
Plane Sweep

Pat Morin
COMP2402/2002

Carleton University

Pat Morin COMP2402/2002 Plane Sweep



Line Segment Intersection Finding

I Input: Given a set S of n line segments

I Output: All pairs s, t ∈ S such that s intersects t

Pat Morin COMP2402/2002 Plane Sweep



Line Segment Intersection Finding

I Input: Given a set S of n line segments

I Output: All pairs s, t ∈ S such that s intersects t

Pat Morin COMP2402/2002 Plane Sweep



The Trivial Algorithm

I The trivial algorithm:

1. for each s, t ∈
(
S
2

)
I if s intersects t then add (s, t) to the output

I Running time is proportional to
(n
2

)
= n(n − 1)/2 = O(n2)

I Can we do better?

I In the worst case, no, every pair in S might intersect

I Then the size of the output is
(n
2

)
= Ω(n2)

Pat Morin COMP2402/2002 Plane Sweep



The Trivial Algorithm

I The trivial algorithm:

1. for each s, t ∈
(
S
2

)
I if s intersects t then add (s, t) to the output

I Running time is proportional to
(n
2

)
= n(n − 1)/2 = O(n2)

I Can we do better?

I In the worst case, no, every pair in S might intersect

I Then the size of the output is
(n
2

)
= Ω(n2)

Pat Morin COMP2402/2002 Plane Sweep



The Trivial Algorithm

I The trivial algorithm:

1. for each s, t ∈
(
S
2

)
I if s intersects t then add (s, t) to the output

I Running time is proportional to
(n
2

)
= n(n − 1)/2 = O(n2)

I Can we do better?

I In the worst case, no, every pair in S might intersect

I Then the size of the output is
(n
2

)
= Ω(n2)

Pat Morin COMP2402/2002 Plane Sweep



The Trivial Algorithm

I The trivial algorithm:

1. for each s, t ∈
(
S
2

)
I if s intersects t then add (s, t) to the output

I Running time is proportional to
(n
2

)
= n(n − 1)/2 = O(n2)

I Can we do better?

I In the worst case, no, every pair in S might intersect

I Then the size of the output is
(n
2

)
= Ω(n2)

Pat Morin COMP2402/2002 Plane Sweep



The Trivial Algorithm

I The trivial algorithm:

1. for each s, t ∈
(
S
2

)
I if s intersects t then add (s, t) to the output

I Running time is proportional to
(n
2

)
= n(n − 1)/2 = O(n2)

I Can we do better?

I In the worst case, no, every pair in S might intersect

I Then the size of the output is
(n
2

)
= Ω(n2)

Pat Morin COMP2402/2002 Plane Sweep



Output-Sensitive Algorithms

I The Ω(n2) lower-bound on the size of the output is
unsatisfactory

I In many cases, the number of intersecting pairs is much
smaller than

(
n
2

)
I An output-sensitive algorithm is an algorithm whose

running-time is sensitive to the number, k , of intersecting
pairs

I The Bently-Ottman plane-sweep algorithm runs in time
O((n + k) log n) where k is the number of intersecting pairs of
segments

I This is much faster when k �
(n
2

)

Pat Morin COMP2402/2002 Plane Sweep



Output-Sensitive Algorithms

I The Ω(n2) lower-bound on the size of the output is
unsatisfactory

I In many cases, the number of intersecting pairs is much
smaller than

(
n
2

)

I An output-sensitive algorithm is an algorithm whose
running-time is sensitive to the number, k , of intersecting
pairs

I The Bently-Ottman plane-sweep algorithm runs in time
O((n + k) log n) where k is the number of intersecting pairs of
segments

I This is much faster when k �
(n
2

)

Pat Morin COMP2402/2002 Plane Sweep



Output-Sensitive Algorithms

I The Ω(n2) lower-bound on the size of the output is
unsatisfactory

I In many cases, the number of intersecting pairs is much
smaller than

(
n
2

)
I An output-sensitive algorithm is an algorithm whose

running-time is sensitive to the number, k , of intersecting
pairs

I The Bently-Ottman plane-sweep algorithm runs in time
O((n + k) log n) where k is the number of intersecting pairs of
segments

I This is much faster when k �
(n
2

)

Pat Morin COMP2402/2002 Plane Sweep



Output-Sensitive Algorithms

I The Ω(n2) lower-bound on the size of the output is
unsatisfactory

I In many cases, the number of intersecting pairs is much
smaller than

(
n
2

)
I An output-sensitive algorithm is an algorithm whose

running-time is sensitive to the number, k , of intersecting
pairs

I The Bently-Ottman plane-sweep algorithm runs in time
O((n + k) log n) where k is the number of intersecting pairs of
segments

I This is much faster when k �
(n
2

)

Pat Morin COMP2402/2002 Plane Sweep



Output-Sensitive Algorithms

I The Ω(n2) lower-bound on the size of the output is
unsatisfactory

I In many cases, the number of intersecting pairs is much
smaller than

(
n
2

)
I An output-sensitive algorithm is an algorithm whose

running-time is sensitive to the number, k , of intersecting
pairs

I The Bently-Ottman plane-sweep algorithm runs in time
O((n + k) log n) where k is the number of intersecting pairs of
segments

I This is much faster when k �
(n
2

)

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right

I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)

I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs

I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical

I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

I The plane sweep algorithm runs a simulation

I A vertical line (the sweep line) sweeps from left to right
I The sweep line pauses at

I The endpoints of segments (endpoint events)
I The intersection points (intersection events)

I During intersection events, we record the intersecting pairs
I Simplifying assumptions:

I No segment is vertical
I No three segments intersect in the same point

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Plane Sweep Algorithm

I The algorithm maintains two data structures

I The sweep-line status is a SortedSet that stores the segments
that currently intersect the sweep line, ordered from top to
bottom (y -coordinate)

I The event queue is a PriorityQueue that stores events
(segment endpoints and intersections) ordered from left to
rigth (x-coordinate)

Pat Morin COMP2402/2002 Plane Sweep



The Plane Sweep Algorithm

I The algorithm maintains two data structures

I The sweep-line status is a SortedSet that stores the segments
that currently intersect the sweep line, ordered from top to
bottom (y -coordinate)

I The event queue is a PriorityQueue that stores events
(segment endpoints and intersections) ordered from left to
rigth (x-coordinate)

Pat Morin COMP2402/2002 Plane Sweep



The Plane Sweep Algorithm

I The algorithm maintains two data structures

I The sweep-line status is a SortedSet that stores the segments
that currently intersect the sweep line, ordered from top to
bottom (y -coordinate)

I The event queue is a PriorityQueue that stores events
(segment endpoints and intersections) ordered from left to
rigth (x-coordinate)

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



Initialization

I To ininitialize
I set the x-coordinate of the sweep line to −∞

I add all 2n segment endpoints to the event queue

Pat Morin COMP2402/2002 Plane Sweep



Initialization

I To ininitialize
I set the x-coordinate of the sweep line to −∞
I add all 2n segment endpoints to the event queue

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event

I For the left endpoint of a segment s:

I Add s to the sweep line status
I Check if s intersects the segment above or below it and add a

crossing event to the event queue if necessary

I For the right endpoints of a segment s:

I Remove s from the sweep line status
I Check if the element above and below s cross and add a

crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event
I For the left endpoint of a segment s:

I Add s to the sweep line status
I Check if s intersects the segment above or below it and add a

crossing event to the event queue if necessary

I For the right endpoints of a segment s:

I Remove s from the sweep line status
I Check if the element above and below s cross and add a

crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event
I For the left endpoint of a segment s:

I Add s to the sweep line status

I Check if s intersects the segment above or below it and add a
crossing event to the event queue if necessary

I For the right endpoints of a segment s:

I Remove s from the sweep line status
I Check if the element above and below s cross and add a

crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event
I For the left endpoint of a segment s:

I Add s to the sweep line status
I Check if s intersects the segment above or below it and add a

crossing event to the event queue if necessary

I For the right endpoints of a segment s:

I Remove s from the sweep line status
I Check if the element above and below s cross and add a

crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event
I For the left endpoint of a segment s:

I Add s to the sweep line status
I Check if s intersects the segment above or below it and add a

crossing event to the event queue if necessary

I For the right endpoints of a segment s:

I Remove s from the sweep line status
I Check if the element above and below s cross and add a

crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event
I For the left endpoint of a segment s:

I Add s to the sweep line status
I Check if s intersects the segment above or below it and add a

crossing event to the event queue if necessary

I For the right endpoints of a segment s:
I Remove s from the sweep line status

I Check if the element above and below s cross and add a
crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing endpoint events

I To process an endpoint event
I For the left endpoint of a segment s:

I Add s to the sweep line status
I Check if s intersects the segment above or below it and add a

crossing event to the event queue if necessary

I For the right endpoints of a segment s:
I Remove s from the sweep line status
I Check if the element above and below s cross and add a

crossing event to the event queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing crossing events

I To process a crossing event where s and t cross:

I Switch the order of s and t in the sweep line status
I Check if s or t intersects the new elements above and below

them in the sweep line and add crossing events to the event
queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing crossing events

I To process a crossing event where s and t cross:
I Switch the order of s and t in the sweep line status

I Check if s or t intersects the new elements above and below
them in the sweep line and add crossing events to the event
queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



Processing crossing events

I To process a crossing event where s and t cross:
I Switch the order of s and t in the sweep line status
I Check if s or t intersects the new elements above and below

them in the sweep line and add crossing events to the event
queue if necessary

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



The Bentley-Ottman Plane Sweep Algorithm

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I The Plane Sweep Algorithm is correct because any pair s, t
that crosses will eventually become adjacent in the sweep-line
status structure.

I When they become adjacent, their crossing event is added to
the event queue

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I The Plane Sweep Algorithm is correct because any pair s, t
that crosses will eventually become adjacent in the sweep-line
status structure.

I When they become adjacent, their crossing event is added to
the event queue

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I We process 2n + k events

I Each event requires

I Adding an element to the event queue: O(log n)
I Getting an element from the event queue: O(log n)
I Seaching the sweepline status: O(log n)

I Total running time is therefore
(2n + k) · O(log n) = O((n + k) log n)

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I We process 2n + k events
I Each event requires

I Adding an element to the event queue: O(log n)
I Getting an element from the event queue: O(log n)
I Seaching the sweepline status: O(log n)

I Total running time is therefore
(2n + k) · O(log n) = O((n + k) log n)

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I We process 2n + k events
I Each event requires

I Adding an element to the event queue: O(log n)

I Getting an element from the event queue: O(log n)
I Seaching the sweepline status: O(log n)

I Total running time is therefore
(2n + k) · O(log n) = O((n + k) log n)

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I We process 2n + k events
I Each event requires

I Adding an element to the event queue: O(log n)
I Getting an element from the event queue: O(log n)

I Seaching the sweepline status: O(log n)

I Total running time is therefore
(2n + k) · O(log n) = O((n + k) log n)

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I We process 2n + k events
I Each event requires

I Adding an element to the event queue: O(log n)
I Getting an element from the event queue: O(log n)
I Seaching the sweepline status: O(log n)

I Total running time is therefore
(2n + k) · O(log n) = O((n + k) log n)

Pat Morin COMP2402/2002 Plane Sweep



Analysis

I We process 2n + k events
I Each event requires

I Adding an element to the event queue: O(log n)
I Getting an element from the event queue: O(log n)
I Seaching the sweepline status: O(log n)

I Total running time is therefore
(2n + k) · O(log n) = O((n + k) log n)

Pat Morin COMP2402/2002 Plane Sweep



Summary

I Theorem: The Bentley-Ottman Plane Sweep Algorithm can
compute all pairs of intersecting segments in O((n + k) log n)
time, where k is the number of pairs of segments that
intersect

I Plane-sweep algorithms can solve many other problems:

I Given any set of objects, determine if any pair in the set
intersect: O(n log n) time

I Find the closest pair of points among n points: O(n log n)
I A data structure for the planar point location problem:

O(n log n) space and O(log n) query time

Pat Morin COMP2402/2002 Plane Sweep



Summary

I Theorem: The Bentley-Ottman Plane Sweep Algorithm can
compute all pairs of intersecting segments in O((n + k) log n)
time, where k is the number of pairs of segments that
intersect

I Plane-sweep algorithms can solve many other problems:

I Given any set of objects, determine if any pair in the set
intersect: O(n log n) time

I Find the closest pair of points among n points: O(n log n)
I A data structure for the planar point location problem:

O(n log n) space and O(log n) query time

Pat Morin COMP2402/2002 Plane Sweep



Summary

I Theorem: The Bentley-Ottman Plane Sweep Algorithm can
compute all pairs of intersecting segments in O((n + k) log n)
time, where k is the number of pairs of segments that
intersect

I Plane-sweep algorithms can solve many other problems:
I Given any set of objects, determine if any pair in the set

intersect: O(n log n) time

I Find the closest pair of points among n points: O(n log n)
I A data structure for the planar point location problem:

O(n log n) space and O(log n) query time

Pat Morin COMP2402/2002 Plane Sweep



Summary

I Theorem: The Bentley-Ottman Plane Sweep Algorithm can
compute all pairs of intersecting segments in O((n + k) log n)
time, where k is the number of pairs of segments that
intersect

I Plane-sweep algorithms can solve many other problems:
I Given any set of objects, determine if any pair in the set

intersect: O(n log n) time
I Find the closest pair of points among n points: O(n log n)

I A data structure for the planar point location problem:
O(n log n) space and O(log n) query time

Pat Morin COMP2402/2002 Plane Sweep



Summary

I Theorem: The Bentley-Ottman Plane Sweep Algorithm can
compute all pairs of intersecting segments in O((n + k) log n)
time, where k is the number of pairs of segments that
intersect

I Plane-sweep algorithms can solve many other problems:
I Given any set of objects, determine if any pair in the set

intersect: O(n log n) time
I Find the closest pair of points among n points: O(n log n)
I A data structure for the planar point location problem:

O(n log n) space and O(log n) query time

Pat Morin COMP2402/2002 Plane Sweep


