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Let G be a group. The partial sums problem asks to maintain an array A[1 . . n] of group
elements, initialized to zeroes (a.k.a. the identity), under the following operations:

update(k,∆): modify A[k]← ∆, where ∆ ∈ G.

query(k): returns the partial sum
∑k

i=1A[i].

For concreteness, let us work on a machine with w-bits words (w ≥ lg n), and take G to be
Z/2wZ, i.e. integer arithmetic on machine words (modulo 2w). Then, the partial sums problem can
be solved trivially in O(lg n) time per operation, using augmented binary trees.

In this note, we describe a simple lower bound, originating in [1], showing that the problem
requires Ω(lg n) time per operation.

1 The Hard Instance

The proof works for any choice of G. Letting δ = lg |G|, we will show that any data structure
requires an average running time of Ω( δw · n lg n) to execute a sequence of n updates and n queries
chosen from a particular distribution. If δ = w, we obtain an amortized Ω(lg n) bound per operation.

The hard instance is described by a random permutation π of size n, and a uniformly random
sequence 〈∆1, . . . ,∆n〉 ∈ Gn. Then, the hard instance is:

1 for t← 1 to n � At “time t” we do the following:
2 do query(π(t))
3 update(π(t),∆t)

A very useful visualization of an instance is as a two-dimensional chart, with time on one axis,
and the index in A on the other axis. The answer to a query query(π(t)) is the sum of the update
points in the rectangle [0, t] × [0, π(t)]; these are the updates which have already occurred, and
affect indices relevant to the partial sum. See Figure 1 (a).

2 Information Transfer

Let t0 < t1 < t2 (with t1 non-integral to avoid ties). We will be preoccupied by the interaction
between two adjacent intervals of operations: the time intervals [t0, t1] and [t1, t2]. Since the
algorithm cannot maintain state between operations, such interaction can only be caused by the
algorithm writing a cell during the first interval and reading it during the second.

Definition 1. The information transfer IT (t0, t1, t2) is the set of memory locations which:

• were read at a time tr ∈ [t1, t2].

• were written at a time tw ∈ [t0, t1], and not overwritten during [tw + 1, tr].
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(a)

time

rankupdate(1,∆1)
sum(1)

update(5,∆2)
sum(5)

update(3,∆3)
sum(3)

update(7,∆4)
sum(7)

update(2,∆5)
sum(2)

update(6,∆6)
sum(6)

update(4,∆7)
sum(4)

update(8,∆8)
sum(8)

(b)

time

t0

t1

t2

ld R1, Mem[34]
st R2, Mem[41]
st R3, Mem[34]
st R3, Mem[41]
st R9, Mem[74]
ld R7, Mem[34]
st R1, Mem[41]
st R2, Mem[21]
ld R1, Mem[34]
ld R2, Mem[74]
st R5, Mem[21]
ld R4, Mem[41]
ld R1, Mem[34]
st R5, Mem[34]

Figure 1: (a) An instance of the partial sums problem. The query query(6) occurring at time 6
has the answer ∆1 + ∆2 + ∆3 + ∆5. (b) The execution of a hypothetical cell-probe algorithm.
IT (t0, t1, t2) consists of cells 41 and 74.

The definition is illustrated in Figure 1 (b). Observe that the information transfer is a function
of the algorithm, the permutation π, and the sequence ∆.

For now, let us concentrate on bounding |IT (t0, t1, t2)|, ignoring the question of how this might
be useful. Intuitively, any dependence of the queries from [t1, t2] on updates from the interval
[t0, t1] must come from the information in the cells IT (t0, t1, t2). Indeed, IT (t0, t1, t2) captures the
only possible information flow between the intervals: an update happening during [t0, t1] cannot
be reflected in a cell written before time t0.

Let us formalize this intuition. We break the random sequence
〈
∆1, . . . ,∆n

〉
into the sequence

∆[t0,t1] =
〈
∆t0 , . . . ,∆bt1c

〉
, and ∆? containing all other values. The values in ∆? are uninteresting

to our analysis, so fix them to some arbitrary ∆?. Let At be the answer of the query query(π(t))
at time t. We write A[t1,t2] =

〈
Adt1e, . . . , At2

〉
for the answers to the queries in the second interval.

In information theoretic terms, the observation that all dependence of the interval [t1, t2] on
the interval [t0, t1] is captured by the information transfer, can be reformulated as saying that the
entropy of the observable outputs of interval [t1, t2] (i.e., the query results A[t1,t2]) is bounded by
the information transfer:

Lemma 2. H
(
A[t1,t2]

∣∣ ∆? = ∆?
)
≤ w + 2w ·E

[
|IT (t0, t1, t2)|

∣∣ ∆? = ∆?
]
.

Proof. The bound follows by proposing an encoding for A[t1,t2], since the entropy is upper bounded
by the average length of any encoding. Our encoding is essentially the information transfer; for-
mally, it stores:

• first, the cardinality |IT (t0, t1, t2)|, in order to make the encoding prefix free.

• the address of each cell; an address is at most w bits in our model.

• the contents of each cell at time t1, which takes w bits per cell.

The average length of the encoding is w + 2w · E
[
|IT (t0, t1, t2)|

∣∣ ∆? = ∆?
]

bits, as needed. To
finish the proof, we must show that the information transfer actually encodes A[t1,t2]; that is, we
must give a decoding algorithm that recovers A[t1,t2] from IT (t0, t1, t2).

2



Our decoding algorithm begins by simulating the data structure during the time period [1, t0−1];
this is possible because ∆? is fixed, so all operations before time t0 are known. It then skips the
time period [t0, t1], and simulates the data structure again during the time period [t1, t2]. Of course,
simulating the time period [t1, t2] recovers the answers A[t1,t2], which is what we wanted to do.

To see why it is possible to simulate [t1, t2], consider a read instruction executed by a data
structure operation during [t1, t2]. Depending on the time tw when the cell was last written, we
have the following cases:

tw > t1: We can recognize this case by maintaining a list of memory locations written during the
simulation; the data is immediately available.

t0 < tw < t1: We can recognize this case by examining the set of addresses in the encoding; the cell
contents can be read from the encoding.

tw < t0: This is the default case, if the cell doesn’t satisfy the previous conditions. The contents
of the cell is determined from the state of the memory upon finishing the first simulation up
to time t0 − 1.

3 Interleaves

In the previous section, we showed an upper bound on the dependence of [t1, t2] on [t0, t1]; we now
aim to give a lower bound. Refer to the example in Figure 2 (a). The information that the queries
in [t1, t2] need to know about the updates in [t0, t1] is the sequence

〈
∆6, ∆6 + ∆3 + ∆4, ∆6 + ∆3 +

∆4 +∆5

〉
. Equivalently, the queries need to know

〈
∆6, ∆3 +∆4, ∆5

〉
, which are three independent

random variables, uniformly distributed in the group G.
This required information comes from interleaves between the update indices in [t0, t1], on the

one hand, and the query indices in [t1, t2], on the other. See Figure 2 (b).

Definition 3. If one sorts the set {π(t0), . . . , π(t2)}, the interleave number IL(t0, t1, t2) is defined
as the number of transitions between a value π(i) with i < t1, and a consecutive value π(j) with
j > t1.

The interleave number is only a function of π. Figure 2 suggests that interleaves between two
intervals cause a large dependence of the queries A[t1,t2] on the updates ∆[t1,t2], i.e. A[t1,t2] has large
conditional entropy, even if all updates outside ∆[t1,t2] are fixed:

Lemma 4. H
(
A[t1,t2]

∣∣ ∆? = ∆?
)

= δ · IL(t0, t1, t2).

Proof. Each answer in A[t1,t2] is a sum of some random variables from ∆[t0,t1], plus a constant that
depends on the fixed ∆?. Consider the indices L = {π(t0), . . . , π(bt1c)} from the first interval, and
R = {π(dt1e), . . . , π(t2)} from the second interval. Relabel the indices of R as r1 < r2 < · · · and
consider these ri’s in order:

• If L ∩ [ri−1, ri] = ∅, the answer to query(ri) is the same as for query(ri−1), except for a
different constant term. The answer to query(ri) contributes nothing to the entropy.

• Otherwise, the answer to query(ri) is a random variable independent of all previous answers,
due to the addition of random ∆’s to indices L∩ [ri−1, ri]. This random variable is uniformly
distributed in G, so it contributes δ bits of entropy.

Comparing Lemmas 4 and 2, we see that E
[
|IT (t0, t1, t2)|

∣∣ ∆? = ∆?
]
≥ δ

2w · IL(t0, t1, t2) − 1
for any fixed ∆?. By taking expectation over ∆?, we have:
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Figure 2: (a) The vertical lines describe the information that the queries in [t1, t2] from the updates
in [t0, t1]. (b) The interleave number IL(t0, t1, t2) is the number of down arrows crossing t1, where
arrows indicate left-to-right order.

(a) t0

t1

t2

(b)
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Figure 3: The lower bound tree for n = 16. The nodes have interleave 2 in (a), and 4 in (b).

Corollary 5. For any fixed π, t0 < t1 < t2, and any algorithm solving the partial sums problem,
we have E∆

[
|IT (t0, t1, t2)|

]
≥ δ

2w · IL(t0, t1, t2)− 1.

4 A Tree For The Lower Bound

The final step of the algorithm is to consider the information transfer between many pairs of
intervals, and piece together the lower bounds from Corollary 5 into one lower bound for the total
running time of the data structure. The main trick for putting together these lower bounds is to
consider a lower-bound tree T : an arbitrary binary tree with n leaves, where each leaf denotes a
time unit (a query and update pair). In other words, T is built “over the time axis,” as in Figure 3.

For each internal node v of T , we consider the time interval [t0, t1] spanning the left subtree,
and the interval [t1, t2] spanning the right subtree. We then define:

• the information transfer through the node: IT (v) = |IT (t0, t1, t2)|. Essentially, IT (v) counts
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the cells written in the left subtree of v, and read in the right subtree.

• the interleave at the node: IL(v) = IL(t0, t1, t2).

Theorem 6. For any algorithm and fixed π, the expected running time of the algorithm over a
random sequence ∆ is at least δ

2w

∑
v∈T IL(v) − n.

Proof. First, observe that on any problem instance (any fixed ∆), the number of read instructions
executed by the algorithm is at least

∑
v∈T IT (v). Indeed, for each read instruction, let tr be the

time it is executed, and tw ≤ tr be the time when the cell was last written. If tr = tw, we can
ignore this trivial read. Otherwise, this read instruction appears in the information transfer through
exactly one node: the lowest common ancestor of tw and tr. Thus,

∑
v IT (v) never double-counts

a read instruction.
Now we apply Corollary 5 to each node, concluding that for each v, E∆[IT (v)] ≥ δ

2w ·IL(v)−1.

Thus, the total expected running time is at least δ
2w

∑
v IL(v) − (n − 1). It is important to note

that each lower bound for |IT (v)| applies to the expected value under the same distribution (a
uniformly random sequence ∆). Thus we may sum up these lower bounds to get a lower bound on
the entire running time, using linearity of expectation.

To complete our lower bound, it remains to design an access sequence π that has high total
interleave,

∑
v∈T IL(v) = Ω(n lg n), for some lower-bound tree T . From now on, assume n is a

power of 2, and let T be a perfect binary tree.

Claim 7. If π is a uniformly random permutation, Eπ

[∑
v∈T IL(v)

]
= Ω(n lg n).

Proof. Consider a node v with 2k leaves in its subtree, and let S be the set of indices touched in
v’s subtree, i.e. S = {π(t0), . . . , π(t2)}. The interleave at v is the number of down arrows crossing
from the left subtree to the right subtree, when S is sorted; see Figure 2 (b) and Figure 3. For
two indices j1 < j2 that are consecutive in S, the probability that j1 is touched in the left subtree,
and j2 is touched in the right subtree will be k

2k ·
k

2k−1 >
1
4 . By linearity of expectation over the

2k − 1 arrows, Eπ[IL(v)] = (2k − 1) · k2k ·
k

2k−1 = k
2 . Summing up over all internal nodes v gives

Eπ

[∑
v IL(v)

]
= 1

4n log2 n.

Thus, any algorithm requires Ω( δw ·n lg n) cell probes in expectation on problem instances given
by random ∆ and random π. This shows our Ω(lg n) amortized lower bound for δ = w.
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