+1)+m.

Recall inequality (7) in the proof of Lemma 4.2, which states that

`i ≤
1
2
`i+µd+1.

By applying this inequality δ times, we obtain

`i ≤
(

1
2

)δ

`i+δ(µd+1).

For i = jδ(µd + 1) + m, this becomes

`jδ(µd+1)+m ≤
(

1
2

)δ

`(j+1)δ(µd+1)+m.

By repeatedly applying this inequality, we obtain, for h ≥ j,

`jδ(µd+1)+m ≤
(

1
2

)(h−j)δ

`hδ(µd+1)+m.

For h = m′, the latter inequality becomes

`jδ(µd+1)+m ≤
(

1
2

)(m′−j)δ

`k.

15

It follows that

m′∑
j=1

`jδ(µd+1)+m ≤
m′∑
j=1

(
1
2

)(m′−j)δ

`k

=
m′−1∑
i=0

(
1
2

)iδ

`k

≤
∞∑
i=0

(
1
2δ

)i

`k

=
2δ

2δ − 1
`k.

According to (2) in the proof of Lemma 4.2, we have

`k ≤ (1 + 4/s)|rb|.

We have shown that the length of the path Π is at most(
2/s + 2(1 + 4/s)2

2δ

2δ − 1

)
|rb|.

Our choices of s and δ (see line 1 in Algorithm 2) imply that 2/s ≤ ε/6, (1 + 4/s)2 ≤ 1 + ε/36 and
2δ

2δ−1
≤ 1 + ε/36. Therefore, the length of Π is at most(

ε/6 + 2(1 + ε/36)2
)
|rb| ≤ (2 + ε/3)|rb|,

where the latter inequality follows from our assumption that 0 < ε < 1. This completes the proof.

Proof of Lemma 5.3: The proof for the upper bound on the stretch factor is similar to the one of
Lemma 4.3. The difference is that instead of the value c that was used in the proof of Lemma 4.3,
we now use the value c = 2 + ε/3. Thus, the stretch factor for the base case of the induction and
for Case 1 is

1 + 4/s + 2c = 1 + 4/s + 4 + 2ε/3,

which is at most 5 + ε, because of our choice for s. For Case 2, the stretch factor is at most

1 + 4/s + 4t/s + c = 3 + ε/3 + (4/s)(6 + ε),

which is at most 5 + ε, again because of our choice for s. Finally, the stretch factor for Case 3 is at
most that of Case 2; thus, it is at most 5 + ε.

The analysis for the number of edges is the same as in Lemma 4.1, except that the number of
edges that are added to each red-node on line 13 is δ(µd + 1) instead of one as is in Algorithm 1.
Finally, the analysis of the running time is the same as in Lemma 4.4.

16

