Lexical Analysis (Tokenizing)

COMP 3002
School of Computer Science

Carleton
 university

List of Acronyms

- RE - regular expression
- FSM - finite state machine
- NFA - non-deterministic finite automata
- DFA - deterministic finite automata

The Structure of a Compiler

Purpose of Lexical Analysis

- Converts a character stream into a token stream

How the Tokenizer is Used

- Usually the tokenizer is used by the parser, which calls the getNextToken() function when it wants another token
- Often the tokenizer also includes a pushBack() function for putting the token back (so it can be read again)

Carleton
 UNIVERSITY

Other Tokenizing Jobs

- Input reading and buffering
- Macro expansion (C's \#define)
- File inclusion (C's \#include)
- Stripping out comments

Tokens, Patterns, and Lexemes

- A token is a pair
- token name (e.g., VARIABLE)
- token value (e.g., "myCounter")
- A lexeme is a sequence of program characters that form a token
- (e.g., "myCounter")
- A pattern is a description of the form that the lexemes of a token may take
- e.g., character strings including A-Z, a-z, 0-9, and _

A History Lesson

- Usually tokens are easy to recognize even without any context, but not always
- A tough example from Fortran 90:

```
DO 5 I = 1.25
<variable, "D05I"> <assign> <number,"1.25">
```


Carleton
 UNIVERSITY

```
DO 5 I = 1,25
<do> <number, "5"> <variable, "I">
<assign> <number, "1"> <comma> <number, "25">
```


Lexical Errors

- Sometimes the current prefix of the input stream does not match any pattern
- This is an error and should be logged
- The lexical analyzer may try to continue by
- deleting characters until the input matches a pattern
- deleting the first input character
- adding an input character
- replacing the first input character
- transposing the first two input characters

Exercise

- Circle the lexemes in the following programs

```
public static void main(String args[]) {
    System.println("Hello World!");
}
```

```
float max(float a, float b) {
    return a > b ? a : b;
}
```


Input Buffering

- Lexemes can be long and the pushBack function requires a mechanism for pushing them back
- One possible mechanism (suggested in the textbook) is a double buffer
- When we run off the end of one buffer we load the next buffer

Tokenizing (so far)

- What a tokenizer does
- reads character input and turns it into tokens
- What a token is
- a token name and a value (usually the lexeme)
- How to read input
- use a double buffer if some lookahead is necessary

UNIVERSITY
Canada's Capital University

- How does the tokenizer recognize tokens?
- How do we specify patterns?

Where to Next?

- We need a formal mechanism for defining the patterns that define tokens
- This mechanism is formal language theory
- Using formal language theory we can make tokenizers without writing any actual code

Strings and Languages

- An alphabet Σ is a set of symbols
- A string S over an alphabet Σ is a finite sequence of symbols in Σ
- The empty string, denoted ε, is a string of length 0
- A language L over Σ is a countable set of strings over Σ

Examples of Languages

- The empty language $L=\varnothing$
- The language $L=\{\varepsilon\}$ containing only the empty string
- The set L of all syntactically correct C programs
- The set L of all valid variable names in Java
- The set L of all grammatically correct english sentences

String Concatenation

- If x and y are strings then the concatenation of x and y, denoted $x y$, is the string formed by appending y to x
- Example
- $x=$ "dog"
- $y=$ "house"
- $x y=$ "doghouse"
- If we treat concatenation as a "product" then we get exponentiation:
$-x^{2}=$ "dogdog"
$-x^{3}=$ "dogdogdog"

Operations on Languages

- We can form complex languages from simple ones using various operations
- Union: $L \cup M$ (also denoted $L \mid M$)
- $L \cup M=\{s: s \in L$ or $s \in M\}$
- Concatenation
$-L M=\{s t: s \in L$ and $t \in M\}$
- Kleene Closure L^{*}
$-L^{*}=\left\{L^{i}: i=0,1,2, \ldots\right\}$
- Positive Closure L^{+}
$-L^{*}=\left\{L^{i}: i=1,2,3, \ldots\right\}$

Some Example

- $L=\{A, B, C, \ldots Z, a, b, c, \ldots z\}$
- $D=\{0,1,2,3,4,5,6,7,8,9\}$
- $L \cup D$
- LD
- L^{4}
$\underset{\text { UNIVERSITY }}{\text { Carleton }} L^{*}$

$$
\begin{array}{ll}
\text { Canada's Capital University } & \bullet L(L \cup D)^{*} \\
& \bullet D+
\end{array}
$$

Regular Expressions

- Regular expressions provide a notation for defining languages
- A regular expression r denotes a language $L(r)$ over a finite alphabet Σ
- Basics:
$-\varepsilon$ is a RE and $L(\varepsilon)=\{\varepsilon\}$
- For each symbol a in Σ, a is a RE and $L(a)=\{a\}$

Regular Expression Operators

- Suppose r and s are regular expressions
- Union (choice)
- $(r) \mid(s)$ denotes $L(r) \cup L(s)$
- Concatenation
- $(r)(s)$ denotes $L(r) L(s)$
- Kleene Closure
- r* denotes $(L(r))^{*}$
- Parenthesization
- (r) denote $L(r)$
- Used to enforce specific order of operations

Order of Operations in REs

- To avoid too many parentheses, we adopt the following conventions
- The * operator has the highest level of precedence and is left associative
- Concatenation has second highest precedence and is left associative
- The | operator has lowest precedence and is left associative

Binary Examples

- For the alphabet $\Sigma=\{a, b\}$
- a|b denotes the language $\{\mathrm{a}, \mathrm{b}$ \}
- (a|b)(a|b) denotes the langage \{ aa, ab, ba, bb \}
- a* denotes \{ ε, a, aa, aaa, aaaa, \}
- (a|b)* denotes all possible strings over Σ
- a|a*b denotes the language $\{a, b, a b, a a b$, aaab, ... \}

Regular Definitions

- REs can quickly become complicated
- Regular definitions are multiline regular expressions
- Each line can refer to any of the preceding lines but not to itself or to subsequent lines

```
letter_ = A|B| ...|Z|a|b|...|z|
digit = 0|1|2|3|4|5|6|7|8|9
id = letter_(letter_|digit)*
```


Regular Definition Example

- Floating point number example
- Accepts 42, 42.314159, 42.314159E+23, 42E+23, 42E23, ...

```
digit = 0|1|2|3|4|5|6|7|8|9
digits = digit digit*
optionalFraction = . digits | \varepsilon
optionalExponent = (E (+|-|\varepsilon) digits) | \varepsilon
number = digits optionalFraction optionalExponent
```


Exercises

- Write regular definitions for
- All strings of lowercase letters that contain the five vowels in order
- All strings of lowercase letters in which the letters are in ascending lexicographic order
- Comments, consisting of a string surrounded by /* and */ without any intervening */

Extension of Regular Expressions

- There are also several time-saving extensions of REs
- One or more instances
- r+ = rr*
- Zero or one instance
$-r ?=r \mid \varepsilon$
- Character classes
$-[a b c d e f]=(a|b| c|d| e \mid f)$
$-[A-Z a-z]=(A|B| C|\ldots| Y|Z| a|b| c|\ldots| y \mid z)$
- Others
- See page 127 of the text for more common RE shorthands

Some Examples

$$
\begin{aligned}
& \text { digit }=[0-9] \\
& \text { digits }=\text { digit+ } \\
& \text { number }=\text { digits (. digits)? (E[+-]? digits)? }
\end{aligned}
$$

$$
\begin{aligned}
\text { letter_ } & =[\text { A-Za-z_] } \\
\text { digit } & =[0-9] \\
\text { variable } & =\text { letter_(letter|digit)* }
\end{aligned}
$$

Recognizing Tokens

- We now have a notation for patterns that define tokens
- We want to make these into a tokenizer
- For this, we use the formalism of finite state machines

An FSM for Relational Operators

- relational operators $<,>,<=,>=,==,<>$

Carleton

FSM for Variable Names

$$
\begin{aligned}
\text { letter_ } & =\left[A-Z a-z_{-}\right] \\
\text {digit } & =[0-9] \\
\text { variable } & =\text { letter_(letter|digit)* }
\end{aligned}
$$

FSM for Numbers

- Build the FSM for the following:

```
digit = [0-9]
digits = digit+
number = digits (. digits)? ((E|e) digits)?
```


NumReader.java

- Look at NumReader.java example
- Implements a token recognizer using a switch statement

The Story So Far

- We can write tokens types as regular expressions
- We want to convert these REs into (deterministic) finite automata (DFAs)
- From the DFA we can generate code
- A single while loop containing a large switch statement
- Each state in S becomes a case
- A table mapping $S \times \Sigma \rightarrow S$
- (current state,next symbol) \rightarrow (new state)
- A hash table mapping $S \times \Sigma \rightarrow S$
- Elements of Σ may be grouped into character classes

NumReader2.java

- Look at NumReader2.java example
- Implements a tokenizer using a hashtable

Automatic Tokenizer Generators

- Generating FSMs by hand from regular expressions is tedious and error-prone
- Ditto for generating code from FSMs
- Luckily, it can be done automatically

Regular

Non-Deterministic Finite

 Automata- An NFA is a finite state machine whose edges are labelled with subsets of Σ
- Some edges may be labelled with ε
- The same labels may appear on two or more outgoing edges at a vertex
- An NFA accepts a string s if s defines any path to any of its accepting states

NFA Example

- NFA that accepts apple or ape

NFA Example

- NFA that accepts any binary string whose 4 last value is 1

From Regular Expression to NFA

- Going from a RE to a NFA with one accepting state is easy
- ε start.
- a
start

Union

Concatenation

- rs

Kleene Closure

- r^{*}

Carleton
 UNIVERSITY

NFA to DFA

- So far
- We can express token patterns as RE
- We can convert REs to NFA
- NFAs are hard to use
- Given an NFA F and a string s, it is difficult to test if F accepts s
- Instead, we first convert the NFA into a
deterministic finite automaton
- No ε transitions
- No repeated labels on outgoing edges

Converting an NFA into a DFA

- Converting an NFA into a DFA is easy but sometimes expensive
- Suppose the NFA has n states $1, \ldots, n$
- Each state of the DFA is labelled with one of the 2^{n} subsets of $\{1, \ldots, n\}$
- The DFA will be in a state whose label contains i if the NFA could be in state i
- Any DFA state that contains an accepting state of the NFA is also an accepting state

NFA 2 DFA - Sketch of Algorithm

- Step 1 - Remove duplicate edge labels by using ε transitions

NFA 2 DFA

- Step 2: Starting at state 0, start expanding states
- State i expands into every state reachable from i using only ε-transitions
- Create new states, as necessary for the neighbours of already-expanded states
- Use a lookup table to make sure that each possible state (subset of $\{1, \ldots, n\}$) is created only once

Example

- Convert this NFA into a DFA

start 0

Example

- Convert this NFA into a DFA

From REs to a Tokenizer

- We can convert from RE to NFA to DFA
- DFAs are easy to implement
- Using a switch statement or a (hash)table
- For each token type we write a RE
- The lexical analysis generator then creates a NFA (or DFA) for each token type and combines them into one big NFA

From REs to a Tokenizer

- One giant NFA captures all token types
- Convert this to a DFA
- If any state of the DFA contains an accepting state for more than 1 token then something is wrong with the language specification

UNIVERSITY

Summary

- The Tokenizer converts the input character stream into a token stream
- Tokens can be specified using REs
- A software tool can be used to convert the list of REs into a tokenizer
- Convert each RE to an NFA
- Combine all NFAs into one big NFA
- Convert this NFA into a DFA and the code that implements this DFA

Other Notes

- REs, NFAs, and DFAs are equivalent in terms of the languages they can define
- Converting from NFA to DFA can be expensive
- An n-state NFA can result in a 2^{n} state DFA
- None of these are powerful enough to parse programming languages but are usually good enough for tokens
- Example: the language $\left\{a^{n} b^{n}: n=1,2,3, \ldots\right\}$ is not recognizable by a DFA (why?)

