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The Merge Sort Algorithm

I Used in J. W. Bryce’s Sorting
maching in 1938 (U.S. Patent
2189024)

I “Invented” by John von Neumann
in 1945

I To sort a[0], . . . , a[n− 1]:

1. sort a[0], . . . , a[n/2]
2. sort a[n/2 + 1], . . . , a[n− 1]
3. merge the two sorted sequences
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Mergesort

I To sort a[0], . . . , a[n− 1]:

1. sort a0 = a[0], . . . , a[n/2] (recursively)
2. sort a1 = a[n/2 + 1], . . . , a[n− 1] (recursively)
3. merge the two sorted sequences

I 〈9, 3, 5, 2, 1, 8, 7, 0, 6, 4〉
I 〈9, 3, 5, 2, 1〉〈8, 7, 0, 6, 4〉

I 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9〉
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Mergesort

<T> void mergeSort(T[] a, Comparator <T> c) {

if (a.length <= 1) return;

T[] a0 = Arrays.copyOfRange(a, 0, a.length /2);

T[] a1 = Arrays.copyOfRange(a, a.length/2, a.length );

mergeSort(a0, c);

mergeSort(a1, c);

merge(a0, a1 , a, c);

}
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Merging two sorted arrays

I To merge two sorted arrays (or lists) a and b we scan them
sequentially

<T> void merge(T[] a0 , T[] a1, T[] a, Comparator <T> c) {

int i0 = 0, i1 = 0;

for (int i = 0; i < a.length; i++) {

if (i0 == a0.length)

a[i] = a1[i1++];

else if (i1 == a1.length)

a[i] = a0[i0++];

else if (compare(a0[i0], a1[i1]) < 0)

a[i] = a0[i0++];

else

a[i] = a1[i1++];

}

}

I Takes O(n) time
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Analysis of Mergesort

I Mergesort a[0], . . . , a[n− 1]:

1. sort a[0], . . . , a[n/2] (recursively)
2. sort a[n/2 + 1], . . . , a[n− 1] (recursively)
3. merge the two sorted sequences

I Let T (n) be the time to run merge sort on an array of length n

I Step 1 Takes T (n/2) time

I Step 2 Takes T (n/2) time

I Step 3 Takes O(n) time

I T (n) = O(n) + 2T (n/2)1

1Cheating a bit here, assuming n is a power of 2.
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The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

IIII T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + 2O(n/2) + 4T (n/4)

III T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

III T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

I T (n) = O(n) + O(n) + 4O(n/4) + 8T (n/8)

II T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

I T (n) = O(n) + O(n) + O(n) + 8T (n/8)

II T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

I T (n) = O(n) + O(n) + O(n) + 8T (n/8)

I T (n) = O(n) + O(n) + O(n) + · · ·+ nO(1)

I T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

I T (n) = O(n) + O(n) + O(n) + 8T (n/8)

I T (n) = O(n) + O(n) + O(n) + · · ·+ O(n)

I T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

I T (n) = O(n) + O(n) + O(n) + 8T (n/8)

I T (n) = O(n) + O(n) + O(n) + · · ·+ O(n)

I T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



The Mergesort recurrence

I T (n) = O(n) + 2T (n/2)

I T (n) = O(n) + O(n) + 4T (n/4)

I T (n) = O(n) + O(n) + O(n) + 8T (n/8)

I T (n) = O(n) + O(n) + O(n) + · · ·+ O(n)

I T (n) = O(n log n)

I Theorem: The Mergesort algorithm can sort an array of n
items in O(n log n) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



Reminder: Mergesort

2 4 6 85 130 1 3 7 9 10 11 12

1 2 4 53 6 7 8 9 10 11 12 130

8 5 4 02 6 9 7 3 12 1 10 1113

mergeSort(a0, c) mergeSort(a1, c)

9 7 3 12 1 10 11a0 a18 5 4 02 613

a

a

a0 a1

merge(a0, a1, a)

I Mergesort sorts an array of n elements in O(n log n)
worst-case time using at most n log n comparisons
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Reminder: Quicksort

8 5 4 02 6 71 3

8 5 4 02 6 7 3 12 1 10 1113 9

1 2 4 53 6 8 11 12 13 14 150 7

quickSort(a, 10, 4)

1 2 4 53 6 70 8 10 11 12 139

quickSort(a, 0, 9)

12 10 11 139

x

I Quicksort sorts an array of n elements in O(n log n) expected
time using at most 1.38n log n expected comparisons
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Reminder: Heapsort

9 6 13 810 7 11 125

11

10

12

9

13

5

78

6

4 2 1 03

1 2 4 53 6 8 11 12 13 14 150 7

I Heapsort sorts an array of n elements in O(n log n) worst-case
time using at most 2n log n comparisons
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Comparison-based sorting algorithms

I So far, we have seen 3 sorting algorithms:

I Quicksort: O(n log n) expected time
I Heapsort: O(n log n) time
I Mergesort: O(n log n) time

I Is there a faster (maybe O(n) time) sorting algorithm?

I Answer: No and yes
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Comparison-based sorting algorithms

I Quicksort, Heapsort, and Mergesort are comparison-based

I All branching in the algorithm is based on the results of
comparisons of the form a[i] < b[i]

I These algorithms can be used to sort any array of Comparable
items

I But this comes at a price

I Every comparison-based sorting algorithm takes Ω(n log n)
time for some input
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Comparison trees

I A comparison tree is a full binary tree:

I each internal node u is labelled with a pair u.i and u.j
I each leaf is labelled with a permutation of {0, . . . , n − 1}

I For an array a we can run the comparison tree

I u is the root
I while u is not a leaf

I if a[u.i ] < a[u.j ] then u = u.left else u = u.right

I The comparison tree sorts if, for every input array a, the
permutation at the leaf for a correctly sorts a
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Comparison tree example

a[1] ≶ a[2]

a[0] ≶ a[2]

a[1] < a[0] < a[2]

a[0] ≶ a[1]

a[1] ≶ a[2]

a[0] ≶ a[2]a[0] < a[1] < a[2]

a[0] < a[2] < a[1] a[2] < a[0] < a[1] a[1] < a[2] < a[0] a[2] < a[1] < a[0]

< >

< > < >

< > < >
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Comparison tree lower bound

I Lemma: Every comparison tree that sorts any input of length
n has at least n! leaves

I Theorem: Every comparison tree that sorts any input of
length n has height at least (n/2) log2(n/2)

I The height of a tree with m leaves is at least log2 m
I The height of a tree with n! leaves is at least log2 n!

log2 n! = log2(n) + log2(n− 1) + · · ·+ log2(1)

≥ log2(n) + · · ·+ log2(n/2)

≥ log2(n/2) + · · ·+ log2(n/2)

= (n/2) log2(n/2)

I Lower bound can be improved to n log n− O(n)
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≥ log2(n) + · · ·+ log2(n/2)

≥ log2(n/2) + · · ·+ log2(n/2)

= (n/2) log2(n/2)

I Lower bound can be improved to n log n− O(n)
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Comparison tree lower bound

a[0] ≶ a[2]

a[1] < a[0] < a[2]

a[0] ≶ a[1]

a[1] ≶ a[2]

a[0] < a[1] < a[2] a[0] < a[2] < a[1] a[1] < a[2] < a[0]

< >

< > < >

I Does not sort correctly because

I 3! = 3 · 2 · 1 = 6
I this tree has only 4 < 6 leaves
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Comparison-based sorting and comparison trees

I Every deterministic comparison-based sorting algorithm A
that can sort every array of n elements defines a comparison
tree TA that sorts

I The height of TA is equal to the (worst-case) number of
comparisons that A performs

I Theorem: For every deterministic comparison-based sorting
algorithm A, there exists an input such that A requires
Ω(n log n) comparisons

I Theorem: For every comparison-based sorting algorithm A,
the expectedd number of comparisons performed by A while
sorting a random permutation is Ω(n log n)
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Summary

I Mergesort: runs in O(n log n) time

I Any comparison-based sorting algorithm requires Ω(n log n)
time

I Mergesort, Quicksort, and Heapsort are optimal
comparison-based sorting algorithms

I In-class problem:

I Design an algorithm that takes an array a of n integers in the
range {0, . . . , k− 1} and sorts them in O(n + k) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



Summary

I Mergesort: runs in O(n log n) time

I Any comparison-based sorting algorithm requires Ω(n log n)
time

I Mergesort, Quicksort, and Heapsort are optimal
comparison-based sorting algorithms

I In-class problem:

I Design an algorithm that takes an array a of n integers in the
range {0, . . . , k− 1} and sorts them in O(n + k) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



Summary

I Mergesort: runs in O(n log n) time

I Any comparison-based sorting algorithm requires Ω(n log n)
time

I Mergesort, Quicksort, and Heapsort are optimal
comparison-based sorting algorithms

I In-class problem:

I Design an algorithm that takes an array a of n integers in the
range {0, . . . , k− 1} and sorts them in O(n + k) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



Summary

I Mergesort: runs in O(n log n) time

I Any comparison-based sorting algorithm requires Ω(n log n)
time

I Mergesort, Quicksort, and Heapsort are optimal
comparison-based sorting algorithms

I In-class problem:

I Design an algorithm that takes an array a of n integers in the
range {0, . . . , k− 1} and sorts them in O(n + k) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



Summary

I Mergesort: runs in O(n log n) time

I Any comparison-based sorting algorithm requires Ω(n log n)
time

I Mergesort, Quicksort, and Heapsort are optimal
comparison-based sorting algorithms

I In-class problem:
I Design an algorithm that takes an array a of n integers in the

range {0, . . . , k− 1} and sorts them in O(n + k) time

Pat Morin COMP2402/2002 Sorting and Sorting Lower Bounds



Counting sort

int[] countingSort(int[] a, int k) {

int c[] = new int[k];

for (int i = 0; i < a.length; i++)

c[a[i]]++;

for (int i = 1; i < k; i++)

c[i] += c[i-1];

int b[] = new int[a.length ];

for (int i = a.length -1; i >= 0; i--)

b[--c[a[i]]] = a[i];

return b;

}
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Counting sort

7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9

3 2 3 1 2 1 1 2 0 5

0 1 2 3 4 5 6 7 8 9

c

a

3 5 8 9 11 12 13 15 15 20c′

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 1 1 2 2 2 3 4 4 5 6 7 7 9 9 9 9 9b

7 2 9 0 1 2 0 9 7 4 4 6 9 1 0 9 3 2 5 9a

3 5 8 9 11 12 13 15 20c′
0 1 2 3 4 5 6 78 9

I Theorem: The counting sort algorithm can sort an array a of
n integers in the range {0, . . . , k− 1} in O(n + k) time
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Radix sort

I Radix-sort uses the counting sort algorithm to sort integers
one “digit” at a time

I integers have w bits
I “digit” has d bits
I uses w/d passes of counting-sort

I Starts by sorting least-significant digits first

I works up to most significant digits

I Correctness depends on fact that counting sort is stable

I if a[i] = a[j] and i < j then a[i] appears before a[j] in the
output
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Counting sort

01010001

00000001

11001000

00101000

00001111

11110000

10101010

01010101

11001000

00101000

11110000

01010001

00000001

01010101

10101010

00001111

00000001

11110000

01010101

11001000

00101000

10101010

01010001

00001111

00000001

11001000

00001111

01010001

01010101

00101000

10101010

11110000

00000001

00001111

00101000

01010001

01010101

10101010

11001000

11110000

I Theorem: The radix-sort algorithm can sort an array a of n
w-bit integers in O(n + 2d) time

I Theorem: The radix-sort algorithm can sort an array a of n
integers in the range {0, . . . , nc − 1} in O(cn) time.
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Summary

I Quicksort, Heapsort, and Mergesort can each sort an array of
length n in O(n log n) time

I These work for any Comparable data type
I Quicksort and Heapsort are in-place but do more comparisons
I Mergesort requires an auxiliary array

I Radix-sort can sort an array a of n integers in the range
{0, . . . , nc − 1} in O(cn) time (and does no comparisons).
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