Plane Sweep

Pat Morin
COMP2402/2002

Carleton University
Input: Given a set S of n line segments
Line Segment Intersection Finding

- **Input:** Given a set S of n line segments
- **Output:** All pairs $s, t \in S$ such that s intersects t
The Trivial Algorithm

The trivial algorithm:

1. for each \(s, t \in \binom{S}{2} \)
 - if \(s \) intersects \(t \) then add \((s, t)\) to the output

Running time is proportional to \((n^2) = n(n-1)/2 = O(n^2) \)

Can we do better?

In the worst case, no, every pair in \(S \) might intersect

Then the size of the output is \((n^2) = \Omega(n^2) \)
The trivial algorithm:

1. for each $s, t \in \binom{S}{2}$
 - if s intersects t then add (s, t) to the output

Running time is proportional to $\binom{n}{2} = n(n - 1)/2 = O(n^2)$
The Trivial Algorithm

- The trivial algorithm:
 1. for each $s, t \in \binom{S}{2}$
 - if s intersects t then add (s, t) to the output
- Running time is proportional to $\binom{n}{2} = n(n - 1)/2 = O(n^2)$
- Can we do better?
The Trivial Algorithm

- The trivial algorithm:
 1. for each \(s, t \in \binom{S}{2} \)
 - if \(s \) intersects \(t \) then add \((s, t)\) to the output
 - Running time is proportional to \(\binom{n}{2} = n(n-1)/2 = O(n^2) \)
 - Can we do better?
 - In the worst case, no, every pair in \(S \) might intersect
The Trivial Algorithm

The trivial algorithm:

1. for each \(s, t \in \binom{S}{2} \)
 - if \(s \) intersects \(t \) then add \((s, t)\) to the output

Running time is proportional to \(\binom{n}{2} = n(n-1)/2 = O(n^2) \)

Can we do better?

In the worst case, no, every pair in \(S \) might intersect

Then the size of the output is \(\binom{n}{2} = \Omega(n^2) \)
The $\Omega(n^2)$ lower-bound on the size of the output is unsatisfactory.
Output-Sensitive Algorithms

- The $\Omega(n^2)$ lower-bound on the size of the output is unsatisfactory
 - In many cases, the number of intersecting pairs is much smaller than $\binom{n}{2}$
Output-Sensitive Algorithms

- The $\Omega(n^2)$ lower-bound on the size of the output is unsatisfactory
 - In many cases, the number of intersecting pairs is much smaller than $\binom{n}{2}$
- An output-sensitive algorithm is an algorithm whose running-time is sensitive to the number, k, of intersecting pairs

Pat Morin COMP2402/2002 Plane Sweep
The $\Omega(n^2)$ lower-bound on the size of the output is unsatisfactory

- In many cases, the number of intersecting pairs is much smaller than $\binom{n}{2}$

An output-sensitive algorithm is an algorithm whose running-time is sensitive to the number, k, of intersecting pairs

The Bently-Ottman plane-sweep algorithm runs in time $O((n + k) \log n)$ where k is the number of intersecting pairs of segments
Output-Sensitive Algorithms

- The $\Omega(n^2)$ lower-bound on the size of the output is unsatisfactory
 - In many cases, the number of intersecting pairs is much smaller than $\binom{n}{2}$
- An output-sensitive algorithm is an algorithm whose running-time is sensitive to the number, k, of intersecting pairs
- The Bently-Ottman plane-sweep algorithm runs in time $O((n + k) \log n)$ where k is the number of intersecting pairs of segments
- This is much faster when $k \ll \binom{n}{2}$
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the sweep line) sweeps from left to right
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the *sweep line*) sweeps from left to right
- The sweep line pauses at
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the *sweep line*) sweeps from left to right
- The sweep line pauses at
 - The endpoints of segments (endpoint events)
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the sweep line) sweeps from left to right
- The sweep line pauses at
 - The endpoints of segments (endpoint events)
 - The intersection points (intersection events)
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the *sweep line*) sweeps from left to right
- The sweep line pauses at
 - The endpoints of segments (endpoint events)
 - The intersection points (intersection events)
- During intersection events, we record the intersecting pairs
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the *sweep line*) sweeps from left to right
- The sweep line pauses at
 - The endpoints of segments (endpoint events)
 - The intersection points (intersection events)
- During intersection events, we record the intersecting pairs
- Simplifying assumptions:
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the *sweep line*) sweeps from left to right
- The sweep line pauses at
 - The endpoints of segments (endpoint events)
 - The intersection points (intersection events)
- During intersection events, we record the intersecting pairs
- Simplifying assumptions:
 - No segment is vertical
The Bentley-Ottman Plane Sweep Algorithm

- The plane sweep algorithm runs a simulation
- A vertical line (the *sweep line*) sweeps from left to right
- The sweep line pauses at
 - The endpoints of segments (endpoint events)
 - The intersection points (intersection events)
- During intersection events, we record the intersecting pairs
- Simplifying assumptions:
 - No segment is vertical
 - No three segments intersect in the same point
The Bentley-Ottman Plane Sweep Algorithm
The Plane Sweep Algorithm

- The algorithm maintains two data structures

 - The sweep-line status is a `SortedSet` that stores the segments that currently intersect the sweep line, ordered from top to bottom (`y`-coordinate)

 - The event queue is a `PriorityQueue` that stores events (segment endpoints and intersections) ordered from left to right (`x`-coordinate)
The Plane Sweep Algorithm

- The algorithm maintains two data structures
- The *sweep-line status* is a SortedSet that stores the segments that currently intersect the sweep line, ordered from top to bottom (y-coordinate)
The Plane Sweep Algorithm

- The algorithm maintains two data structures
- The *sweep-line status* is a `SortedSet` that stores the segments that currently intersect the sweep line, ordered from top to bottom (y-coordinate)
- The *event queue* is a `PriorityQueue` that stores events (segment endpoints and intersections) ordered from left to right (x-coordinate)
The Bentley-Ottman Plane Sweep Algorithm
To initialize

- set the \(x \)-coordinate of the sweep line to \(-\infty\)
Initialization

- To initialize
 - set the x-coordinate of the sweep line to $-\infty$
 - add all $2n$ segment endpoints to the event queue
Processing endpoint events

- To process an endpoint event

 ▶ For the left endpoint of a segment:
 ▶ Add to the sweep line status
 ▶ Check if it intersects the segment above or below it and add a crossing event to the event queue if necessary

 ▶ For the right endpoints of a segment:
 ▶ Remove from the sweep line status
 ▶ Check if the element above and below cross and add a crossing event to the event queue if necessary
Processing endpoint events

- To process an endpoint event
- For the left endpoint of a segment s:
 - Add s to the sweep line status
 - Check if s intersects the segment above or below it and add a crossing event to the event queue if necessary

For the right endpoints of a segment s:
 - Remove s from the sweep line status
 - Check if the element above and below s cross and add a crossing event to the event queue if necessary
Processing endpoint events

- To process an endpoint event
- For the left endpoint of a segment s:
 - Add s to the sweep line status
- For the right endpoints of a segment s:
 - Remove s from the sweep line status
 - Check if the element above and below s cross and add a crossing event to the event queue if necessary
Processing endpoint events

- To process an endpoint event
- For the left endpoint of a segment s:
 - Add s to the sweep line status
 - Check if s intersects the segment above or below it and add a crossing event to the event queue if necessary

- For the right endpoints of a segment s:
 - Remove s from the sweep line status
 - Check if the element above and below s cross and add a crossing event to the event queue if necessary
Processing endpoint events

- To process an endpoint event
 - For the left endpoint of a segment s:
 - Add s to the sweep line status
 - Check if s intersects the segment above or below it and add a crossing event to the event queue if necessary
 - For the right endpoints of a segment s:
Processing endpoint events

- To process an endpoint event
- For the left endpoint of a segment s:
 - Add s to the sweep line status
 - Check if s intersects the segment above or below it and add a crossing event to the event queue if necessary
- For the right endpoints of a segment s:
 - Remove s from the sweep line status
Processing endpoint events

- To process an endpoint event
- For the left endpoint of a segment s:
 - Add s to the sweep line status
 - Check if s intersects the segment above or below it and add a crossing event to the event queue if necessary
- For the right endpoints of a segment s:
 - Remove s from the sweep line status
 - Check if the element above and below s cross and add a crossing event to the event queue if necessary
Processing crossing events

- To process a crossing event where \(s \) and \(t \) cross:

 - Switch the order of \(s \) and \(t \) in the sweep line status

 - Check if \(s \) or \(t \) intersects the new elements above and below them in the sweep line and add crossing events to the event queue if necessary
Processing crossing events

- To process a crossing event where s and t cross:
 - Switch the order of s and t in the sweep line status
Processing crossing events

- To process a crossing event where s and t cross:
 - Switch the order of s and t in the sweep line status
 - Check if s or t intersects the new elements above and below them in the sweep line and add crossing events to the event queue if necessary
The Bentley-Ottman Plane Sweep Algorithm
The Plane Sweep Algorithm is correct because any pair \(s, t \) that crosses will eventually become adjacent in the sweep-line status structure.
Analysis

- The Plane Sweep Algorithm is correct because any pair s, t that crosses will eventually become adjacent in the sweep-line status structure.
 - When they become adjacent, their crossing event is added to the event queue.
We process $2n + k$ events.
Analysis

- We process $2n + k$ events
- Each event requires
Analysis

- We process $2n + k$ events
- Each event requires
 - Adding an element to the event queue: $O(\log n)$
Analysis

- We process $2n + k$ events
- Each event requires
 - Adding an element to the event queue: $O(\log n)$
 - Getting an element from the event queue: $O(\log n)$
We process $2n + k$ events

Each event requires

- Adding an element to the event queue: $O(\log n)$
- Getting an element from the event queue: $O(\log n)$
- Searching the sweepline status: $O(\log n)$

Total running time is therefore $(2n + k) \cdot O(\log n) = O((n + k) \log n)$
We process $2n + k$ events

Each event requires
- Adding an element to the event queue: $O(\log n)$
- Getting an element from the event queue: $O(\log n)$
- Searching the sweepline status: $O(\log n)$

Total running time is therefore
$$(2n + k) \cdot O(\log n) = O((n + k) \log n)$$
Theorem: The Bentley-Ottman Plane Sweep Algorithm can compute all pairs of intersecting segments in $O((n + k) \log n)$ time, where k is the number of pairs of segments that intersect.
Theorem: The Bentley-Ottman Plane Sweep Algorithm can compute all pairs of intersecting segments in $O((n + k) \log n)$ time, where k is the number of pairs of segments that intersect.

Plane-sweep algorithms can solve many other problems:
Theorem: The Bentley-Ottman Plane Sweep Algorithm can compute all pairs of intersecting segments in $O((n + k) \log n)$ time, where k is the number of pairs of segments that intersect.

Plane-sweep algorithms can solve many other problems:

- Given any set of objects, determine if any pair in the set intersect: $O(n \log n)$ time
Summary

Theorem: The Bentley-Ottman Plane Sweep Algorithm can compute all pairs of intersecting segments in $O((n + k) \log n)$ time, where k is the number of pairs of segments that intersect.

Plane-sweep algorithms can solve many other problems:
- Given any set of objects, determine if any pair in the set intersect: $O(n \log n)$ time
- Find the closest pair of points among n points: $O(n \log n)$
Summary

- **Theorem**: The Bentley-Ottman Plane Sweep Algorithm can compute all pairs of intersecting segments in $O((n + k) \log n)$ time, where k is the number of pairs of segments that intersect.

- Plane-sweep algorithms can solve many other problems:
 - Given any set of objects, determine if any pair in the set intersect: $O(n \log n)$ time.
 - Find the closest pair of points among n points: $O(n \log n)$.
 - A data structure for the planar point location problem: $O(n \log n)$ space and $O(\log n)$ query time.