Data Structures: Course Outline

Pat Morin
COMP2402

Carleton University
Me

▶ Professor Dr. Patrick Ryan Morin

▶ Call me "Pat"
▶ Not "sir", "doctor Morin", or "mister Morin"
▶ Use your hand (or say excuse me) to get my attention

▶ My official office hours are 10:00–12:00 on Wednesdays
▶ From 8:30–16:30, Monday–Friday, I can usually be found in 5177HP
Me

▶ Professor Dr. Patrick Ryan Morin
▶ Call me “Pat”
Me

- Professor Dr. Patrick Ryan Morin
- Call me “Pat”
 - Not “sir”, “doctor Morin”, or “mister Morin”
Me

- Professor Dr. Patrick Ryan Morin
- Call me “Pat”
 - Not “sir”, “doctor Morin”, or “mister Morin”
 - Use your hand (or say excuse me) to get my attention
Me

▶ Professor Dr. Patrick Ryan Morin
▶ Call me “Pat”
 ▶ Not “sir”, “doctor Morin”, or “mister Morin”
 ▶ Use your hand (or say excuse me) to get my attention
▶ My official office hours are 10:00–12:00 on Wednesdays
Professor Dr. Patrick Ryan Morin

Call me “Pat”
 - Not “sir”, “doctor Morin”, or “mister Morin”
 - Use your hand (or say excuse me) to get my attention

My official office hours are 10:00–12:00 on Wednesdays

From 8:30–16:30, Monday–Friday, I can usually be found in 5177HP
What is a Data Structure?

- Stores data

Examples: Integers, Strings, Floats, ...

Can answer questions about the stored data

Example: What is the data stored at position \(i \) (\(\text{get}(i) \))?

Example: What is the smallest data value greater than or equal to \(x \) (\(\text{find}(x) \))?

Can add or remove data (sometimes)

Example: Add the element \(x \) at position \(i \) (\(\text{add}(i,x) \))
What is a Data Structure?

- Stores data
 - Examples: Integers, Strings, Floats, . . .
What is a Data Structure?

- Stores data
 - Examples: Integers, Strings, Floats, …
- Can answer questions about the stored data
 - Example: What is the data stored at position \(i \) (\(\text{get}(i) \))
 - Example: What is the smallest data value greater than or equal to \(x \) (\(\text{find}(x) \))
- Can add or remove data (sometimes)
 - Example: Add the element \(x \) at position \(i \) (\(\text{add}(i,x) \))
What is a Data Structure?

- Stores data
 - Examples: Integers, Strings, Floats, …
- Can answer questions about the stored data
 - Example: What is the data stored at position i? ($\text{get}(i)$)
What is a Data Structure?

- Stores data
 - Examples: Integers, Strings, Floats, ...
- Can answer questions about the stored data
 - Example: What is the data stored at position i? ($\text{get}(i)$)
 - Example: What is the smallest data value greater than or equal to x? ($\text{find}(x)$)
What is a Data Structure?

- Stores data
 - Examples: Integers, Strings, Floats, ...
- Can answer questions about the stored data
 - Example: What is the data stored at position \(i \)? (\(\text{get}(i) \))
 - Example: What is the smallest data value greater than or equal to \(x \)? (\(\text{find}(x) \))
- Can add or remove data (sometimes)
What is a Data Structure?

- Stores data
 - Examples: Integers, Strings, Floats, ...
- Can answer questions about the stored data
 - Example: What is the data stored at position i? ($\text{get}(i)$)
 - Example: What is the smallest data value greater than or equal to x? ($\text{find}(x)$)
- Can add or remove data (sometimes)
 - Example: Add the element x at position i ($\text{add}(i,x)$)
Why Study Data Structures?

Data structures underly every computer system

- Computer file system (data structure maps file names onto hard drive sectors)
- Google and other search engines (data structure maps keywords onto webpages containing those keywords)
- Video games (data structures determine if game objects collide)
- Geographic systems (data structures find data relevant to the current view/location)
- . . .

- Fortunes have been made (and lost) because of data structures
- Many problems are solved efficiently just by using the right data structure
Why Study Data Structures?

- Data structures underly every computer system
 - Computer file system (data structure maps file names onto hard drive sectors)
- Fortunes have been made (and lost) because of data structures
- Many problems are solved efficiently just by using the right data structure
Why Study Data Structures?

Data structures underly every computer system

- Computer file system (data structure maps file names onto hard drive sectors)
- Google and other search engines (data structure maps keywords onto webpages containing those keywords)

Fortunes have been made (and lost) because of data structures

Many problems are solved efficiently just by using the right data structure
Why Study Data Structures?

Data structures underly every computer system

- Computer file system (data structure maps file names onto hard drive sectors)
- Google and other search engines (data structure maps keywords onto webpages containing those keywords)
- Video games (data structures determine if game objects collide)
Why Study Data Structures?

- Data structures underly every computer system
 - Computer file system (data structure maps file names onto hard drive sectors)
 - Google and other search engines (data structure maps keywords onto webpages containing those keywords)
 - Video games (data structures determine if game objects collide)
 - Geographic systems (data structures find data relevant to the current view/location)

...
Why Study Data Structures?

- Data structures underly every computer system
 - Computer file system (data structure maps file names onto hard drive sectors)
 - Google and other search engines (data structure maps keywords onto webpages containing those keywords)
 - Video games (data structures determine if game objects collide)
 - Geographic systems (data structures find data relevant to the current view/location)
 - ...

Fortunes have been made (and lost) because of data structures. Many problems are solved efficiently just by using the right data structure.
Why Study Data Structures?

- Data structures underly every computer system
 - Computer file system (data structure maps file names onto hard drive sectors)
 - Google and other search engines (data structure maps keywords onto webpages containing those keywords)
 - Video games (data structures determine if game objects collide)
 - Geographic systems (data structures find data relevant to the current view/location)
- ...
- Fortunes have been made (and lost) because of data structures
Why Study Data Structures?

- Data structures underly every computer system
 - Computer file system (data structure maps file names onto hard drive sectors)
 - Google and other search engines (data structure maps keywords onto webpages containing those keywords)
 - Video games (data structures determine if game objects collide)
 - Geographic systems (data structures find data relevant to the current view/location)
 - ...
- Fortunes have been made (and lost) because of data structures
- Many problems are solved efficiently just by using the right data structure
How do We Study Data Structures?

- What does the data structure represent?
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world,...
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world,…
- What operations does it support?
How do We Study Data Structures?

- **What does the data structure represent?**
 - A collection, a set, a sequence, a map, the world, . . .

- **What operations does it support?**
 - adding elements, removing elements, membership testing, finding elements, range searching, . . .

- What kind of performance does it have?
 - how long does each operation take?
 - how much space does it use?

First two define the **interface**

Performance is determined by the **implementation**
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world,...
- What operations does it support?
 - adding elements, removing elements, membership testing, finding elements, range searching,...
- What kind of performance does it have?
 - how long does each operation take?
 - how much space does it use?

First two define the interface
Performance is determined by the implementation
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world, ...
- What operations does it support?
 - adding elements, removing elements, membership testing, finding elements, range searching, ...
- What kind of performance does it have?
 - how long does each operation take?
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world, ...

- What operations does it support?
 - adding elements, removing elements, membership testing, finding elements, range searching, ...

- What kind of performance does it have?
 - how long does each operation take?
 - how much space does it use?
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world, . . .
- What operations does it support?
 - adding elements, removing elements, membership testing, finding elements, range searching, . . .
- What kind of performance does it have?
 - how long does each operation take?
 - how much space does it use?
- First two define the \textit{interface}
How do We Study Data Structures?

- What does the data structure represent?
 - A collection, a set, a sequence, a map, the world, …
- What operations does it support?
 - adding elements, removing elements, membership testing, finding elements, range searching, …
- What kind of performance does it have?
 - how long does each operation take?
 - how much space does it use?
- First two define the interface
- Performance is determined by the implementation
Who Studies Data Structures?

- Computer scientists are best equipped (skills-wise) to...
Who Studies Data Structures?

- Computer scientists are best equipped (skills-wise) to
 - choose which data structures to use for a particular application
Who Studies Data Structures?

- Computer scientists are best equipped (skills-wise) to
 - choose which data structures to use for a particular application
 - implement data structures
Who Studies Data Structures?

- Computer scientists are best equipped (skills-wise) to
 - choose which data structures to use for a particular application
 - implement data structures
 - design new data structures
When Should We Study Data Structures?

▶ Start as soon as possible
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
- Help you impress your boss
- Give your software an advantage over your competitors
- Save you a lot of work
- Allow you to make new scientific breakthroughs
- Make you rich
- Learning about data structures is rewarding for its own sake
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
- Learning about data structures is rewarding for its own sake
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
 - give your software an advantage over your competitors
- Learning about data structures is rewarding for its own sake
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
 - give your software an advantage over your competitors
 - save you a lot of work
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
 - give your software an advantage over your competitors
 - save you a lot of work
 - allow you to make new scientific breakthroughs
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
 - give your software an advantage over your competitors
 - save you a lot of work
 - allow you to make new scientific breakthroughs
 - make you rich
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
 - give your software an advantage over your competitors
 - save you a lot of work
 - allow you to make new scientific breakthroughs
 - make you rich
 - ...

Learning about data structures is rewarding for its own sake
When Should We Study Data Structures?

- Start as soon as possible
- Continue for the rest of your career
- Knowing the right data structure can
 - help you impress your boss
 - give your software an advantage over your competitors
 - save you a lot of work
 - allow you to make new scientific breakthroughs
 - make you rich
 - ...
- Learning about data structures is rewarding for its own sake
Where Do We Study Data Structures?

- Here, in school
Where Do We Study Data Structures?

- Here, in school
- Later, at work

“I took your course on data structures about two years ago now, and today I was reminded why it was probably one of the most useful ones I've ever taken. I use a software package for game development and noticed that a certain feature was behaving strangely. I tinkered with it and confirmed it was not caused by something I was doing (or not doing). Nope! Turns out hashing was implemented incorrectly and it simply did not test for certain hashing collisions. This occurred very rarely, but most noticeably with strings. I submitted a bug report and it has been elevated in their bug tracker to the highest priority.”

Pat Morin COMP2402 Data Structures: Course Outline
Where Do We Study Data Structures?

- Here, in school
- Later, at work
- “I took your course on data structures about two years ago now, and today I was reminded why it was probably one of the most useful ones I’ve ever taken. I use a software package for game development and noticed that a certain feature was behaving strangely. I tinkered with it and confirmed it was not caused by something I was doing (or not doing). Nope! Turns out hashing was implemented incorrectly and it simply did not test for certain hashing collisions. This occurred very rarely, but most noticeably with strings. I submitted a bug report and it has been elevated in their bug tracker to the highest priority.”
Instructor: Pat Morin
Office hours: Wednesday 10:00–12:00, 5177HP
 TA Office hours will be posted on culearn
Webpage: culearn.carleton.ca
Textbook: Open Data Structures (in Java)
Grading Scheme

Assignments \(5 \times 10\% = 50\% \)
Mid-Term Exam \(15\% \)
Final Exam \(35\% \)

100%
Assignments: $5 \times 10\% = 50\%$
Mid-Term Exam: 15\%
Final Exam: 35\%

100%

- Assignments are marked by a submission server
Grading Scheme

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>$5 \times 10% = 50%$</td>
</tr>
<tr>
<td>Mid-Term Exam</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Assignments are marked by a submission server
- Exams are multiple-choice Scantron
Automatic Assignment Marking

- To submit an assignment, you zip it up and submit to a server that

 ▶ unzips (zip files only, please)
 ▶ compiles (must compile)
 ▶ tests (for correctness and speed)
 ▶ displays and records your mark

Pros:
- Submit as often as you like (most recent mark is recorded)
- No surprise marks
- TA time is allocated to helping you

Cons:
- No marks for trying
- Improperly packaged, non-compiling code = 0

Pat Morin COMP2402 Data Structures: Course Outline
Automatic Assignment Marking

» To submit an assignment, you zip it up and submit to a server that
 » unzips (zip files only, please)

Pros:
» Submit as often as you like (most recent mark is recorded)
» No surprise marks
» TA time is allocated to helping you

Cons:
» No marks for trying
» Improperly packaged, non-compiling code = 0
Automatic Assignment Marking

- To submit an assignment, you zip it up and submit to a server that
 - unzips (zip files only, please)
 - compiles (must compile)

Pros:
- Submit as often as you like (most recent mark is recorded)
- No surprise marks
- TA time is allocated to helping you

Cons:
- No marks for trying
- Improperly packaged, non-compiling code = 0
Automatic Assignment Marking

- To submit an assignment, you zip it up and submit to a server that
 - unzips (zip files only, please)
 - compiles (must compile)
 - tests (for correctness and speed)

- Pros:
 - Submit as often as you like (most recent mark is recorded)
 - No surprise marks
 - TA time is allocated to helping you

- Cons:
 - No marks for trying
 - Improperly packaged, non-compiling code = 0
To submit an assignment, you zip it up and submit to a server that
- unzips (zip files only, please)
- compiles (must compile)
- tests (for correctness and speed)
- displays and records your mark
Automatic Assignment Marking

- To submit an assignment, you zip it up and submit to a server that
 - unzips (zip files only, please)
 - compiles (must compile)
 - tests (for correctness and speed)
 - displays and records your mark

- Pros:

 - Submit as often as you like (most recent mark is recorded)
 - No surprise marks
 - TA time is allocated to helping you

- Cons:
 - No marks for trying
 - Improperly packaged, non-compiling code = 0
To submit an assignment, you zip it up and submit to a server that

- unzips (zip files only, please)
- compiles (must compile)
- tests (for correctness and speed)
- displays and records your mark

Pros:
- Submit as often as you like (most recent mark is recorded)

Cons:
- No marks for trying
- Improperly packaged, non-compiling code = 0
To submit an assignment, you zip it up and submit to a server that
- unzips (zip files only, please)
- compiles (must compile)
- tests (for correctness and speed)
- displays and records your mark

Pros:
- Submit as often as you like (most recent mark is recorded)
- No surprise marks

Cons:
- No marks for trying
- Improperly packaged, non-compiling code = 0
To submit an assignment, you zip it up and submit to a server that:
- unzips (zip files only, please)
- compiles (must compile)
- tests (for correctness and speed)
- displays and records your mark

Pros:
- Submit as often as you like (most recent mark is recorded)
- No surprise marks
- TA time is allocated to helping you

Cons:
- No marks for trying
- Improperly packaged, non-compiling code = 0
Automatic Assignment Marking

▶ To submit an assignment, you zip it up and submit to a server that
 ▶ unzips (zip files only, please)
 ▶ compiles (must compile)
 ▶ tests (for correctness and speed)
 ▶ displays and records your mark

▶ Pros:
 ▶ Submit as often as you like (most recent mark is recorded)
 ▶ No surprise marks
 ▶ TA time is allocated to helping you

▶ Cons:
Automatic Assignment Marking

- To submit an assignment, you zip it up and submit to a server that
 - unzips (zip files only, please)
 - compiles (must compile)
 - tests (for correctness and speed)
 - displays and records your mark

- Pros:
 - Submit as often as you like (most recent mark is recorded)
 - No surprise marks
 - TA time is allocated to helping you

- Cons:
 - No marks for trying
Automatic Assignment Marking

To submit an assignment, you zip it up and submit to a server that
 ▶ unzips (zip files only, please)
 ▶ compiles (must compile)
 ▶ tests (for correctness and speed)
 ▶ displays and records your mark

Pros:
 ▶ Submit as often as you like (most recent mark is recorded)
 ▶ No surprise marks
 ▶ TA time is allocated to helping you

Cons:
 ▶ No marks for trying
 ▶ Improperly packaged, non-compiling code = 0
Student feedback on Submission Server

▶ “The submitting server was great. I was able to get 100% on every assignment.”

▶ “The marking server was very cool, I very much enjoyed the ability to know how well I did instantly.

▶ “Without it I don’t think I would have done as well on the assignments because for a lot of them I thought I was doing it right, but the server then told me otherwise.

▶ “. . . has both pros and cons (a notable con is the improbability of getting anything other than 0 or 100% on a question),. . . ”

▶ “There server submission was OK, but given the choice I’d rather have a TA look at my work and mark it, then they could tell me what was exactly wrong with it.”
Student feedback on Submission Server

▶ “The submitting server was great. I was able to get 100% on every assignment.”
▶ “The marking server was very cool, I very much enjoyed to ability to know how well I did instantly.”
Student feedback on Submission Server

▶ “The submitting server was great. I was able to get 100% on every assignment.”
▶ “The marking server was very cool, I very much enjoyed to ability to know how well I did instantly.”
▶ “Without it I don’t think I would have done as well on the assignments because for a lot of them I thought I was doing it right, but the server then told me otherwise.”
Student feedback on Submission Server

▶ “The submitting server was great. I was able to get 100% on every assignment.”
▶ “The marking server was very cool, I very much enjoyed the ability to know how well I did instantly.”
▶ “Without it I don’t think I would have done as well on the assignments because for a lot of them I thought I was doing it right, but the server then told me otherwise.”
▶ “...has both pros and cons (a notable con is the improbability of getting anything other than 0 or 100% on a question),...”
“The submitting server was great. I was able to get 100% on every assignment.”

“The marking server was very cool, I very much enjoyed the ability to know how well I did instantly.”

“Without it I don’t think I would have done as well on the assignments because for a lot of them I thought I was doing it right, but the server then told me otherwise.”

“. . . has both pros and cons (a notable con is the improbability of getting anything other than 0 or 100% on a question). . . .”

“There server submission was OK, but given the choice I’d rather have a TA look at my work and mark it, then they could tell me what was exactly wrong with it.”
Textbook: Open Data Structures (in Java)

- opendatastructures.org
Textbook: Open Data Structures (in Java)

- opendatastructures.org
- trade paperback $29.95 from Amazon, Chapters, or CU Bookstore (actually a bit more from the bookstore)
Textbook: Open Data Structures (in Java)

- opendatastructures.org
- trade paperback $29.95 from Amazon, Chapters, or CU Bookstore (actually a bit more from the bookstore)
- PDF and HTML are free at opendatastructures.org
Textbook: Open Data Structures (in Java)

- opendatastructures.org
- trade paperback $29.95 from Amazon, Chapters, or CU Bookstore (actually a bit more from the bookstore)
- PDF and HTML are free at opendatastructures.org
- CC-BY License: Use the code later in your own projects
Textbook: Open Data Structures (in Java)

- opendatastructures.org
- trade paperback $29.95 from Amazon, Chapters, or CU Bookstore (actually a bit more from the bookstore)
- PDF and HTML are free at opendatastructures.org
- CC-BY License: Use the code later in your own projects
- Supplementary text:
 - Mathematics for Computer Science (free PDF)
Lectures

- Mostly: On the board, using chalk
- Less often: On the projector, writing and testing code
Lectures

- Mostly: On the board, using chalk
- Less often: On the projector, writing and testing code
The End

Questions?