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1.1 Introduction

A set abstract data type (set ADT) is an abstract data type that maintains a set S under
the following three operations:

1. Insert(x): Add the key x to the set.

2. Delete(x): Remove the key x from the set.

3. Search(x): Determine if x is contained in the set, and if so, return a pointer to
x.

One of the most practical and widely used methods of implementing the set ADT is with
hash tables.

Note that the three set ADT operations can easily be implemented to run in O(log n) time
per operation using balanced binary search trees (See Chapter ??). If we assume that the
input data are integers in the set U = {0, . . . , u− 1} then they can even be implemented to
run in O(log log u) time using data structures for integer searching (Chapter ??). However,
these data structures actually do more than the three basic operations we require. In
particular if we search for an element x that is not present in S then these data structures
can report the smallest item in S that is larger than x (the successor of x) and/or the
largest item in S that is smaller than x (the predecessor of x).

Hash tables do away with this extra functionality of finding predecessors and successors
and only perform exact searches. If we search for an element x in a hash table and x is
not present then the only information we obtain is that x /∈ S. By dropping this extra
functionality hash tables can give better performance bounds. Indeed, any reasonable hash
table implementation performs each of the three set ADT operations in O(1) expected time.
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The main idea behind all hash table implementations discussed in this chapter is to store
a set of n = |S| elements in an array (the hash table) A of length m ≥ n. In doing this, we
require a function that maps any element x to an array location. This function is called a
hash function h and the value h(x) is called the hash value of x. That is, the element x gets
stored at the array location A[h(x)]. The occupancy of a hash table is the ratio α = n/m
of stored elements to the length of A.

The study of hash tables follows two very different lines. Many implementations of hash
tables are based on the integer universe assumption: All elements stored in the hash table
come from the universe U = {0, . . . , u−1}. In this case, the goal is to design a hash function
h : U → {0, . . . ,m − 1} so that for each i ∈ {0, . . . ,m − 1}, the number of elements x ∈ S
such that h(x) = i is as small as possible. Ideally, the hash function h would be such that
each element of S is mapped to a unique value in {0, . . . ,m−1}. Most of the hash functions
designed under the integer universe assumption are number-theoretic constructions. Several
of these are described in Section 1.2.

Historically, the integer universe assumption seems to have been justified by the fact that
any data item in a computer is represented as a sequence of bits that can be interpreted
as a binary number. However, many complicated data items require a large (or variable)
number of bits to represent and this make u the size of the universe very large. In many
applications u is much larger than the largest integer that can fit into a single word of
computer memory. In this case, the computations performed in number-theoretic hash
functions become inefficient.

This motivates the second major line of research into hash tables. This research works
is based on the random probing assumptionrandom probing assumption: Each element x
that is inserted into a hash table is a black box that comes with an infinite random probe
sequence x0, x1, x2, . . . where each of the xi is independently and uniformly distributed in
{0, . . . ,m− 1}. Hash table implementations based on the random probing assumption are
described in Section 1.3.

Both the integer universe assumption and the random probing assumption have their place
in practice. When there is an easily computing mapping of data elements onto machine
word sized integers then hash tables for integer universes are the method of choice. When
such a mapping is not so easy to compute (variable length strings are an example) it might
be better to use the bits of the input items to build a good pseudorandom sequence and
use this sequence as the probe sequence for some random probing data structure.

To guarantee good performance, many hash table implementations require that the oc-
cupancy α be a constant strictly less than 1. Since the number of elements in a hash table
changes over time, this requires that the array A be resized periodically. This is easily done,
without increasing the amortized cost of hash table operations by choosing three constants
0 < α1 < α2 < α3 < 1 so that, whenever n/m is not the interval (α1, α3) the array A is
resized so that its size is n/α2. A simple amortization argument (Chapter ??) shows that
the amortized cost of this resizing is O(1) per update (Insert/Delete) operation.

1.2 Hash Tables for Integer Keys

In this section we consider hash tables under the integer universe assumption, in which the
key values x come from the universe U = {0, . . . , u − 1}. A hash function h is a function
whose domain is U and whose range is the set {0, . . . ,m − 1}, m ≤ u. A hash function h
is said to be a perfect hash function for a set S ⊆ U if, for every x ∈ S, h(x) is unique.
A perfect hash function h for S is minimal if m = |S|, i.e., h is a bijection between S
and {0, . . . ,m − 1}. Obviously a minimal perfect hash function for S is desirable since it
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allows us to store all the elements of S in a single array of length n. Unfortunately, perfect
hash functions are rare, even for m much larger than n. If each element of S is mapped
independently and uniformly to a random element of {0, . . . ,m − 1} then the birthday
paradox (See, for example, Feller [27]) states that, if m is much less than n2 then there will
almost surely exist two elements of S that have the same hash value.

We begin our discussion with two commonly used hashing schemes that are heuristic in
nature. That is, we can not make any non-trivial statements about the performance of
these schemes when storing an arbitrary set S. We then discuss several schemes that have
provably good performance.

1.2.1 Hashing by Division

In hashing by division, we use the hash function

h(x) = x mod m .

To use this hash function in a data structure, we maintain an array A[0], . . . , A[m−1] where
each element of this array is a pointer to the head of a linked list (Section ??). The linked
list Li pointed to by the array element A[i] contains all the elements x such that h(x) = i.
This technique of maintaining an array of lists is called hashing with chaining .

In such a hash table, inserting an element x takes O(1) time; we compute i = h(x) and
append (or prepend) x to the list Li. However, searching for and/or deleting an element x
is not so easy. We have to compute i = h(x) and then traverse the list Li until we either
find x or reach the end of the list. The cost of this is proportional to the length of Li.
Obviously, if our set S consists of the elements 0,m, 2m, 3m, . . . , nm then all elements are
stored in the list L0 and searches and deletions take linear time.

However, one hopes that such pathological cases do not occur in practice. For example,
if the elements of S are uniformly and independently distributed in U and u is a multiple
of m then the expected size of any list Li is only n/m. In this case, searches and deletions
take O(1+α) expected time. To help avoid pathological cases, the choice of m is important.
In particular, m a power of 2 is usually avoided since, in a binary computer, taking the
remainder modulo a power of 2 means simply discarding some high-order bits. Taking m
to be a prime not too close to a power of 2 is recommended [37].

1.2.2 Hashing by Multiplication

The implementation of a hash table using hashing by multiplication is exactly the same as
that hashing by division except that the hash function

h(x) = bmxAc mod m

is used. Here A is a real-valued constant whose choice we discuss below. The advantage
of the multiplication method is that the value of m is not critical. We can take m to be a
power of 2, which makes it convenient for use on binary computers.

Although any value of A gives a hash function, some values of A are better than others.
(Setting A = 0 is clearly not a good idea.)

Knuth [37] suggests using the golden ratio for A, i.e., setting

A = (
√

5− 1)/2 = 0.6180339887 . . .
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This choice of A is motivated by a theorem, first conjectured by Oderfeld and later proven
by Sẃierczkowski [59]. This theorem states that the sequence

mA mod m, 2mA mod m, 3mA mod m, . . . , nmA mod m

partitions the interval (0,m) into n + 1 intervals having only three distinct lengths. Fur-
thermore, the next element (n + 1)mA mod m in the sequence is always contained in one
of the largest intervals.1

Of course, no matter what value of A we select, the pigeonhole principle implies that for
u ≥ nm then there will always exist some hash value i and some S ⊆ U of size n such that
h(x) = i for all x ∈ S. In other words, we can always find a set S all of whose elements get
stored in the same list Li. Thus, the worst case of hashing by multiplication is as bad as
hashing by division.

1.2.3 Universal Hashing

The argument used at the end of the previous section applies equally well to any hash
function h. That is, if the table size m is much smaller than the universe size u then for
any hash function there is some large (of size at least du/me) subset of U that has the same
hash value. To get around this difficulty we need a collection of hash functions of which we
can choose one that works well for S. Even better would be a collection of hash functions
such that, for any given S, most of the hash functions work well for S. Then we could
simply pick one of the functions at random and have a good chance of it working well.

Let H be a collection of hash functions, i.e., functions from U onto {0, . . . ,m − 1}. We
say that H is universal if, for each x, y ∈ U the number of h ∈ H such that h(x) = h(y)
is at most |H|/m. Consider any S ⊆ U of size n and suppose we choose a random hash
function h from a universal collection of hash functions. Consider some value x ∈ U . The
probability that any key y ∈ S has the same hash value as x is only 1/m. Therefore, the
expected number of keys in S, not equal to x, that have the same hash value as x is only

nh(x) =

{
(n− 1)/m if x ∈ S
n/m if x /∈ S

Therefore, if we store S in a hash table using the hash function h then the expected time
to search for, or delete, x is O(1 + α).

From the preceding discussion, it seems that a universal collection of hash functions from
which we could quickly select one at random would be very handy indeed. With such a
collection at our disposal we get an implementation of the set ADT that has O(1) insertion
time and O(1) expected search and deletion time.

Carter and Wegman [8] describe three different collections of universal hash functions. If
the universe size u is a prime number2 then

H = {hk1,k2,m(x) = ((k1x+ k2) mod u)) mod m : 1 ≤ k1 < u, 0 ≤ k2 < u}

1In fact, any irrational number has this property [57]. The golden ratio is especially good because it is
not too close to a whole number.
2This is not a major restriction since, for any u > 1, there always exists a prime number in the set
{u, u + 1, . . . , 2u}. Thus we can enforce this assumption by increasing the value of u by a constant
factor.



Hash Tables 1-5

is a collection of universal hash functions. Clearly, choosing a function uniformly at random
from H can be done easily by choosing two random values k1 ∈ {1, . . . , u − 1} and k2 ∈
{0, . . . , u− 1}. Thus, we have an implementation of the set ADT with O(1) expected time
per operation.

1.2.4 Static Perfect Hashing

The result of Carter and Wegman on universal hashing is very strong, and from a practical
point of view, it is probably the strongest result most people will ever need. The only thing
that could be improved about their result is to make it deterministic, so that the running
times of all operations are O(1) worst-case. Unfortunately, this is not possible, as shown by
Dietzfelbinger et al. [23].

Since there is no hope of getting O(1) worst-case time for all three set ADT operations,
the next best thing would be to have searches that take O(1) worst-case time. In this
section we describe the method of Fredman, Komlós and Szemerédi [28]. This is a static
data structure that takes as input a set S ⊆ U and builds a data structure of size O(n) that
can test if an element x is in S in O(1) worst-case time. Like the universal hash functions
from the previous section, this method also requires that u be a prime number. This scheme
uses hash functions of the form

hk,m(x) = (kx mod u)) mod m .3

Let Bk,m(S, i) be the number of elements x ∈ S such that hk,m(x) = i, i.e., the number of
elements of S that have hash value i when using the hash function hk,m. The function Bk,m
gives complete information about the distribution of hash values of S. The main lemma
used by Fredman et al. is that, if we choose k ∈ U uniformly at random then

E

[
m−1∑
i=0

(
Bk,m(S, i)

2

)]
<
n2

m
. (1.1)

There are two important special cases of this result.
In the sparse case we take m = n2/α, for some constant 0 < α < 1. In this case, the

expectation in (1.1) is less than α. Therefore, by Markov’s inequality, the probability that
this sum is greater than or equal to 1 is at most α. But, since this sum is a non-negative
integer, then with probability at least 1 − α it must be equal to 0. In other words, with
probability at least 1 − α, Bk,m(S, i) ≤ 1 for all 0 ≤ i ≤ m − 1, i.e., the hash function
hk,m is perfect for S. Of course this implies that we can find a perfect hash function very
quickly by trying a small number of random elements k ∈ U and testing if they result in
perfect hash functions. (The expected number of elements that we will have to try is only
1/(1− α).) Thus, if we are willing to use quadratic space then we can perform searches in
O(1) worst-case time.

In the dense case we assume that m is close to n and discover that, for many values of
k, the hash values are distributed fairly evenly among the set 1, . . . ,m. More precisely, if
we use a table of size m = n, then

E

[
m−1∑
i=0

Bk,m(S, i)2

]
≤ 3n .

3Actually, it turns out that any universal hash function also works in the FKS scheme [16, Section 11.5].
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By Markov’s inequality this means that

Pr

{
m−1∑
i=0

Bk,m(S, i)2 ≤ 3n/α

}
≥ 1− α . (1.2)

Again, we can quickly find a value of k satisfying (1.2) by testing a few randomly chosen
values of k.

These two properties are enough to build a two-level data structure that uses linear space
and executes searches in worst-case constant time. We call the following data structure
the FKS-α data structure, after its inventors Fredman, Komlós and Szemerédi. At the top
level, the data structure consists of an array A[0], . . . , A[m−1] where m = n. The elements
of this array are pointers to other arrays A0, . . . , Am−1, respectively. To decide what will
be stored in these other arrays, we build a hash function hk,m that satisfies the conditions
of (1.2). This gives us the top-level hash function hk,m(x) = (kx mod u) mod m. Each
element x ∈ S gets stored in the array pointed to by A[hk,m(x)].

What remains is to describe how we use the arrays A0, . . . , Am−1. Let Si denote the
set of elements x ∈ S such that hk,m(s) = i. The elements of Si will be stored in Ai.
The size of Si is ni = Bk,m(S, i). To store the elements of Si we set the size of Ai to
mi = ni

2/α = Bk,n(S, i)2/α. Observe that, by (1.2), all the Ai’s take up a total space of

O(n), i.e.,
∑m−1
i=0 mi = O(n). Furthermore, by trying a few randomly selected integers we

can quickly find a value ki such that the hash function hki,mi
is perfect for Si. Therefore,

we store the element x ∈ Si at position Ai[hki,mi
(x)] and x is the unique element stored at

that location. With this scheme we can search for any value x ∈ U by computing two hash
values i = hk,m(x) and j = hki,mi(x) and checking if x is stored in Ai[j].

Building the array A and computing the values of n0, . . . , nm−1 takes O(n) expected time
since for a given value k we can easily do this in O(n) time and the expected number of
values of k that we must try before finding one that satisfies (1.2) is O(1). Similarly, building
each subarray Ai takes O(ni

2) expected time, resulting in an overall expected running time
of O(n). Thus, for any constant 0 < α < 1, an FKS-α data structure can be constructed
in O(n) expected time and this data structure can execute a search for any x ∈ U in O(1)
worst-case time.

1.2.5 Dynamic Perfect Hashing

The FKS-α data structure is nice in that it allows for searches inO(1) time, in the worst case.
Unfortunately, it is only static; it does not support insertions or deletions of elements. In
this section we describe a result of Dietzfelbinger et al. [23] that shows how the FKS-α data
structure can be made dynamic with some judicious use of partial rebuilding (Section ??).

The main idea behind the scheme is simple: be lazy at both the upper and lower levels
of the FKS-α data structure. That is, rebuild parts of the data structure only when things
go wrong. At the top level, we relax the condition that the size m of the upper array A
is exactly n and allow A to have size anywhere between n and 2n. Similarly, at the lower
level we allow the array Ai to have a size mi anywhere between ni

2/α and 2ni
2/α.

Periodically, we will perform a global rebuilding operation in which we remove all n
elements from the hash table. Some elements which have previously been marked as deleted
will be discarded, thereby reducing the value of n. We put the remaining elements in a list,
and recompute a whole new FKS-(α/2) data structure for the elements in the list. This
data structure is identical to the standard FKS-(α/2) data structure except that, at the
top level we use an array of size m = 2n.
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Searching in this data structure is exactly the same as for the static data structure. To
search for an element x we compute i = hk,m(x) and j = hki,mi(x) and look for x at location
Ai[j]. Thus, searches take O(1) worst-case time.

Deleting in this data structure is done in the laziest manner possible. To delete an element
we only search for it and then mark it as deleted. We will use the convention that this type
of deletion does not change the value of n since it does not change the number of elements
actually stored in the data structure. While doing this, we also keep track of the number of
elements that are marked as deleted. When this number exceeds n/2 we perform a global
rebuilding operation. The global rebuilding operation takes O(n) expected time, but only
occurs during one out of every n/2 deletions. Therefore, the amortized cost of this operation
is O(1) per deletion.

The most complicated part of the data structure is the insertion algorithm and its analysis.
To insert a key x we know, because of how the search algorithm works, that we must
ultimately store x at location Ai[j] where i = hk,m(x) and j = hki,mi

(x). However, several
things can go wrong during the insertion of x:

1. The value of n increases by 1, so it may be that n now exceeds m. In this case
we perform a global rebuilding operation and we are done.

2. We compute i = hk,m(x) and discover that
∑m−1
i=0 ni

2 > 3n/α. In this case, the
hash function hk,m used at the top level is no longer any good since it is producing
an overall hash table that is too large. In this case we perform a global rebuilding
operation and we are done.

3. We compute i = hk,m(x) and discover that, since the value of ni just increased
by one, ni

2/α > mi. In this case, the array Ai is too small to guarantee that we
can quickly find a perfect hash function. To handle this, we copy the elements
of Ai into a list L and allocate a new array Ai with the new size mi = 2ni

2/α.
We then find a new value ki such that hki,mi is a perfect hash function for the
elements of L and we are done.

4. The array location Ai[j] is already occupied by some other element y. But in
this case, we know that Ai is large enough to hold all the elements (otherwise
we would already be done after Case 3), but the value ki being used in the hash
function hki,mi

is the wrong one since it doesn’t give a perfect hash function for
Si. Therefore we simply try new values for ki until we find a find a value ki that
yields a perfect hash function and we are done.

If none of the preceding 4 cases occurs then we can simply place x at location Ai[j] and
we are done.

Handling Case 1 takes O(n) expected time since it involves a global rebuild of the entire
data structure. However, Case 1 only happens during one out of every Θ(n) insertions, so
the amortized cost of all occurrences of Case 1 is only O(1) per insertion.

Handling Case 2 also takes O(n) expected time. The question is: How often does Case 2
occur? To answer this question, consider the phase that occurs between two consecutive
occurrences of Case 1. During this phase, the data structure holds at most m distinct
elements. Call this set of elements S. With probability at least (1 − α) the hash function
hk,m selected at the beginning of the phase satisfies (1.2) so that Case 2 never occurs during
the phase. Similarly, the probability that Case 2 occurs exactly once during the phase is
at most α(1 − α). In general, the probability that Case 2 occurs exactly i times during a
phase is at most αi(1 − α). Thus, the expected cost of handling all occurrences of Case 2
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during the entire phase is at most

∞∑
i=0

αi(1− α)i×O(n) = O(n) .

But since a phase involves Θ(n) insertions this means that the amortized expected cost of
handling Case 2 is O(1) per insertion.

Next we analyze the total cost of handling Case 3. Define a subphase as the period of time
between two global rebuilding operations triggered either as a result of a deletion, Case 1
or Case 2. We will show that the total cost of handling all occurrences of Case 3 during a
subphase is O(n) and since a subphase takes Θ(n) time anyway this does not contribute to
the cost of a subphase by more than a constant factor. When Case 3 occurs at the array
Ai it takes O(mi) time. However, while handling Case 3, mi increases by a constant factor,
so the total cost of handling Case 3 for Ai is dominated by the value of mi at the end
of the subphase. But we maintain the invariant that

∑m−1
i=0 mi = O(n) during the entire

subphase. Thus, handling all occurrences of Case 3 during a subphase only requires O(n)
time.

Finally, we consider the cost of handling Case 4. For a particular array Ai, consider the
subsubphase between which two occurrences of Case 3 cause Ai to be rebuilt or a global
rebuilding operation takes place. During this subsubphase the number of distinct elements
that occupy Ai is at most α

√
mi. Therefore, with probability at least 1− α any randomly

chosen value of ki ∈ U is a perfect hash function for this set. Just as in the analysis of
Case 2, this implies that the expected cost of handling all occurrences of Case 3 at Ai during
a subsubphase is only O(mi). Since a subsubphase ends with rebuilding all of Ai or a global
rebuilding, at a cost of Ω(mi) all the occurrences of Case 4 during a subsubphase do not
contribute to the expected cost of the subsubphase by more than a constant factor.

To summarize, we have shown that the expected cost of handling all occurrences of Case 4
is only a constant factor times the cost of handling all occurrences of Case 3. The cost of
handling all occurrences of Case 3 is no more than a constant factor times the expected
cost of all global rebuilds. The cost of handling all the global rebuilds that occur as a result
of Case 2 is no more than a constant factor times the cost of handling all occurrences of
global rebuilds that occur as a consequence of Case 1. And finally, the cost of all global
rebuilds that occur as a result of Case 1 or of deletions is O(n) for a sequence of n update
operations. Therefore, the total expected cost of n update operation is O(n).

1.3 Random Probing

Next we consider hash table implementations under the random probing assumption: Each
element x stored in the hash table comes with a random sequence x0, x1, x2, . . . where
each of the xi is independently and uniformly distributed in {1, . . . ,m}.4 We begin with a
discussion of the two basic paradigms: hashing with chaining and open addressing. Both
these paradigms attempt to store the key x at array position A[x0]. The difference between
these two algorithms is their collision resolution strategy , i.e., what the algorithms do when
a user inserts the key value x but array position A[x0] already contains some other key.

4A variant of the random probing assumption, referred to as the uniform hashing assumption, assumes
that x0, . . . , xm−1 is a random permutation of 0, . . . ,m− 1.
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1.3.1 Hashing with Chaining

In hashing with chaining, a collision is resolved by allowing more than one element to live
at each position in the table. Each entry in the array A is a pointer to the head of a linked
list. To insert the value x, we simply append it to the list A[x0]. To search for the element
x, we perform a linear search in the list A[x0]. To delete the element x, we search for x in
the list A[x0] and splice it out.

It is clear that insertions take O(1) time, even in the worst case. For searching and
deletion, the running time is proportional to a constant plus the length of the list stored
at A[x0]. Notice that each of the at most n elements not equal to x is stored in A[x0] with
probability 1/m, so the expected length of A[x0] is either α = n/m (if x is not contained
in the table) or 1 + (n − 1)/m (if x is contained in the table). Thus, the expected cost of
searching for or deleting an element is O(1 + α).

The above analysis shows us that hashing with chaining supports the three set ADT
operations in O(1) expected time per operation, as long as the occupancy, α, is a constant.
It is worth noting that this does not require that the value of α be less than 1.

If we would like more detailed information about the cost of searching, we might also ask
about the worst-case search time defined as

W = max{length of the list stored at A[i] : 0 ≤ i ≤ m− 1} .

It is very easy to prove something quite strong about W using only the fact that the length
of each list A[i] is a binomial(n, 1/m) random variable. Using Chernoff’s bounds on the tail
of the binomial distribution [13], this immediately implies that

Pr{length of A[i] ≥ αc lnn} ≤ n−Ω(c) .

Combining this with Boole’s inequality (Pr{A or B} ≤ Pr{A}+ Pr{B}) we obtain

Pr{W ≥ αc lnn} ≤ n× n−Ω(c) = n−Ω(c) .

Thus, with very high probability, the worst-case search time is logarithmic in n. This also
implies that E[W ] = O(log n). The distribution of W has been carefully studied and it is
known that, with high probability , i.e., with probability 1− o(1), W = (1 + o(1)) lnn/ ln lnn
[33, 38].5 Gonnet has proven a more accurate result that W = Γ−1(n) − 3/2 + o(1) with
high probability. Devroye [18] shows that similar results hold even when the distribution of
x0 is not uniform.

1.3.2 Hashing with Open Addressing

Hashing with open addressing differs from hashing with chaining in that each table position
A[i] is allowed to store only one value. When a collision occurs at table position i, one of
the two elements involved in the collision must move on to the next element in its probe
sequence. In order to implement this efficiently and correctly we require a method of
marking elements as deleted. This method could be an auxiliary array that contains one
bit for each element of A, but usually the same result can be achieved by using a special
key value del that does not correspond to any valid key.

5Here, and throughout this chapter, if an asymptotic notation does not contain a variable then the
variable that tends to infinity is implicitly n. Thus, for example, o(1) is the set of non-negative functions
of n that tend to 0 as n→∞.
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To search for an element x in the hash table we look for x at positions A[x0], A[x1], A[x2],
and so on until we either (1) find x, in which case we are done or (2) find an empty table
position A[xi] that is not marked as deleted, in which case we can be sure that x is not
stored in the table (otherwise it would be stored at position xi). To delete an element x
from the hash table we first search for x. If we find x at table location A[xi] we then simply
mark A[xi] as deleted. To insert a value x into the hash table we examine table positions
A[x0], A[x1], A[x2], and so on until we find a table position A[xi] that is either empty or
marked as deleted and we store the value x in A[xi].

Consider the cost of inserting an element x using this method. Let ix denote the smallest
value i such that xix is either empty or marked as deleted when we insert x. Thus, the cost
of inserting x is a constant plus ix. The probability that the table position x0 is occupied
is at most α so, with probability at least 1 − α, ix = 0. Using the same reasoning, the
probability that we store x at position xi is at most

Pr{ix = i} ≤ αi(1− α) (1.3)

since the table locations x0, . . . , xi−1 must be occupied, the table location xi must not be
occupied and the xi are independent. Thus, the expected number of steps taken by the
insertion algorithm is

∞∑
i=1

iPr{ix = i} = (1− α)

∞∑
i=1

iαi−1 = 1/(1− α)

for any constant 0 < α < 1. The cost of searching for x and deleting x are both proportional
to the cost of inserting x, so the expected cost of each of these operations is O(1/(1−α)).6

We should compare this with the cost of hashing with chaining. In hashing with chain-
ing,the occupancy α has very little effect on the cost of operations. Indeed, any constant
α, even greater than 1 results in O(1) time per operation. In contrast, open addressing is
very dependent on the value of α. If we take α > 1 then the expected cost of insertion
using open addressing is infinite since the insertion algorithm never finds an empty table
position. Of course, the advantage of hashing with chaining is that it does not require lists
at each of the A[i]. Therefore, the overhead of list pointers is saved and this extra space
can be used instead to maintain the invariant that the occupancy α is a constant strictly
less than 1.

Next we consider the worst case search time of hashing with open addressing. That is,
we study the value W = max{ix : x is stored in the table at location ix}. Using (1.3) and
Boole’s inequality it follows almost immediately that

Pr{W > c log n} ≤ n−Ω(c).

Thus, with very high probability, W , the worst case search time, is O(log n). Tighter
bounds on W are known when the probe sequences x0, . . . , xm−1 are random permutations
of 0, . . . ,m− 1. In this case, Gonnet shows that

E[W ] = log1/α n− log1/α(log1/α n) +O(1)

6Note that the expected cost of searching for or deleting an element x is proportional to the value of
α at the time x was inserted. If many deletions have taken place, this may be quite different than the
current value of α.
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[29].

Open addressing under the random probing assumption has many nice theoretical prop-
erties and is easy to analyze. Unfortunately, it is often criticized as being an unrealistic
model because it requires a long random sequences x0, x1, x2, . . . for each element x that is
to be stored or searched for. Several variants of open addressing discussed in the next few
sections try to overcome this problem by using only a few random values.

1.3.3 Linear Probing

Linear probing is a variant of open addressing that requires less randomness. To obtain
the probe sequence x0, x1, x2, . . . we start with a random element x0 ∈ {0, . . . ,m− 1}. The
element xi, i > 0 is given by xi = (i + x0) mod m. That is, one first tries to find x at
location x0 and if that fails then one looks at (x0 + 1) mod m, (x0 + 2) mod m and so on.

The performance of linear probing is discussed by Knuth [37] who shows that the expected
number of probes performed during an unsuccessful search is at most

(1 + 1/(1− α)2)/2

and the expected number of probes performed during a successful search is at most

(1 + 1/(1− α))/2 .

This is not quite as good as for standard hashing with open addressing, especially in the
unsuccessful case.

Linear probing suffers from the problem of primary clustering . If j consecutive array
entries are occupied then a newly inserted element will have probability j/m of hashing
to one of these entries. This results in j + 1 consecutive array entries being occupied and
increases the probability (to (j + 1)/m) of another newly inserted element landing in this
cluster. Thus, large clusters of consecutive elements have a tendency to grow larger.

1.3.4 Quadratic Probing

Quadratic probing is similar to linear probing; an element x determines its entire probe
sequence based on a single random choice, x0. Quadratic probing uses the probe sequence
x0, (x0 + k1 + k2) mod m, (x0 + 2k1 + 22k2) mod m, . . .. In general, the ith element in the
probe sequence is xi = (x0 + ik1 + i2k2) mod m. Thus, the final location of an element
depends quadratically on how many steps were required to insert it. This method seems
to work much better in practice than linear probing, but requires a careful choice of m, k1

and k2 so that the probe sequence contains every element of {0, . . . ,m− 1}.
The improved performance of quadratic probing is due to the fact that if there are two

elements x and y such that xi = yj then it is not necessarily true (as it is with linear
probing) that xi+1 = yj+1. However, if x0 = y0 then x and y will have exactly the same
probe sequence. This lesser phenomenon is called secondary clustering . Note that this
secondary clustering phenomenon implies that neither linear nor quadratic probing can
hope to perform any better than hashing with chaining. This is because all the elements
that have the same initial hash x0 are contained in an implicit chain. In the case of linear
probing, this chain is defined by the sequence x0, x0 + 1, x0 + 2, . . . while for quadratic
probing it is defined by the sequence x0, x0 + k1 + k2, x0 + 2k1 + 4k2, . . .



1-12

1.3.5 Double Hashing

Double hashing is another method of open addressing that uses two hash values x0 and
x1. Here x0 is in the set {0, . . . ,m − 1} and x1 is in the subset of {1, . . . ,m − 1} that is
relatively prime to m. With double hashing, the probe sequence for element x becomes
x0, (x0 + x1) mod m, (x0 + 2x1) mod m, . . .. In general, xi = (x0 + ix1) mod m, for i > 0.
The expected number of probes required by double hashing seems difficult to determine ex-
actly. Guibas has proven that, asymptotically, and for occupancy α ≤ .31, the performance
of double hashing is asymptotically equivalent to that of uniform hashing. Empirically,
the performance of double hashing matches that of open addressing with random probing
regardless of the occupancy α [37].

1.3.6 Brent’s Method

Brent’s method [5] is a heuristic that attempts to minimize the average time for a successful
search in a hash table with open addressing. Although originally described in the context of
double hashing (Section 1.3.5) Brent’s method applies to any open addressing scheme. The
age of an element x stored in an open addressing hash table is the minimum value i such
that x is stored at A[xi]. In other words, the age is one less than the number of locations
we will probe when searching for x.

Brent’s method attempts to minimize the total age of all elements in the hash table. To
insert the element x we proceed as follows: We find the smallest value i such that A[xi]
is empty; this is where standard open-addressing would insert x. Consider the element
y stored at location A[xi−2]. This element is stored there because yj = xi−2, for some
j ≥ 0. We check if the array location A[yj+1] is empty and, if so, we move y to location
A[yj+1] and store x at location A[xi−2]. Note that, compared to standard open addressing,
this decreases the total age by 1. In general, Brent’s method checks, for each 2 ≤ k ≤
i the array entry A[xi−k] to see if the element y stored there can be moved to any of
A[yj+1], A[yj+2], . . . , A[yj+k−1] to make room for x. If so, this represents a decrease in the
total age of all elements in the table and is performed.

Although Brent’s method seems to work well in practice, it is difficult to analyze theo-
retically. Some theoretical analysis of Brent’s method applied to double hashing is given by
Gonnet and Munro [31]. Lyon [44], Munro and Celis [49] and Poblete [52] describe some
variants of Brent’s method.

1.3.7 Multiple-Choice Hashing

It is worth stepping back at this point and revisiting the comparison between hash tables
and binary search trees. For balanced binary search trees, the average cost of searching for
an element is O(log n). Indeed, it easy to see that for at least n/2 of the elements, the cost
of searching for those elements is Ω(log n). In comparison, for both the random probing
schemes discussed so far, the expected cost of search for an element is O(1). However, there
are a handful of elements whose search cost is Θ(log n/ log log n) or Θ(log n) depending on
whether hashing with chaining or open addressing is used, respectively. Thus there is an
inversion: Most operations on a binary search tree cost Θ(log n) but a few elements (close
to the root) can be accessed in O(1) time. Most operations on a hash table take O(1) time
but a few elements (in long chains or with long probe sequences) require Θ(log n/ log log n)
or Θ(log n) time to access. In the next few sections we consider variations on hashing with
chaining and open addressing that attempt to reduce the worst-case search time W .

Multiple-choice hashing is hashing with chaining in which, during insertion, the element
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x has the choice of d ≥ 2 different lists in which it can be stored. In particular, when we
insert x we look at the lengths of the lists pointed to by A[x0], . . . , A[xd−1] and append x
to A[xi], 0 ≤ i < d such that the length of the list pointed to by A[xi] is minimum. When
searching for x, we search for x in each of the lists A[x0], . . . , A[xd−1] in parallel. That is, we
look at the first elements of each list, then the second elements of each list, and so on until
we find x. As before, to delete x we first search for it and then delete it from whichever list
we find it in.

It is easy to see that the expected cost of searching for an element x is O(d) since the
expected length of each the d lists is O(1). More interestingly, the worst case search time
is bounded by O(dW ) where W is the length of the longest list. Azar et al. [3] show that

E[W ] =
ln lnn

ln d
+O(1) . (1.4)

Thus, the expected worst case search time for multiple-choice hashing is O(log log n) for
any constant d ≥ 2.

1.3.8 Asymmetric Hashing

Asymmetric hashing is a variant of multiple-choice hashing in which the hash table is
split into d blocks, each of size n/d. (Assume, for simplicity, that n is a multiple of d.)
The probe value xi, 0 ≤ i < d is drawn uniformly from {in/d, . . . , (i + 1)n/d − 1}. As
with multiple-choice hashing, to insert x the algorithm examines the lengths of the lists
A[x0], A[x1], . . . , A[xd−1] and appends x to the shortest of these lists. In the case of ties,
it appends x to the list with smallest index. Searching and deletion are done exactly as in
multiple-choice hashing.

Vöcking [64] shows that, with asymmetric hashing the expected length of the longest list
is

E[W ] ≤ ln lnn

d lnφd
+O(1) .

The function φd is a generalization of the golden ratio, so that φ2 = (1 +
√

5)/2. Note that
this improves significantly on standard multiple-choice hashing (1.4) for larger values of d.

1.3.9 LCFS Hashing

LCFS hashing is a form of open addressing that changes the collision resolution strategy.7

Reviewing the algorithm for hashing with open addressing reveals that when two elements
collide, priority is given to the first element inserted into the hash table and subsequent
elements must move on. Thus, hashing with open addressing could also be referred to as
FCFS (first-come first-served) hashing .

With LCFS (last-come first-served) hashing, collision resolution is done in exactly the
opposite way. When we insert an element x, we always place it at location x0. If position
x0 is already occupied by some element y because yj = x0 then we place y at location yj+1,
possibly displacing some element z, and so on.

7Amble and Knuth [1] were the first to suggest that, with open addressing, any collision resolution
strategy could be used.
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Poblete and Munro [53] show that, after inserting n elements into an initially empty table,
the expected worst case search time is bounded above by

E[W ] ≤ 1 + Γ−1(αn)

(
1 +

ln ln(1/(1− α))

ln Γ−1(αn)
+O

(
1

ln2 Γ−1(αn)

))
,

where Γ is the gamma function and

Γ−1(αn) =
lnn

ln lnn

(
1 +

ln ln lnn

ln lnn
+O

(
1

ln lnn

))
.

Historically, LCFS hashing is the first version of open addressing that was shown to have
an expected worst-case search time that is o(log n).

1.3.10 Robin-Hood Hashing

Robin-Hood hashing [9, 10, 61] is a form of open addressing that attempts to equalize the
search times of elements by using a fairer collision resolution strategy. During insertion, if
we are trying to place element x at position xi and there is already an element y stored at
position yj = xi then the “younger” of the two elements must move on. More precisely, if
i ≤ j then we will try to insert x at position xi+1, xi+2 and so on. Otherwise, we will store
x at position xi and try to to insert y at positions yj+1, yj+2 and so on.

Devroye et al. [20] show that, after performing n insertions on an initially empty table
of size m = αn using the Robin-Hood insertion algorithm, the worst case search time has
expected value

E[W ] = Θ(log log n)

and this bound is tight. Thus, Robin-Hood hashing is a form of open addressing that has
doubly-logarithmic worst-case search time. This makes it competitive with the multiple-
choice hashing method of Section 1.3.7.

1.3.11 Cuckoo Hashing

Cuckoo hashing [50] is a form of multiple choice hashing in which each element x lives in
one of two tables A or B, each of size m = n/α. The element x will either be stored at
location A[xA] or B[xB ]. There are no other options. This makes searching for x an O(1)
time operation since we need only check two array locations.

The insertion algorithm for cuckoo hashing proceeds as follows:8 Store x at location
A[xA]. If A[xA] was previously occupied by some element y then store y at location B[yB ].
If B[yB ] was previously occupied by some element z then store z at location A[zA], and
so on. This process ends when we place an element into a previously empty table slot or
when it has gone on for more than c log n steps. In the former case, the insertion of x
completes successfully. In the latter case the insertion is considered a failure, and the entire
hash table is reconstructed from scratch using a new probe sequence for each element in
the table. That is, if this reconstruction process has happened i times then the two hash
values we use for an element x are xA = x2i and xB = x2i+1.

8The algorithm takes its name from the large but lazy cuckoo bird which, rather than building its own
nest, steals the nest of another bird forcing the other bird to move on.
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Pagh and Rodler [50] (see also Devroye and Morin [19]) show that, during the insertion
of n elements, the probability of requiring a reconstruction is O(1/n). This, combined
with the fact that the expected insertion time is O(1) shows that the expected cost of n
insertions in a Cuckoo hashing table is O(n). Thus, Cuckoo hashing offers a somewhat
simpler alternative to the dynamic perfect hashing algorithms of Section 1.2.5.

1.4 Historical Notes

In this section we present some of the history of hash tables. The idea of hashing seems
to have been discovered simultaneously by two groups of researchers. Knuth [37] cites an
internal IBM memorandum in January 1953 by H. P. Luhn that suggested the use of hashing
with chaining. Building on Luhn’s work, A. D. Linh suggested a method of open addressing
that assigns the probe sequence x0, bx0/10c, bx0/100c, bx0/1000c, . . . to the element x.

At approximately the same time, another group of researchers at IBM: G. M. Amdahl,
E. M. Boehme, N. Rochester and A. L. Samuel implemented hashing in an assembly program
for the IBM 701 computer. Amdahl is credited with the idea of open addressing with linear
probing.

The first published work on hash tables was by A. I. Dumey [24], who described hashing
with chaining and discussed the idea of using remainder modulo a prime as a hash function.
Ershov [25], working in Russia and independently of Amdahl, described open addressing
with linear probing.

Peterson [51] wrote the first major article discussing the problem of searching in large files
and coined the term “open addressing.” Buchholz [7] also gave a survey of the searching
problem with a very good discussion of hashing techniques at the time. Theoretical analyses
of linear probing were first presented by Konheim and Weiss [39] and Podderjugin. Another,
very influential, survey of hashing was given by Morris [47]. Morris’ survey is the first
published use of the word “hashing” although it was already in common use by practitioners
at that time.

1.5 Other Developments

The study of hash tables has a long history and many researchers have proposed methods
of implementing hash tables. Because of this, the current chapter is necessarily incomplete.
(At the time of writing, the hash.bib bibliography on hashing contains over 800 entries.)
We have summarized only a handful of the major results on hash tables in internal memory.
In this section we provide a few references to the literature for some of the other results.
For more information on hashing, Knuth [37], Vitter and Flajolet [63], Vitter and Chen
[62], and Gonnet and Baeza-Yates [30] are useful references.

Brent’s method (Section 1.3.6) is a collision resolution strategy for open addressing that
reduces the expected search time for a successful search in a hash table with open addressing.
Several other methods exist that either reduce the expected or worst-case search time. These
include binary tree hashing [45, 31], optimal hashing [54, 55, 31], Robin-Hood hashing
(Section 1.3.10), and min-max hashing [29, 9]. One interesting method, due to Celis [9],
applies to any open addressing scheme. The idea is to study the distribution of the ages of
elements in the hash table, i.e., the distribution give by

Di = Pr{x is stored at position xi}

and start searching for x at the locations at which we are most likely to find it, rather than
searching the table positions x0, x1, x2 . . . in order.



1-16

Perfect hash functions seem to have been first studied by Sprugnoli [58] who gave some
heuristic number theoretic constructions of minimal perfect hash functions for small data
sets. Sprugnoli is responsible for the terms “perfect hash function” and “minimal perfect
hash function.” A number of other researchers have presented algorithms for discovering
minimal and near-minimal perfect hash functions. Examples include Anderson and Ander-
son [2], Cichelli [15, 14], Chang [11, 12], Gori and Soda [32], and Sager [56]. Berman et al. [4]
and Körner and Marton [40] discuss the theoretical limitations of perfect hash functions. A
comprehensive, and recent, survey of perfect hashing and minimal perfect hashing is given
by Czech et al. [17].

Tarjan and Yao [60] describe a set ADT implementation that gives O(log u/ log n) worst-
case access time. It is obtained by combining a trie (Section ??) of degree n with a com-
pression scheme for arrays of size n2 that contain only n non-zero elements. (The trie has
O(n) nodes each of which has n pointers to children, but there are only a total of O(n) chil-
dren.) Although their result is superseded by the results of Fredman et al. [28] discussed in
Section 1.2.4, they are the first theoretical results on worst-case search time for hash tables.

Dynamic perfect hashing (Section 1.2.5) and cuckoo hashing (Section 1.3.11) are methods
of achieving O(1) worst case search time in a dynamic setting. Several other methods have
been proposed [21, 22, 6].

Yao [65] studies the membership problem. Given a set S ⊆ U , devise a data structure that
can determine for any x ∈ U whether x is contained in S. Yao shows how, under various
conditions, this problem can be solved using a very small number of memory accesses per
query. However, Yao’s algorithms sometimes derive the fact that an element x is in S
without actually finding x. Thus, they don’t solve the set ADT problem discussed at the
beginning of this chapter since they can not recover a pointer to x.

The “power of two random choices,” as used in multiple-choice hashing, (Section 1.3.7)
has many applications in computer science. Karp, Luby and Meyer auf der Heide [35, 34]
were the first to use this paradigm for simulating PRAM computers on computers with fewer
processors. The book chapter by Mitzenmacher et al. [46] surveys results and applications
of this technique.

A number of table implementations have been proposed that are suitable for managing
hash tables in external memory. Here, the goal is to reduce the number of disk blocks
that must be accessed during an operation, where a disk block can typically hold a large
number of elements. These schemes include linear hashing [43], dynamic hashing [41],
virtual hashing [42], extendible hashing [26], cascade hashing [36], and spiral storage [48].
In terms of hashing, the main difference between internal memory and external memory
is that, in internal memory, an array is allocated at a specific size and this can not be
changed later. In contrast, an external memory file may be appended to or be truncated
to increase or decrease its size, respectively. Thus, hash table implementations for external
memory can avoid the periodic global rebuilding operations used in internal memory hash
table implementations.
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