Convex Hulls: An Application of Stacks and Deques

Pat Morin
COMP2402/2002

Carleton University
Let $P = \{p_0, \ldots, p_{n-1}\}$ be a set of points in the plane. The convex hull of S is the smallest convex set that contains S.

![Convex Hull Diagram]
Let $P = \{p_0, \ldots, p_{n-1}\}$ be a set of points in the plane.

The **convex hull** of S

- the smallest convex set that contains S.
- stretch a rubber band around S
Let $P = \{p_0, \ldots, p_{n-1}\}$ be a set of points in the plane.

The **convex hull** of S

- the smallest convex set that contains S.
- stretch a rubber band around S and let it go.
The *upper hull* of S is a bit simpler.
Upper and Lower Hulls

- The *upper hull* of S is a bit simpler
 - get a rope with weights on both ends
Upper and Lower Hulls

- The *upper hull* of S is a bit simpler
 - get a rope with weights on both ends and throw it over S
Upper and Lower Hulls

- The *upper hull* of S is a bit simpler
 - get a rope with weights on both ends and throw it over S
- For the *lower hull*, use helium-balloons
The upper hull of S is a bit simpler
- get a rope with weights on both ends and throw it over S
- For the lower hull, use helium-baloons
- Convex hull = upper hull + lower hull
Summary so far

- Input: A set P of n points (unordered)

![Diagram of points p_1 to p_{12} in a plane, illustrating the convex hull process.]

First compute the upper hull, then the lower hull.
Summary so far

- Input: A set P of n points (unordered)
- Output: A list of the points of P on the convex hull — in clockwise order
Summary so far

- Input: A set P of n points (unordered)
- Output: A list of the points of P on the convex hull — in clockwise order
- First compute the upper hull, then the lower hull

\[\langle p_5, p_6, p_7, p_{10}, p_{11}, p_9, p_1 \rangle \]
Invented by Ron Graham in 1973
Graham’s Scan

- Invented by Ron Graham in 1973
- Sorts the points by x-coordinate
Graham’s Scan

- Invented by Ron Graham in 1973
- Sorts the points by x-coordinate
- Constructs the upper hull incrementally using a stack
Graham’s Scan

1. Sort the points by \(x \)-coordinate.
2. Create a stack \(s \) containing \(\langle p_0, p_1 \rangle \).
3. For \(i = 3 \) to \(n \) do
 ▶ add \(p_i \) to the convex hull of \(p_1, \ldots, p_{i-1} \).
Graham’s Scan

1. Sort the points by x-coordinate
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 - add p_i to the convex hull of p_1, \ldots, p_{i-1}
Graham’s Scan

1. Sort the points by \(x \)-coordinate
2. Create a stack \(s \) containing \(\langle p_0, p_1 \rangle \)
3. For \(i = 3 \) to \(n \) do
 - add \(p_i \) to the convex hull of \(p_1, \ldots, p_{i-1} \)
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 - add p_i to the convex hull of p_1, \ldots, p_{i-1}

\[\langle p_0, p_1, p_4 \rangle \]
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 - add p_i to the convex hull of p_1, \ldots, p_{i-1}
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 ▶ add p_i to the convex hull of p_1, \ldots, p_{i-1}
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do

 ▶ add p_i to the convex hull of p_1, \ldots, p_{i-1}
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 - add p_i to the convex hull of p_1, \ldots, p_{i-1}

\[\langle p_0, p_1, p_6, p_8 \rangle \]
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 ▶ add p_i to the convex hull of p_1, \ldots, p_{i-1}

\[
\langle p_0, p_1, p_6, p_9 \rangle
\]
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 - add p_i to the convex hull of p_1, \ldots, p_{i-1}
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 ▶ add p_i to the convex hull of p_1, \ldots, p_{i-1}
Graham’s Scan

1. Sort the points by x-coordinate
2. Create a stack s containing $\langle p_0, p_1 \rangle$
3. For $i = 3$ to n do
 - add p_i to the convex hull of p_1, \ldots, p_{i-1}
Adding p_i

- Suppose s contains the upper hull of p_0, \ldots, p_{i-1}
- We want to compute upper hull of p_0, \ldots, p_i
 1. while s.get(s.size()-2), s.get(s.size()-1), and p_i form a left turn
 - s.remove(s.size()-1) (pop)
 2. s.add(p_i)
Adding p_i

- Suppose s contains the upper hull of p_0, \ldots, p_{i-1}
- We want to compute upper hull of p_0, \ldots, p_i
 1. while s.get(s.size()-2), s.get(s.size()-1), and p_i form a left turn
 - s.remove(s.size()-1) (pop)
 2. s.add(p_i)
Adding p_i

- Suppose s contains the upper hull of p_0, \ldots, p_{i-1}
- We want to compute upper hull of p_0, \ldots, p_i
 1. while s.get(s.size()-2), s.get(s.size()-1), and p_i form a left turn
 - s.remove(s.size()-1) (pop)
 2. s.add(p_i)
Adding p_i

- Suppose s contains the upper hull of p_0, \ldots, p_{i-1}
- We want to compute upper hull of p_0, \ldots, p_i
 1. while s.get(s.size()-2), s.get(s.size()-1), and p_i form a left turn
 - s.remove(s.size()-1) (pop)
 2. s.add(p_i)
Adding p_i

- Suppose s contains the upper hull of p_0, \ldots, p_{i-1}
- We want to compute upper hull of p_0, \ldots, p_i
 1. while s.get(s.size()-2), s.get(s.size()-1), and p_i form a left turn
 - s.remove(s.size()-1) (pop)
 2. s.add(p_i)
Adding p_i

- Suppose s contains the upper hull of p_0, \ldots, p_{i-1}
- We want to compute upper hull of p_0, \ldots, p_i
 1. while s.get(s.size()-2), s.get(s.size()-1), and p_i form a left turn
 - s.remove(s.size()-1) (pop)
 2. s.add(p_i)
public static List<Point2D> grahamScan(List<Point2D> p) {
 Collections.sort(p, new XComparator());
 List<Point2D> s = new ArrayList<Point2D>();
 s.add(p.get(0)); s.add(p.get(1));
 for (int i = 2; i < p.size(); i++) {
 Point2D pi = p.get(i);
 while (s.size() >= 2 && leftTurn(s.get(s.size() - 2),
 s.get(s.size() - 1),
 pi)) {
 s.remove(s.size()); // pop
 }
 s.add(pi);
 }
 return s;
}
Graham’s Scan first sorts the data
- can be done $O(n \log n)$ time (see COMP3804)
Analysis of Graham’s Scan

- Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)
- Creates a stack and pushes two values
 - takes $O(1)$ time
Analysis of Graham’s Scan

- Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)
- Creates a stack and pushes two values
 - takes $O(1)$ time
- A for loop over $n - 2 = O(n)$ values
Analysis of Graham’s Scan

- Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)
- Creates a stack and pushes two values
 - takes $O(1)$ time
- A for loop over $n - 2 = O(n)$ values
 - each iteration does some pop/remove operations
 - how many?
Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)

Creates a stack and pushes two values
 - takes $O(1)$ time

A for loop over $n - 2 = O(n)$ values
 - each iteration does some pop/remove operations
 - how many?
 - each iteration does 1 push/add operation
 - $O(1)$ per iteration $= O(n)$ overall

Total: $O(n \log n) + O(n)$
Analysis of Graham’s Scan

- Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)
- Creates a stack and pushes two values
 - takes $O(1)$ time
- A for loop over $n - 2 = O(n)$ values
 - each iteration does some pop/remove operations
 - how many?
 - each iteration does 1 push/add operation
 - $O(1)$ per iteration $= O(n)$ overall
- Total: $O(n \log n) + O(n) + O(\text{num. pop operations})$
Analysis of Graham’s Scan

- Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)
- Creates a stack and pushes two values
 - takes $O(1)$ time
- A for loop over $n - 2 = O(n)$ values
 - each iteration does some pop/remove operations
 - how many?
 - each iteration does 1 push/add operation
 - $O(1)$ per iteration $= O(n)$ overall
- Total: $O(n \log n) + O(n) + O(n)$
Analysis of Graham’s Scan

- Graham’s Scan first sorts the data
 - can be done $O(n \log n)$ time (see COMP3804)
- Creates a stack and pushes two values
 - takes $O(1)$ time
- A for loop over $n - 2 = O(n)$ values
 - each iteration does some pop/remove operations
 - how many?
 - each iteration does 1 push/add operation
 - $O(1)$ per iteration = $O(n)$ overall
- Total: $O(n \log n) + O(n) + O(n) = O(n \log n)$
Summary

- **Theorem:** Given a collection P of n points in the plane, Graham’s Scan can compute their upper hull in $O(n \log n)$ time.
Summary

- **Theorem:** Given a collection P of n points in the plane, Graham’s Scan can compute their upper hull in $O(n \log n)$ time.

- With two passes, we can compute the upper hull and lower hull and attach them together to get the convex hull:
Summary

- **Theorem:** Given a collection P of n points in the plane, Graham’s Scan can compute their upper hull in $O(n \log n)$ time.

- With two passes, we can compute the upper hull and lower hull and attach them together to get the convex hull:

- **Theorem:** Given a collection P of n points in the plane, two applications of Graham’s Scan can compute their convex hull in $O(n \log n)$ time.
Theorem: Given a collection P of n points in the plane, Graham’s Scan can compute their upper hull in $O(n \log n)$ time.

With two passes, we can compute the upper hull and lower hull and attach them together to get the convex hull:

Theorem: Given a collection P of n points in the plane, two applications of Graham’s Scan can compute their convex hull in $O(n \log n)$ time.

By using a Deque, we only need one pass
Graham’s Scan with a deque

Graham’s Scan can compute the convex hull in one-pass using a deque
Graham’s Scan with a deque

- Graham’s Scan can compute the convex hull in one-pass using a deque

\[\langle p_2, p_0, p_1, p_2 \rangle \]
Graham’s Scan with a deque

- Graham’s Scan can compute the convex hull in one-pass using a deque

\[\langle p_3, p_0, p_1, p_2, p_3 \rangle \]
Graham’s Scan with a deque

Graham’s Scan can compute the convex hull in one-pass using a deque

\[\langle p_4, p_3, p_0, p_1, p_4 \rangle \]
Graham's Scan with a deque

- Graham's Scan can compute the convex hull in one-pass using a deque

\[\langle p_5, p_3, p_0, p_1, p_4, p_5 \rangle \]
Graham’s Scan with a deque

- Graham’s Scan can compute the convex hull in one-pass using a deque

\[
\langle p_6, p_5, p_3, p_0, p_1, p_6 \rangle
\]
Graham’s Scan with a deque

- Graham’s Scan can compute the convex hull in one-pass using a deque

\[\langle p_6, p_5, p_3, p_0, p_1, p_6 \rangle \ldots \]
Melkman’s Algorithm

- Graham’s Scan starts by sorting the points by x-coordinate.

![Diagram of points $p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}, p_{11}$]
Melkman’s Algorithm

- Graham’s Scan starts by sorting the points by x-coordinate
 - This means that p_0, \ldots, p_{n-1} becomes a non-self-intersecting path
 - If points are already sorted then Graham’s Scan takes $O(n)$ time
Melkman’s Algorithm

- Graham’s Scan starts by sorting the points by x-coordinate
 - This means that p_0, \ldots, p_{n-1} becomes a non-self-intersecting path
 - If points are already sorted then Graham’s Scan takes $O(n)$ time
- Melkman’s Algorithm:
Melkman’s Algorithm

- Graham’s Scan starts by sorting the points by x-coordinate
 - This means that p_0, \ldots, p_{n-1} becomes a non-self-intersecting path
 - If points are already sorted then Graham’s Scan takes $O(n)$ time
- Melkman’s Algorithm:
 - Works for any non-self-intersecting path p_0, \ldots, p_{n-1}