
Introduction to AJAX

Pat Morin

COMP 2405

2

Outline

• What is AJAX?
– History
– Uses
– Pros and Cons

• An XML HTTP Transaction
– Creating an XMLHTTPRequest
– Setting up an XMLHTTPRequest
– Sending an XMLHTTPRequest

• Receiving an XML reply

3

What is AJAX?
• AJAX stands for Asynchronous Javascript And

XML

• AJAX is not a programming language

• AJAX is a way of using existing standards
(JavaScript and XML) to make more interactive
web applications

• AJAX was popularized in 2005 by Google (with
Google suggest)

4

An AJAX Application
• Recall the standard HTTP transaction

– 1. Client opens connection to server
– 2. Client sends request to server
– 3. Server sends reply to client
– 4. Client and server close connection

• After Step 4, the client renders the document and
this may include running some JavaScript

• In an AJAX application, the JavaScript code then
communicates with the server behind the scenes

5

An AJAX Application (Cont'd)
• Communication with the server takes place

asynchronously, and transparently to the user

• Data is exchanged with the server without the need
for a page reload

• This is accomplished through a special kind of
HTTP request

6

Typical AJAX Event
• A typical AJAX transaction looks like this:

1. User triggers some event (presses a key, moves mouse, ...)
2. Event handler code sends HTTP request to server
3. Server replies triggering code on client
4. Reply handler code updates web page using server's reply

• Between steps 2 and 3 the web page is still usable
(event is asynchronous)

• At no point during the transaction does the browser
open a new web page

7

Pros and Cons of AJAX
• Pros:

– Allows web applications to interact with data on the server
– Avoid clunky GET/POST send/receive interfaces – web apps

look more and more like real applications
– Some applications can only be realized this way

• Eg: Google Suggest offers interactive access to one of the
largest data collections in the world

– For office style applications, user's data is stored on a reliable
server, accessable from any web browser

• Cons:
– Tough to make compatible across all browsers
– Should have a low-latency connection to the server
– Can be server intensive

• Eg: Google Suggest generates a search for every
keystroke entered

8

Setting up an AJAX Transaction
• Create an XMLHTTPRequest object

• Set up the request's onreadystatechange
function

• Open the request

• Send the request

9

Creating an XMLHTTPRequest Object

function sendRequest()
 var xmlHttp = GetXmlHttpObject();
 if (!xmlHttp) {
 return false;
 }
 xmlHttp.onreadystatechange = function() {
 if (xmlHttp.readyState == 4) {
 alert("Request complete");
 }
 }
 var requestURI =
 "http://myserver.org/somepage.txt";
 xmlHttp.open("GET", requestURI, true);
 xmlHttp.send(null);
}

10

The XMLHTTPRequest Object
• An XMLHTTPRequest object is in one of 5 states,

as indicated by the readyState property
0. The request is not initialized
1. The request has been set up
2. The request has been sent
3. The request is in process
4. The request is complete

• Every time the readyState property changes the
onreadystatechange property (a function) is
called

11

Setting onreadystatechange

function sendRequest()
 var xmlHttp = GetXmlHttpObject();
 if (!xmlHttp) {
 return false;
 }
 xmlHttp.onreadystatechange = function() {
 if (xmlHttp.readyState == 4) {
 alert("Request complete");
 }
 }
 var requestURI =
 "http://myserver.org/somepage.txt";
 xmlHttp.open("GET", requestURI, true);
 xmlHttp.send(null);
}

12

The open and send functions
• The open function of an XML HTTP request takes

three arguments
– xmlHttp.open(method, uri, async)
– method is either "GET" or "POST"
– uri is the (relative) URI to retrieve
– async determines whether to send the request

asynchronously (true) or synchronously (false)
– The domain of the uri argument must be the same as the

domain of the current page

• The send function takes one argument
– xmlHttp.send(content);
– content is the content to send (useful when
method="POST")

13

Sending the Request

function sendRequest()
 var xmlHttp = GetXmlHttpObject();
 if (!xmlHttp) {
 return false;
 }
 xmlHttp.onreadystatechange = function() {
 if (xmlHttp.readyState == 4) {
 alert("Request complete");
 }
 }
 var requestURI =
 "http://myserver.org/somepage.txt";
 xmlHttp.open("GET", requestURI, true);
 xmlHttp.send(null);
}

14

The responseText Property
• When an XMLHTTPRequest is complete

(readyState == 4) the responseText
property contains the server's response, as a
String

15

Example Code (Client Side)

function sendRequest(textNode)
 var xmlHttp = GetXmlHttpObject();
 if (!xmlHttp) {
 return false;
 }
 xmlHttp.onreadystatechange = function() {
 if (xmlHttp.readyState == 4) {
 textNode.nodeValue =
 xmlHttp.responseText;
 }
 }
 var requestURI =
 "http://greatbeyond.org/cgi-bin/request.cgi";
 xmlHttp.open("GET", requestURI, true);
 xmlHttp.send(null);
}

16

Example Code (Server Side)

#!/usr/bin/perl

print("Content-type: text/plain\n\n");
print("57 channels and nuthin' on");

• And we might have the following request.cgi in
the cgi-bin directory of greatbeyond.org

17

Some Notes
• An XMLHTTPRequest object can send the request

to any URI as long as it has the same domain as
the page that requests it

• This URI can refer to a CGI script or even just an
HTML document

• Note the big security risk for the client
– JavaScript can send anything to the server
– Client needs to restrict what JavaScript has access to

• This is still not AJAX
– Where's the XML?

18

Putting the X in AJAX
• The X in AJAX comes from XML

• In an XML HTTP request, we usually expect the
server to respond with some XML

• What is XML?

• Short answer: like HTML but
– You can make up your own tag names
– All tags have to be closed (and there is a shorthand)

• Long answer: will have to wait

19

An Example XML File

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

• Notice
– the new tags (we just made them up)
– An XML version number
– One tag contains everything (and becomes the root of the

document tree)

20

Why Respond with XML?
• We can look at the XML text within a response

using the responseText property

• Even better, we can use the responseXML
property to access the XML

• Best, responseXML.documentElement
contains the document tree for the XML

• This is a document tree in the DOM model that
we've seen before (just like document)

21

Example
function sendRequest() {
 var xmlHttp = GetXmlHttpObject();
 if (!xmlHttp) {
 return false;
 }
 xmlHttp.onreadystatechange = function() {
 if (xmlHttp.readyState == 4) {
 var xmlDoc =
 xmlHttp.responseXML.documentElement;
 }
 }
 var requestURI = xmlURI;
 xmlHttp.open("GET", requestURI, true);
 xmlHttp.send(null);
}

22

Summary
• An AJAX transaction involves the client sending an

asynchronous HTTP request and the server
responding with XML
– The client processes the resulting XML document tree

• AJAX applications run entirely on the client except
when they need to access data on the server
– Can treat the server as a database/file system

• Well-written AJAX applications, running with a fast
Internet connection, can be as nice to use as
traditional applications (or nicer)

