Sorting and Sorting Lower Bounds

Pat Morin
COMP2402/2002

Carleton University

The Merge Sort Algorithm

- Used in J. W. Bryce's Sorting maching in 1938 (U.S. Patent 2189024)

The Merge Sort Algorithm

- Used in J. W. Bryce's Sorting maching in 1938 (U.S. Patent 2189024)
- "Invented" by John von Neumann in 1945

The Merge Sort Algorithm

- Used in J. W. Bryce's Sorting maching in 1938 (U.S. Patent 2189024)
- "Invented" by John von Neumann in 1945
- To sort a[0], ..., a[n - 1]:

The Merge Sort Algorithm

- Used in J. W. Bryce's Sorting maching in 1938 (U.S. Patent 2189024)
- "Invented" by John von Neumann in 1945
- To sort a[0], ..., a[n - 1]:

1. sort $\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$

The Merge Sort Algorithm

- Used in J. W. Bryce's Sorting maching in 1938 (U.S. Patent 2189024)
- "Invented" by John von Neumann in 1945
- To sort a[0], ... a[n - 1]:

1. sort a[0], ..., a[n/2]
2. sort $a[n / 2+1], \ldots, a[n-1]$

The Merge Sort Algorithm

- Used in J. W. Bryce's Sorting maching in 1938 (U.S. Patent 2189024)
- "Invented" by John von Neumann in 1945
- To sort a[0], ... a[n - 1]:

1. sort a[0], ..., a[n/2]
2. sort $a[n / 2+1], \ldots, a[n-1]$
3. merge the two sorted sequences

Mergesort

- To sort a[0], ..., a[n - 1]:
- $\langle 9,3,5,2,1,8,7,0,6,4\rangle$
- $\langle 9,3,5,2,1\rangle\langle 8,7,0,6,4\rangle$

Mergesort

- To sort a[0], ..., a[n - 1]:

1. sort $\mathrm{a} 0=\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$ (recursively)

- $\langle 9,3,5,2,1,8,7,0,6,4\rangle$
- $\langle 1,2,3,5,9\rangle\langle 8,7,0,6,4\rangle$

Mergesort

- To sort a[0], ..., a[n - 1]:

$$
\text { 1. sort } \mathrm{a} 0=\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2] \text { (recursively) }
$$

2. sort $\mathrm{a} 1=\mathrm{a}[\mathrm{n} / 2+1], \ldots, \mathrm{a}[\mathrm{n}-1]$ (recursively)

- $\langle 9,3,5,2,1,8,7,0,6,4\rangle$
- $\langle 1,2,3,5,9\rangle\langle 0,4,6,7,8\rangle$

Mergesort

- To sort a[0], ..., a[n - 1]:

1. sort $\mathrm{a} 0=\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$ (recursively)
2. sort $\mathrm{a} 1=\mathrm{a}[\mathrm{n} / 2+1], \ldots, \mathrm{a}[\mathrm{n}-1]$ (recursively)
3. merge the two sorted sequences

- $\langle 9,3,5,2,1,8,7,0,6,4\rangle$
- $\langle 1,2,3,5,9\rangle\langle 0,4,6,7,8\rangle$
- $\langle 0,1,2,3,4,5,6,7,8,9\rangle$

Mergesort

```
<T> void mergeSort(T[] a, Comparator<T> c) {
    if (a.length <= 1) return;
    T[] a0 = Arrays.copyOfRange(a, 0, a.length/2);
    T[] a1 = Arrays.copyOfRange(a, a.length/2, a.length);
    mergeSort(a0, c);
    mergeSort(a1, c);
    merge(a0, a1, a, c);
}
```


Merging two sorted arrays

- To merge two sorted arrays (or lists) a and b we scan them sequentially

```
<T> void merge(T[] a0, T[] a1, T[] a, Comparator<T> c)
    int iO = 0, i1 = 0;
    for (int i = 0; i < a.length; i++) {
        if (i0 == a0.length)
            a[i] = a1[i1++];
        else if (i1 == a1.length)
            a[i] = a0[i0++];
        else if (compare(a0[i0], a1[i1]) < 0)
            a[i] = a0[i0++];
        else
            a[i] = a1[i1++];
    }
}
```


Merging two sorted arrays

- To merge two sorted arrays (or lists) a and b we scan them sequentially

```
<T> void merge(T[] a0, T[] a1, T[] a, Comparator<T> c)
    int iO = 0, i1 = 0;
    for (int i = 0; i < a.length; i++) {
        if (i0 == a0.length)
            a[i] = a1[i1++];
        else if (i1 == a1.length)
            a[i] = a0[i0++];
        else if (compare(a0[i0], a1[i1]) < 0)
            a[i] = a0[i0++];
        else
            a[i] = a1[i1++];
        }
}
```

- Takes $O(\mathrm{n})$ time

Analysis of Mergesort

- Mergesort a[0], ..., a[n-1]:
- Let $T(\mathrm{n})$ be the time to run merge sort on an array of length n
${ }^{1}$ Cheating a bit here, assuming n is a power of 2 .

Analysis of Mergesort

- Mergesort $a[0], \ldots, a[n-1]:$

1. sort $\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$ (recursively)

- Let $T(\mathrm{n})$ be the time to run merge sort on an array of length n
- Step 1 Takes $T(\mathrm{n} / 2)$ time
${ }^{1}$ Cheating a bit here, assuming n is a power of 2 .

Analysis of Mergesort

- Mergesort a[0], ..., a[n - 1]:

1. sort $\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$ (recursively)
2. sort $\mathrm{a}[\mathrm{n} / 2+1], \ldots, \mathrm{a}[\mathrm{n}-1]$ (recursively)

- Let $T(\mathrm{n})$ be the time to run merge sort on an array of length n
- Step 1 Takes $T(n / 2)$ time
- Step 2 Takes $T(\mathrm{n} / 2)$ time
${ }^{1}$ Cheating a bit here, assuming n is a power of 2 .

Analysis of Mergesort

- Mergesort a[0], ..., a[n - 1]:

1. sort $\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$ (recursively)
2. sort $\mathrm{a}[\mathrm{n} / 2+1], \ldots, \mathrm{a}[\mathrm{n}-1]$ (recursively)
3. merge the two sorted sequences

- Let $T(\mathrm{n})$ be the time to run merge sort on an array of length n
- Step 1 Takes $T(\mathrm{n} / 2)$ time
- Step 2 Takes $T(\mathrm{n} / 2)$ time
- Step 3 Takes $O(\mathrm{n})$ time
${ }^{1}$ Cheating a bit here, assuming n is a power of 2 .

Analysis of Mergesort

- Mergesort a[0], ..., a[n - 1]:

1. sort $\mathrm{a}[0], \ldots, \mathrm{a}[\mathrm{n} / 2]$ (recursively)
2. sort $\mathrm{a}[\mathrm{n} / 2+1], \ldots, \mathrm{a}[\mathrm{n}-1]$ (recursively)
3. merge the two sorted sequences

- Let $T(\mathrm{n})$ be the time to run merge sort on an array of length n
- Step 1 Takes $T(\mathrm{n} / 2)$ time
- Step 2 Takes $T(\mathrm{n} / 2)$ time
- Step 3 Takes $O(\mathrm{n})$ time
- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)^{1}$
${ }^{1}$ Cheating a bit here, assuming n is a power of 2 .

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+2 O(\mathrm{n} / 2)+4 T(\mathrm{n} / 4)$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 O(\mathrm{n} / 4)+8 T(\mathrm{n} / 8)$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+8 T(\mathrm{n} / 8)$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+8 T(\mathrm{n} / 8)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+\cdots+\mathrm{n} O(1)$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+8 T(\mathrm{n} / 8)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+\cdots+O(\mathrm{n})$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+8 T(\mathrm{n} / 8)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+\cdots+O(\mathrm{n})$
- $T(\mathrm{n})=O(\mathrm{n} \log \mathrm{n})$

The Mergesort recurrence

- $T(\mathrm{n})=O(\mathrm{n})+2 T(\mathrm{n} / 2)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+4 T(\mathrm{n} / 4)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+8 T(\mathrm{n} / 8)$
- $T(\mathrm{n})=O(\mathrm{n})+O(\mathrm{n})+O(\mathrm{n})+\cdots+O(\mathrm{n})$
- $T(\mathrm{n})=O(\mathrm{n} \log \mathrm{n})$
- Theorem: The Mergesort algorithm can sort an array of n items in $O(\mathrm{n} \log \mathrm{n})$ time

Reminder: Mergesort

- Mergesort sorts an array of n elements in $O(n \log n)$ worst-case time using at most $\mathrm{n} \log \mathrm{n}$ comparisons

Reminder: Quicksort

- Quicksort sorts an array of n elements in $O(n \log n)$ expected time using at most $1.38 \mathrm{n} \log \mathrm{n}$ expected comparisons

Reminder: Heapsort

- Heapsort sorts an array of n elements in $O(\mathrm{n} \log \mathrm{n})$ worst-case time using at most $2 \mathrm{n} \log \mathrm{n}$ comparisons

Comparison-based sorting algorithms

- So far, we have seen 3 sorting algorithms:

Comparison-based sorting algorithms

- So far, we have seen 3 sorting algorithms:
- Quicksort: $O(\mathrm{n} \log \mathrm{n})$ expected time

Comparison-based sorting algorithms

- So far, we have seen 3 sorting algorithms:
- Quicksort: $O(\mathrm{n} \log \mathrm{n})$ expected time
- Heapsort: $O(\mathrm{n} \log \mathrm{n})$ time

Comparison-based sorting algorithms

- So far, we have seen 3 sorting algorithms:
- Quicksort: $O(\mathrm{n} \log \mathrm{n})$ expected time
- Heapsort: $O(\mathrm{n} \log \mathrm{n})$ time
- Mergesort: $O(\mathrm{n} \log \mathrm{n})$ time

Comparison-based sorting algorithms

- So far, we have seen 3 sorting algorithms:
- Quicksort: $O(\mathrm{n} \log \mathrm{n})$ expected time
- Heapsort: $O(\mathrm{n} \log \mathrm{n})$ time
- Mergesort: $O(\mathrm{n} \log \mathrm{n})$ time
- Is there a faster (maybe $O(\mathrm{n})$ time) sorting algorithm?

Comparison-based sorting algorithms

- So far, we have seen 3 sorting algorithms:
- Quicksort: $O(\mathrm{n} \log \mathrm{n})$ expected time
- Heapsort: $O(\mathrm{n} \log \mathrm{n})$ time
- Mergesort: $O(\mathrm{n} \log \mathrm{n})$ time
- Is there a faster (maybe $O(\mathrm{n})$ time) sorting algorithm?
- Answer: No and yes

Comparison-based sorting algorithms

- Quicksort, Heapsort, and Mergesort are comparison-based

Comparison-based sorting algorithms

- Quicksort, Heapsort, and Mergesort are comparison-based
- All branching in the algorithm is based on the results of comparisons of the form $\mathrm{a}[\mathrm{i}]<\mathrm{b}[\mathrm{i}]$

Comparison-based sorting algorithms

- Quicksort, Heapsort, and Mergesort are comparison-based
- All branching in the algorithm is based on the results of comparisons of the form $\mathrm{a}[\mathrm{i}]<\mathrm{b}[\mathrm{i}]$
- These algorithms can be used to sort any array of Comparable items

Comparison-based sorting algorithms

- Quicksort, Heapsort, and Mergesort are comparison-based
- All branching in the algorithm is based on the results of comparisons of the form $\mathrm{a}[\mathrm{i}]<\mathrm{b}[\mathrm{i}]$
- These algorithms can be used to sort any array of Comparable items
- But this comes at a price

Comparison-based sorting algorithms

- Quicksort, Heapsort, and Mergesort are comparison-based
- All branching in the algorithm is based on the results of comparisons of the form $\mathrm{a}[\mathrm{i}]<\mathrm{b}[\mathrm{i}]$
- These algorithms can be used to sort any array of Comparable items
- But this comes at a price
- Every comparison-based sorting algorithm takes $\Omega(\mathrm{n} \log \mathrm{n})$ time for some input

Comparison trees

- A comparison tree is a full binary tree:

Comparison trees

- A comparison tree is a full binary tree:
- each internal node u is labelled with a pair u.i and $u . j$

Comparison trees

- A comparison tree is a full binary tree:
- each internal node u is labelled with a pair u.i and u.j
- each leaf is labelled with a permutation of $\{0, \ldots, n-1\}$

Comparison trees

- A comparison tree is a full binary tree:
- each internal node u is labelled with a pair u.i and u.j
- each leaf is labelled with a permutation of $\{0, \ldots, n-1\}$
- For an array a we can run the comparison tree

Comparison trees

- A comparison tree is a full binary tree:
- each internal node u is labelled with a pair u.i and u.j
- each leaf is labelled with a permutation of $\{0, \ldots, n-1\}$
- For an array a we can run the comparison tree
- u is the root
- The comparison tree sorts if, for every input array a, the permutation at the leaf for a correctly sorts a

Comparison trees

- A comparison tree is a full binary tree:
- each internal node u is labelled with a pair u.i and u.j
- each leaf is labelled with a permutation of $\{0, \ldots, n-1\}$
- For an array a we can run the comparison tree
- u is the root
- while u is not a leaf
- The comparison tree sorts if, for every input array a, the permutation at the leaf for a correctly sorts a

Comparison trees

- A comparison tree is a full binary tree:
- each internal node u is labelled with a pair u.i and u.j
- each leaf is labelled with a permutation of $\{0, \ldots, n-1\}$
- For an array a we can run the comparison tree
- u is the root
- while u is not a leaf

$$
\text { - if } a[u . i]<a[u . j] \text { then } u=u . l \text { eft else } u=u . r i g h t
$$

- The comparison tree sorts if, for every input array a, the permutation at the leaf for a correctly sorts a

Comparison tree example

Comparison tree lower bound

- Lemma: Every comparison tree that sorts any input of length n has at least n ! leaves

Comparison tree lower bound

- Lemma: Every comparison tree that sorts any input of length n has at least n ! leaves
- Theorem: Every comparison tree that sorts any input of length n has height at least ($\mathrm{n} / 2$) $\log _{2}(\mathrm{n} / 2)$

Comparison tree lower bound

- Lemma: Every comparison tree that sorts any input of length n has at least n ! leaves
- Theorem: Every comparison tree that sorts any input of length n has height at least ($n / 2$) $\log _{2}(n / 2)$
- The height of a tree with m leaves is at least $\log _{2} m$

Comparison tree lower bound

- Lemma: Every comparison tree that sorts any input of length n has at least n ! leaves
- Theorem: Every comparison tree that sorts any input of length n has height at least ($n / 2$) $\log _{2}(n / 2)$
- The height of a tree with m leaves is at least $\log _{2} m$
- The height of a tree with n ! leaves is at least $\log _{2} n$!

Comparison tree lower bound

- Lemma: Every comparison tree that sorts any input of length n has at least n ! leaves
- Theorem: Every comparison tree that sorts any input of length n has height at least ($n / 2$) $\log _{2}(n / 2)$
- The height of a tree with m leaves is at least $\log _{2} m$
- The height of a tree with n ! leaves is at least $\log _{2} n$!

$$
\begin{aligned}
\log _{2} n! & =\log _{2}(\mathrm{n})+\log _{2}(\mathrm{n}-1)+\cdots+\log _{2}(1) \\
& \geq \log _{2}(\mathrm{n})+\cdots+\log _{2}(\mathrm{n} / 2) \\
& \geq \log _{2}(\mathrm{n} / 2)+\cdots+\log _{2}(\mathrm{n} / 2) \\
& =(\mathrm{n} / 2) \log _{2}(\mathrm{n} / 2)
\end{aligned}
$$

Comparison tree lower bound

- Lemma: Every comparison tree that sorts any input of length n has at least n ! leaves
- Theorem: Every comparison tree that sorts any input of length n has height at least ($n / 2$) $\log _{2}(n / 2)$
- The height of a tree with m leaves is at least $\log _{2} m$
- The height of a tree with n ! leaves is at least $\log _{2} n$!

$$
\begin{aligned}
\log _{2} n! & =\log _{2}(\mathrm{n})+\log _{2}(\mathrm{n}-1)+\cdots+\log _{2}(1) \\
& \geq \log _{2}(\mathrm{n})+\cdots+\log _{2}(\mathrm{n} / 2) \\
& \geq \log _{2}(\mathrm{n} / 2)+\cdots+\log _{2}(\mathrm{n} / 2) \\
& =(\mathrm{n} / 2) \log _{2}(\mathrm{n} / 2)
\end{aligned}
$$

- Lower bound can be improved to $\mathrm{n} \log \mathrm{n}-O(\mathrm{n})$

Comparison tree lower bound

- Does not sort correctly because

Comparison tree lower bound

- Does not sort correctly because
- $3!=3 \cdot 2 \cdot 1=6$

Comparison tree lower bound

- Does not sort correctly because
- $3!=3 \cdot 2 \cdot 1=6$
- this tree has only $4<6$ leaves

Comparison-based sorting and comparison trees

- Every deterministic comparison-based sorting algorithm \mathcal{A} that can sort every array of n elements defines a comparison tree $T_{\mathcal{A}}$ that sorts

Comparison-based sorting and comparison trees

- Every deterministic comparison-based sorting algorithm \mathcal{A} that can sort every array of n elements defines a comparison tree $T_{\mathcal{A}}$ that sorts
- The height of $T_{\mathcal{A}}$ is equal to the (worst-case) number of comparisons that \mathcal{A} performs

Comparison-based sorting and comparison trees

- Every deterministic comparison-based sorting algorithm \mathcal{A} that can sort every array of n elements defines a comparison tree $T_{\mathcal{A}}$ that sorts
- The height of $T_{\mathcal{A}}$ is equal to the (worst-case) number of comparisons that \mathcal{A} performs
- Theorem: For every deterministic comparison-based sorting algorithm \mathcal{A}, there exists an input such that \mathcal{A} requires $\Omega(\mathrm{n} \log \mathrm{n})$ comparisons
- Theorem: For every comparison-based sorting algorithm \mathcal{A}, the expectedd number of comparisons performed by \mathcal{A} while sorting a random permutation is $\Omega(n \log n)$

Summary

- Mergesort: runs in $O(\mathrm{n} \log \mathrm{n})$ time

Summary

- Mergesort: runs in $O(\mathrm{n} \log \mathrm{n})$ time
- Any comparison-based sorting algorithm requires $\Omega(\mathrm{n} \log \mathrm{n})$ time

Summary

- Mergesort: runs in $O(\mathrm{n} \log \mathrm{n})$ time
- Any comparison-based sorting algorithm requires $\Omega(\mathrm{n} \log \mathrm{n})$ time
- Mergesort, Quicksort, and Heapsort are optimal comparison-based sorting algorithms

Summary

- Mergesort: runs in $O(\mathrm{n} \log \mathrm{n})$ time
- Any comparison-based sorting algorithm requires $\Omega(n \log n)$ time
- Mergesort, Quicksort, and Heapsort are optimal comparison-based sorting algorithms
- In-class problem:

Summary

- Mergesort: runs in $O(\mathrm{n} \log \mathrm{n})$ time
- Any comparison-based sorting algorithm requires $\Omega(n \log n)$ time
- Mergesort, Quicksort, and Heapsort are optimal comparison-based sorting algorithms
- In-class problem:
- Design an algorithm that takes an array a of n integers in the range $\{0, \ldots, \mathrm{k}-1\}$ and sorts them in $O(\mathrm{n}+\mathrm{k})$ time

Counting sort

```
int[] countingSort(int[] a, int k) {
    int c[] = new int[k];
    for (int i = 0; i < a.length; i++)
        c[a[i]]++;
        for (int i = 1; i < k; i++)
        c[i] += c[i-1];
    int b[] = new int[a.length];
    for (int i = a.length-1; i >= 0; i--)
        b[--c[a[i]]] = a[i];
        return b;
}
```


Counting sort

- Theorem: The counting sort algorithm can sort an array a of n integers in the range $\{0, \ldots, \mathrm{k}-1\}$ in $O(\mathrm{n}+\mathrm{k})$ time

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits
- "digit" has d bits

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits
- "digit" has d bits
- uses w/d passes of counting-sort

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits
- "digit" has d bits
- uses w/d passes of counting-sort
- Starts by sorting least-significant digits first

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits
- "digit" has d bits
- uses w/d passes of counting-sort
- Starts by sorting least-significant digits first
- works up to most significant digits

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits
- "digit" has d bits
- uses w/d passes of counting-sort
- Starts by sorting least-significant digits first
- works up to most significant digits
- Correctness depends on fact that counting sort is stable

Radix sort

- Radix-sort uses the counting sort algorithm to sort integers one "digit" at a time
- integers have w bits
- "digit" has d bits
- uses w/d passes of counting-sort
- Starts by sorting least-significant digits first
- works up to most significant digits
- Correctness depends on fact that counting sort is stable
- if $a[i]=a[j]$ and $i<j$ then $a[i]$ appears before $a[j]$ in the output

Counting sort

|01010001

- Theorem: The radix-sort algorithm can sort an array a of n w-bit integers in $O\left(\mathrm{n}+2^{\mathrm{d}}\right)$ time

Counting sort

- Theorem: The radix-sort algorithm can sort an array a of n w-bit integers in $O\left(\mathrm{n}+2^{\mathrm{d}}\right)$ time
- Theorem: The radix-sort algorithm can sort an array a of n integers in the range $\left\{0, \ldots, \mathrm{n}^{c}-1\right\}$ in $O(\mathrm{cn})$ time.

Summary

- Quicksort, Heapsort, and Mergesort can each sort an array of length n in $O(\mathrm{n} \log \mathrm{n})$ time

Summary

- Quicksort, Heapsort, and Mergesort can each sort an array of length n in $O(\mathrm{n} \log \mathrm{n})$ time
- These work for any Comparable data type

Summary

- Quicksort, Heapsort, and Mergesort can each sort an array of length n in $O(\mathrm{n} \log \mathrm{n})$ time
- These work for any Comparable data type
- Quicksort and Heapsort are in-place but do more comparisons

Summary

- Quicksort, Heapsort, and Mergesort can each sort an array of length n in $O(\mathrm{n} \log \mathrm{n})$ time
- These work for any Comparable data type
- Quicksort and Heapsort are in-place but do more comparisons
- Mergesort requires an auxiliary array

Summary

- Quicksort, Heapsort, and Mergesort can each sort an array of length n in $O(\mathrm{n} \log \mathrm{n})$ time
- These work for any Comparable data type
- Quicksort and Heapsort are in-place but do more comparisons
- Mergesort requires an auxiliary array
- Radix-sort can sort an array a of n integers in the range $\left\{0, \ldots, \mathrm{n}^{c}-1\right\}$ in $O(c \mathrm{n})$ time (and does no comparisons).

