COMP4804 Important Facts

Union of Events and Boole’s Inequality. For any events A and B

$$\Pr\{A \text{ or } B\} = \Pr\{A\} + \Pr\{B\} - \Pr\{A \text{ and } B\}$$

$$\leq \Pr\{A\} + \Pr\{B\}.$$

Conditional Probability.

$$\Pr\{A \mid B\} = \frac{\Pr\{A \text{ and } B\}}{\Pr\{B\}}$$

Another useful way of writing this is

$$\Pr\{A \text{ and } B\} = \Pr\{A \mid B\} \Pr\{B\}.$$ (1)

Independence. We say that A and B are independent if and only if

$$\Pr\{A \mid B\} = \Pr\{A\}$$

If A and B are independent then (1) becomes

$$\Pr\{A \text{ and } B\} = \Pr\{A\} \Pr\{B\}$$ (Only if A and B are independent!)

Expected Value. For a random variable X

$$\mathbb{E}[X] = \sum_x x \Pr\{X = x\}.$$

Linearity of Expectation. For any random variables X and Y

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

More generally, for any random variables X_1, \ldots, X_n

$$\mathbb{E}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \mathbb{E}[X_i].$$

Linearity of expectation, in combination with indicator variables, is extremely useful for things we can count.

Markov’s Inequality. For any non-negative random variable X,

$$\Pr\{X > t\mathbb{E}[X]\} \leq \frac{1}{t}.$$

Bernoulli and Binomial Random Variables. A Bernoulli(p) random variable is a random variable that is equal to 1 with probability p and 0 with probability $1-p$. If X is a Bernoulli(p) random variable then $\mathbb{E}[X] = p$. A binomial(p,n) random variable is the sum of n independent Bernoulli(p) random variables. If B is a Bernoulli(p,n) random variable then $\mathbb{E}[B] = pn$. Also, don’t forget Chernoff’s bounds:

$$\Pr\{B \geq (1 + \epsilon)np\} \leq e^{-\epsilon^2 np/3}$$

and

$$\Pr\{B \leq (1 - \epsilon)np\} \leq e^{-\epsilon^2 np/2}$$

Beware: Chernoff’s bounds are only for binomial random variables. In particular you must make sure that the X_is are independent!