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Abstract

This thesis considers the problem of finding a path from a source to a destination in
a graph in which only local information is available. This type of routing problem
occurs regularly in robotics, parallel and distributed computing, mobile networks,
and everyday life. In particular, the research focuses on the case where the graph is
geometric (nodes of the graph have locations in space) and planar (edges of the graph
do not cross).

The results in this thesis fall into four categories:

1. natural and intuitive algorithms that work on some well known and structured

geometric graphs,

2. algorithms for special classes of graphs that find paths approximating shortest

paths,
3. algorithms for arbitrary planar graphs,

4. algorithms for embedding graphs nicely so that simple algorithms can be used

to find paths between vertices, and

5. simulation results that help to determine which routing algorithms work best

in different settings.

In studying these problems we draw on a wide range of techniques from computer
science and mathematics, improve some previous results, and report a number of open

problems and directions for continuing research.
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Here are some of the notations that are used frequently in this thesis, in no particular

order.
t the vertex being routed to (the target vertex)
s the vertex at which routing begins (the source vertex)
dist(a, b) the Euclidean distance between points a and b
dist(e, a) the radius of the smallest circle centered at point a that intersects
segment e.
CZV a,b,c the counterclockwise angle formed by points a, b, and ¢
CZ a,b,c the clockwise angle formed by points a, b, and ¢
Za,b,c min{cz a, b, c, CZV a, b, c}
E[X] the expected value of the random variable X
G a geometric graph
T a triangulation
Vv a set of vertices (points)
E a set of edges (segments)
F a set of faces (polygons)
MST(S) the minimum spanning tree of the point set S
GG(S) the Gabriel graph of the point set S
VD(S) the Voronoi diagram of the point set S
DT(S) the Delaunay triangulation of the point set S
|P| the number of edges in the path P
length(P) the sum of the lengths of edges in the path P
=p defined in Section 5.2.1 beginning on page 57
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the walk taken by routing algorithm A when routing from s to ¢ in
G
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the shortest link path from s to ¢t in G

the success rate of 4 in G

the average Euclidean dilation of A in G

the average link dilation of A in G
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Chapter 1
Introduction

Path-finding or routing is a problem that is central to a number of fields, including ge-
ographic information systems, robotics, and communication networks. In many cases,
knowledge about the environment in which routing takes place is incomplete, and the
vehicle/robot/packet must find its way by learning the environment. Algorithms for
routing in these types of environments are referred to as online algorithms.

In many applications involving routing, the networks in which routing takes place
also contain geographic or geometric information. For instance, in road networks the
locations of intersections can be described by longitude and latitude. In robotics,
robots can sometimes determine their position by triangulating using three broadcast
beacons in known locations. In wireless networks, hosts can be equipped with global
positioning system devices so that they know their location in space.

In this thesis we study online routing problems in geometric networks, with a focus
on the particular case in which the underlying network is planar. In the remainder of
this chapter, we give a formal model for the study of these problems, give examples
which motivate the study of these problems and provide an outline of the rest of the

thesis.
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1.1 The Model and Terminology

A geometric graph is a graph G = (V, E) in which the vertex set V' is a set of n points
in R?, and the edge set E consists of m pairs from V. A planar geometric graph G
is a geometric graph in which the vertex set is taken from R2, and the line segments
defined by the edges of G intersect only at their endpoints (i.e., at the vertices of G).
The edges of G partition the plane into a set of faces F', including an external face.
In many instances, it is convenient to abuse notation slightly and say that a vertex v
is in GG, denoted v € G, when in fact we mean v € V. Similarly, for an edge e we use
the notation e € G to mean e € E. Along the same lines, for two graphs Gy = (V, E)
and Gy = (V, Ey) we set G1 NGy = (V, E1 N Ey).

The neighbourhood N(v) of a vertex v € V is the set of all vertices adjacent to
v, i.e., all u such (u,v) € E. A walk from s to ¢t in G is a sequence of vertices
s =wi,...,v; =t of G such that (v;,v;41) € E for all : <7 < k. A path in G from s
to ¢ is a walk from s to ¢ such that v; # v; for all ¢ # j. The graph G is connected
if for every pair of vertices s,t € FE, there exists a path in G from s to t. In the
remainder of this thesis we will assume that all graphs are connected, unless specified
otherwise.

The simplest routing problem we study is the (online) point-to-point routing prob-
lem, in which the input consists of two vertices s,t € V. A solution to the problem
consists of a walk from s to ¢. Initially, the algorithm for solving the point-to-point
routing problem knows only s, ¢, and N(s). The algorithm learns N(v) only after
examining (visiting) v.

We say that a routing algorithm A succeeds in routing from s to t if the algorithm
terminates in a finite number of steps, otherwise A fails to route from s to . We say
that a routing algorithm A is defeated by a graph G if there exists a pair of vertices
s,t € V such that A fails to route from s to t.

In this thesis we are primarily concerned with algorithms for routing in planar
geometric graphs. As we will see in the following section, even by restricting our

attention to planar graphs this work has a number of applications.
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1.2 Motivation

There are a number of reasons for studying online routing problems in planar geomet-
ric graphs. First and foremost (for the author) is that they are interesting theoretical
problems. In studying these problems we will make use of elements of computer
science, computational geometry, planar graph theory, and even classical polytope
theory.

However, for the more practically oriented reader, we provide three examples of
applications of this work. The first example is an everyday occurence in which online
routing is performed by human beings. The second example is from the field of

fault-tolerant parallel computing. The third is from the field of mobile computing.

1.2.1 Walking in Strange Cities

Consider a tourist who is walking for their first time in the city of Toronto and trying
to find their way to the CN Tower ¢ (see Figure 1.1).! The CN Tower is tall enough
that it can be seen from most anywhere in the city, and the streets of Toronto are
straight enough that when standing at one intersection it is possible to see the next
intersection in each direction. Since the person is on foot, highways and the resulting
over and underpasses can be ignored.

Thus, Toronto can be represented by a planar geometric graph G in which the
vertices represent intersections and the edges represent portions of streets joining two
intersections. The problem of finding a path to the CN tower then becomes a problem
of online routing in a planar geometric graph.

We can hardly expect our pedestrian to execute an elaborate algorithm to find
their way to the CN tower. Rather, we expect that our pedestrian will use some
greedy heuristic algorithm A such as always moving to the next intersection that
takes her closest to ¢. Thus, studying and understanding A can help in planning the
layouts of city streets and of placing appropriate signage in cases when A fails.

The above example may seem overly-contrived, in particular since it is one of only

1 The map of Toronto in Figure 1.1 is taken from é\)"(/cite_ Maps, online at http://city.net/maps/
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Figure 1.1: A map of Toronto.

a few examples in which the destination is always visible and hence known to the
pedestrian. However, the technology of global positioning system (GPs) devices are
becoming increasingly common. These are units that can determine their location on
the surface of the earth through communication with satelites. For a modest price,
handheld units are available for hikers, climbers and even pedestrians. Furthermore,
it also expected that in a few years most new cars will come equipped with an onboard
GPS device [46]. Thus, it may very well soon be the case that anyone driving a car
or walking in a city can apply online routing techniques to reach a destination whose

geographic location is known.
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Figure 1.2: A 10 x 10 mesh (a) without faults and (b) with vertex and edge faults.

1.2.2 alt r ne es es

An n xn mesh = (V,E) is a geometric graph in which the vertex set

(1,1), ..., (n,1),

(L,n), ..., (n,n)

and an edge is (v, vy) is present in E if and only if dist(vy,vo) = 1, where dist(z, )
denotes the Euclidean distance between x and  (see Figure 1.2 (a)). Meshes are an
interconnection network studied extensively in the field of parallel algorithms (c.f.,
Leighton [53]). The folklore algorithm for routing between two vertices of a mesh
moves the packet first to the correct column (z coordinate) and then to the correct
row (coordinate).

This simple algorithm works well provided that all the processing elements (ver-
tices) and communication elements (edges) of the mesh are working properly. How-
ever, sometimes these elements may have faults (Figure 1.2 (b)), in which case this
routing algorithm might fail. Furthermore, these failures are unpredictable, and ver-
tices may not have information about which vertices and/or edges of the mesh have
failed. In this case, the problem of routing between two vertices of = becomes an

(online) point-to-point routing problem in a planar geometric graph.
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1.2. ile Wireless et rks

Mobile ad hoc networks (MANETs) consist of wireless hosts that communicate with
each other in the absence of fixed infrastructure. Two nodes in a MANET can commu-
nicate if the distance between them is less than the minimum of their two broadcast
ranges [5]. In many cases, MANETs are pieced together in an uncontrolled manner,
changes in topology are frequent and unstructured, and hosts may not know the
topology of the entire network. Thus, routing between the nodes of a MANET is often
an online routing problem.

The unit disk graph = (V, E) is a geometric graph in which the edge (u,v) is
present if and only if dist(u,v) < 1. Unit disk graphs are a generally accepted model
of MANETs in which all nodes have the same broadcast range.

Note that, unlike the mesh, the positions of the vertices of are arbitrary, and
therefore  may not be planar. However, we will show that if is connected, then
a planar subgraph ' of can be extracted using only local information. Indeed,
the subset of edges incident on a vertex u of ' can be computed given only N(v).
Therefore, the problem of routing on  can be reduced to a problem of routing on a
planar geometric graph.

For two vertices u,v € , let disk(u,v) be the disk with diameter (u,v). Then,
the abriel graph [26] GG(S) is a geometric graph in which the edge (u, v) is present
if and only if disk(u,v) contains no other points of S. Let ' = GG(S)N . The
following lemma shows that the Gabriel graph is useful for extracting a connected

planar subgraph from

!

emma 1 [ s connected then ' is connected.

roof. Tt is well known that a minimum spanning tree MST(V) is a subset of GG(V)
[70]. Thus, we need only prove that MST (V) if  is connected. Assume for the
sake of contradiction that MST(V) contains an edge (u,v) whose length is greater
than 1. Removing this edge from MST(V) produces a graph with two connected
components, (V) and (V). Since is connected it contains an edge (w,z) of
length not greater than 1 such that w € (V) and 2z € (V). By replacing the
edge (u,v) with (w,z) in MST(V') we obtain a connected graph on S with weight less
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than MST(V), a contradiction. O

Let (u,v) be an edge of  such that (u,v) ¢ GG(V). Then, by the definition of
GG(V) there exists a point w that is contained in the disk with v and v as diameter,
and this point acts as a witness that (u,v) ¢ GG(V). The following lemma shows
that every such edge can be identified and eliminated by u and v using only local

information.

emma 2 et u and v be ertices of  such that (u,v) ¢ GG(V) and let w be a

witness to this. hen (u,w) € and (v,w) €

roof. Let m be the midpoint of (u,v). Then dist(u,m) < 1/2, dist(v,m) < 1/2 and
dist(w, m) < 1/2. Therefore, by the triangle inequality, dist(u,w) < 1, dist(v,w) <1

and (u,w) and (v,w) are in . O

Thus, upon reaching a vertex v € S, a packet can eliminate the edges incident on
v that are not in ' by simply eliminating any edge that is not in GG(N(v) {v}).
Lemma 1 guarantees that if we apply this algorithm to each vertex of  then the

" is also planar.

resulting graph is connected. Since GG(V') is planar [67, 65, 26],
Thus, we have reduced the problem of routing in a unit graph to one of routing in a
planar geometric graph. This reduction can be used as the basis of routing algorithm

for MANETs [12, 47].
1. i liogra hi ote
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