
The θ5-graph is a spanner

Prosenjit Bose∗ Pat Morin∗ André van Renssen∗ Sander Verdonschot∗

July 10, 2014

Abstract

Given a set of points in the plane, we show that the θ-graph with 5 cones is a geometric

spanner with spanning ratio at most
√

50 + 22
√

5 ≈ 9.960. This is the first constant upper
bound on the spanning ratio of this graph. The upper bound uses a constructive argument that

gives a (possibly self-intersecting) path between any two vertices, of length at most
√

50 + 22
√

5
times the Euclidean distance between the vertices. We also give a lower bound on the spanning
ratio of 1

2 (11
√

5− 17) ≈ 3.798.

1 Introduction

Figure 1: (Top) The
construction of the Yao
graph. (Bottom) The
construction of the θ-
graph.

A t-spanner of a weighted graph G is a spanning subgraph H with the
property that for all pairs of vertices, the weight of the shortest path
between the vertices in H is at most t times the weight of the shortest
path in G. The spanning ratio of H is the smallest t for which it is a
t-spanner. We say that a graph is a spanner if it has a finite spanning
ratio. The graph G is referred to as the underlying graph. In this paper,
the underlying graph is the complete graph on a finite set of n points in
the plane and the weight of an edge is the Euclidean distance between
its endpoints. A spanner of such a graph is called a geometric spanner.
For a comprehensive overview of geometric spanners, we refer the reader
to the book by Narasimhan and Smid [1].

One simple way to build a geometric spanner is to first partition the
plane around each vertex into a fixed number of cones and then add an
edge between the vertex and the closest vertex in each cone (see Figure 1,
top). The resulting graph is called a Yao graph, and is typically denoted
by Yk, where k is the number of cones around each vertex. If the number
of cones is sufficiently large, we can find a path between any two vertices
by starting at one and walking to the closest vertex in the cone that
contains the other, then repeating this until we reach the destination.
Intuitively, this results in a short path because we are always walking
approximately in the right direction, and, since our neighbour is the

∗School of Computer Science, Carleton University. Email: jit@scs.carleton.ca, morin@scs.carleton.ca,

andre@cg.scs.carleton.ca, sander@cg.scs.carleton.ca. Research supported in part by NSERC.

1

closest vertex in that direction, never too far. However, when the number of cones is small, the
path found in this way can be very long (see Section 5).

Yao graphs were introduced independently by Flinchbaugh and Jones [2] and Yao [3], before the
concept of spanners was even introduced by Chew in 1986 [4]. To the best of our knowledge, the
first proof that Yao graphs are geometric spanners was published in 1993, by Althöfer et al. [5]. In
particular, they showed that for every t > 1, there exists a k such that Yk is a t-spanner. It appears
that some form of this result was known earlier, as Clarkson [6] already remarked in 1987 that Y12
is a 1 +

√
3-spanner, albeit without providing a proof or reference. In 2004, Bose et al. [7] provided

a more specific bound on the spanning ratio, by showing that for k > 8, Yk is a geometric spanner
with spanning ratio at most 1/(cos θ − sin θ), where θ = 2π/k. This bound was later improved to
1/(1− 2 sin(θ/2)), for k > 6 [8].

If we modify the definition of Yao graphs slightly, by connecting not to the closest point in each
cone, but to the point whose projection on the bisector of that cone is closest (see Figure 1, bottom),
we obtain another type of geometric spanner, called a θ-graph. These graphs were introduced
independently by Clarkson [6] and Keil [9, 10], who preferred them to Yao graphs because they are
easier to compute. It turns out that θ-graphs share most of the properties of Yao graphs: there
is a constant k for every t > 1 such that θk is a t-spanner, and the spanning ratio for k > 6 is
1/(1 − 2 sin(θ/2)) [11]. Very recently, the bounds on θ-graphs were even pushed beyond those on
Yao graphs [12], including a matching upper- and lower bound of 1 + 2 sin(θ/2) for all θk-graphs
with k ≥ 6 and k ≡ 2 (mod 4) [13].

Although most early research focused on Yao and θ-graphs with a large number of cones, using
the smallest possible number of cones is important for many practical applications, where the cost
of a network is mostly determined by the number of edges. One such example is point-to-point
wireless networks. These networks use narrow directional wireless transceivers that can transmit
over long distances (up to 50km [14, 15]). The cost of an edge in such a network is therefore equal
to the cost of the two transceivers that are used at each endpoint of that edge. In such networks,
the cost of building a θ6-graph is approximately 29% higher than the cost of building a θ5-graph if
the transceivers are randomly distributed [16]. This leads to the natural question: for which values
of k are Yk and θk spanners? Kanj [17] presented this question as one of the main open problems
in the area of geometric spanners.

b

a

Figure 2: A θ5-graph
where the shortest path
between two vertices (in
bold) crosses itself.

Surprisingly, this question was not studied until quite recently. In
2009, El Molla [18] showed that, for k < 4, there is no constant t such that
Yk is a t-spanner. These proofs translate to θ-graphs as well. Bonichon et
al. [19] showed that θ6 is a 2-spanner, and this is tight. This result was
later used by Damian and Raudonis [20] to show that Y6 is a spanner as
well. Bose et al. [21] showed that Y4 is a spanner, and a flurry of recent
activity has led to the same result for both θ4 [22] and Y5 [23].

In this paper we present the final piece of this puzzle, by giving the
first constant upper bound on the spanning ratio of the θ5-graph, thereby
proving that it is a geometric spanner. Since the proof is constructive,
it gives us a path between any two vertices, u and w, of length at most√

50 + 22
√

5 ≈ 9.960 · |uw|. Surprisingly, this path can cross itself, a
property we observed for the shortest path as well (see Figure 2).

After completion of this research, we discovered that some form of
this result appears to have been known already in 1991, as Ruppert and

2

Seidel [11] mention that they could prove a bound near 10 on the spanning ratio of θ5. However,
their paper does not include a proof and, to the best of our knowledge, they have not published
one since.

In addition to the upper bound on the spanning ratio, we prove two lower bounds. We give an
example of a point set where the θ5-graph has a spanning ratio of 1

2(11
√

5 − 17) ≈ 3.798, and we
show that the traditional θ-routing algorithm (follow the edge to the closest vertex in the cone that
contains the destination) can result in very long paths, even though a short path exists.

2 Connectivity

In this section we first give a more precise definition of the θ5-graph, before proving that it is
connected.

Given a set P of points in the plane, we consider each point u ∈ P and partition the plane into
5 cones (regions in the plane between two rays originating from the same point) with apex u, each
defined by two rays at consecutive multiples of θ = 2π/5 radians from the negative y-axis. We
label the cones C0 through C4, in clockwise order around u, starting from the top (see Figure 3a).
If the apex is not clear from the context, we use Cui to denote cone Ci with apex u. For the sake
of brevity, we typically write “a cone of u” instead of “a cone with apex u”.

u

u

(a) (b)

v

C0

C1

C2C3

C4

Figure 3: (a) The cones of a vertex u. (b) The vertex v is closest to u. The shaded region is the
canonical triangle Tuv.

The θ5-graph is then built by considering each vertex u and connecting it with an edge to the
‘closest’ vertex in each of its cones, where distance is measured by projecting each vertex onto the
bisector of that cone (see Figure 3b). We use this definition of closest in the remainder of the
paper.

For simplicity, we assume that no two points lie on a line parallel or perpendicular to a cone
boundary. This guarantees that each vertex connects to at most one vertex in each cone, and thus
that the graph has at most 5n edges. For any set of points that does not satisfy this assumption,
there exists a tiny angle such that the assumption holds if we rotate all cones by this angle. In terms
of the graph, this rotation is equivalent to a tie-breaking rule that always selects the candidate that
comes last in clockwise order. Thus, our conclusions about the spanning ratio hold in either case,
even though our proofs rely on the general position assumption.

Given two vertices u and v, we define their canonical triangle Tuv to be the triangle bounded
by the cone of u that contains v and the line through v perpendicular to the bisector of that cone.
For example, the shaded region in Figure 3b is the canonical triangle Tuv. Note that for any pair

3

of vertices u and v, there are two canonical triangles: Tuv and Tvu. We equate the size |Tuv| of a
canonical triangle to the length of one of the sides incident to the apex u. This gives us the useful
property that any line segment between u and a point inside the triangle has length at most |Tuv|.

To introduce the structure of the main proof, we first show that the θ5-graph is connected.

Theorem 1 The θ5-graph is connected.

Proof. We prove that there is a path between any (ordered) pair of vertices in the θ5-graph, using
induction on the size of their canonical triangle. Formally, given two vertices u and w, we perform
induction on the rank (relative position) of Tuw among the canonical triangles of all pairs of vertices,
when ordered by size. For ease of description, we assume that w lies in the right half of Cu0 . The
other cases are analogous.

If Tuw has rank 1, it is the smallest canonical triangle. Therefore there can be no point closer
to u in Cu0 , so the θ5-graph must contain the edge (u,w). This proves the base case.

If Tuw has a larger rank, our inductive hypothesis is that there exists a path between any pair of
vertices with a smaller canonical triangle. Let a and b be the left and right corners of Tuw. Let m
be the midpoint of ab and let x be the intersection of ab and the bisector of ∠mub (see Figure 4a).

u

m xw

m′

α

u

m xa bw

(a) (b)

Figure 4: (a) The canonical triangle Tuw. (b) If w lies between m and x, Twu is smaller than Tuw.

If w lies to the left of x, consider the canonical triangle Twu. Let m′ be the midpoint of the side
of Twu opposite w and let α = ∠muw (see Figure 4b). Note that ∠uwm′ = π

5 − α, since um and
the vertical border of Twu are parallel and both are intersected by uw. Using basic trigonometry,
we can express the size of Twu as follows.

|Twu| =
|wm′|
cos π5

=
cos∠uwm′ · |uw|

cos π5
=

cos
(
π
5 − α

)
· |um|cosα

cos π5
=

cos
(
π
5 − α

)
cosα

· |Tuw|

Since w lies to the left of x, the angle α is less than π/10, which means that cos(π5 − α)/ cosα is
less than 1. Hence Twu is smaller than Tuw and by induction, there is a path between w and u.
Since the θ5-graph is undirected, we are done in this case. The rest of the proof deals with the case
where w lies on or to the right of x.

If Twu is empty, there is an edge between u and w and we are done, so assume that this is not
the case. Then there is a vertex vw that is closest to w in Cw3 (the cone of w that contains u). This
gives rise to four cases, depending on the location of vw (see Figure 5a). In each case, we will show
that Tuvw is smaller than Tuw and hence we can apply induction to obtain a path between u and

4

vw. Since vw is the closest vertex to w in C3, there is an edge between vw and w, completing the
path between u and w.

w

u

xa bw

(a) (b)

1

2

3
4

vw

u

y

w

(c)

u

vw

y

C0

C1

C2C3

C4

Figure 5: (a) The four cases for vw. (b) Case 1: The situation that maximizes |Tuvw | when vw lies
in Cu2 . (c) Case 4: The situation that maximizes |Tuvw | when vw lies in Cu4 .

Case 1. vw lies in Cu2 . In this case, the size of Tuvw is maximized when vw lies in the bottom
right corner of Twu and w lies on b. Let y be the rightmost corner of Tuvw (see Figure 5b). Using
the law of sines, we can express the size of Tuvw as follows.

|Tuvw | = |uy| =
sin∠uvwy
sin∠uyvw

· |uvw| =
sin 3π

5

sin 3π
10

· tan
π

5
· |Tuw| < |Tuw|

Case 2. vw lies in Cu1 . In this case, the size of Tuvw is maximized when w lies on b and vw lies
almost on w. By symmetry, this gives |Tuvw | = |Tuw|. However, vw cannot lie precisely on w and
must therefore lie a little closer to u, giving us that |Tuvw | < |Tuw|.

Case 3. vw lies in Cu0 . As in the previous case, the size of Tuvw is maximized when vw lies almost
on w, but since vw must lie closer to u, we have that |Tuvw | < |Tuw|.

Case 4. vw lies in Cu4 . In this case, the size of Tuvw is maximized when vw lies in the left corner of
Twu and w lies on x. Let y be the bottom corner of Tuvw (see Figure 5c). Since x is the point where
|Tuw| = |Twu|, and vwyuw forms a parallelogram, |Tuvw | = |Tuw|. However, by general position, vw
cannot lie on the boundary of Twu, so it must lie a little closer to u, giving us that |Tuvw | < |Tuw|.

Since any vertex in Cu3 would be further from w than u itself, these four cases are exhaustive. �

5

3 Spanning ratio

In this section, we prove an upper bound on the spanning ratio of the θ5-graph.

Lemma 2 Between any pair of vertices u and w of a θ5-graph, there is a path of length at most
c · |Tuw|, where c = 2

(
2 +
√

5
)
≈ 8.472.

Proof. We begin in a way similar to the proof of Theorem 1. Given an ordered pair of vertices u
and w, we perform induction on the size of their canonical triangle. If |Tuw| is minimal, there must
be a direct edge between them. Since c > 1 and any edge inside Tuw with endpoint u has length
at most |Tuw|, this proves the base case. The rest of the proof deals with the inductive step, where
we assume that there exists a path of length at most c · |T | between every pair of vertices whose
canonical triangle T is smaller than Tuw. As in the proof of Theorem 1, we assume that w lies in
the right half of Cu0 . If w lies to the left of x, we have seen that Twu is smaller than Tuw. Therefore
we can apply induction to obtain a path of length at most c · |Twu| < c · |Tuw| between u and w.
Hence we need to concern ourselves only with the case where w lies on or to the right of x.

If u is the vertex closest to w in Cw3 or w is the closest vertex to u in Cu0 , there is a direct edge
between them and we are done by the same reasoning as in the base case. Therefore assume that
this is not the case and let vw be the vertex closest to w in Cw3 . We distinguish the same four cases
for the location of vw (see Figure 5a). We already showed that we can apply induction on Tuvw in
each case. This is a crucial part of the proof for the first three cases.

Most of the cases come down to finding a path between u and w of length at most (g+h·c)·|Tuw|,
for constants g and h with h < 1. The smallest value of c for which this is bounded by c · |Tuw| is
g/(1− h). If this is at most 2

(
2 +
√

5
)
≈ 8.472, we are done.

Case 1. vw lies in Cu2 . By induction, there exists a path between u and vw of length at most
c · |Tuvw |. Since vw is the closest vertex to w in Cw3 , there is a direct edge between them, giving a
path between u and w of length at most |wvw|+ c · |Tuvw |.

Given any initial position of vw in Cu2 , we can increase |wvw| by moving w to the right. Since
this does not change |Tuvw |, the worst case occurs when w lies on b. Then we can increase both
|wvw| and |Tuvw | by moving vw into the bottom corner of Twu. This gives rise to the same worst-case
configuration as in the proof of Theorem 1, depicted in Figure 5b. Building on the analysis there,
we can bound the worst-case length of the path as follows.

|wvw|+ c · |Tuvw | =
|Tuw|
cos π5

+ c ·
sin 3π

5

sin 3π
10

· tan
π

5
· |Tuw|

This is at most c · |Tuw| for c ≥ 2
(
2 +
√

5
)
. Since we picked c = 2

(
2 +
√

5
)
, the theorem holds in

this case. Note that this is one of the cases that determines the value of c.

Case 2. vw lies in Cu1 . By the same reasoning as in the previous case, we have a path of length
at most |wvw|+ c · |Tuvw | between u and w and we need to bound this length by c · |Tuw|.

Given any initial position of vw in Cu1 , we can increase |wvw| by moving w to the right. Since
this does not change |Tuvw |, the worst case occurs when w lies on b. We can further increase |wvw|
by moving vw down along the side of Tuvw opposite u until it hits the boundary of Cu1 or Cw3 ,
whichever comes first (see Figure 6a).

6

(a)

u

w

vw

u

w

vw

(b)

u

w b

(c)

vw

a′

Figure 6: (a) Case 2: Vertex vw lies on the boundary of Cw3 after moving it down along the side of
Tuvw . (b) Case 3: Vertex vw lies on the boundary of Cu0 after moving it left along the side of Tuvw .
(c) Case 4: Vertex vw lies in Cu4 ∩ Cb3.

Now consider what happens when we move vw along these boundaries. If vw lies on the boundary
of Cu1 and we move it away from u by ∆, |Tuvw | increases by ∆. At the same time, |wvw| might
decrease, but not by more than ∆. Since c > 1, the total path length is maximized by moving vw
as far from u as possible, until it hits the boundary of Cw3 . Once vw lies on the boundary of Cw3 ,
we can express the size of Tuvw as follows, where a′ is the top corner of Tuvw .

|Tuvw | = |Tuw| − |wa′| = |Tuw| − |wvw| ·
sin∠wvwa′

sin∠wa′vw
= |Tuw| − |wvw| ·

sin π
10

sin 7π
10

Now we can express the length of the complete path as follows.

|wvw|+ c · |Tuvw | = |wvw|+ c ·

(
|Tuw| − |wvw| ·

sin π
10

sin 7π
10

)
= c · |Tuw| −

(
c ·

sin π
10

sin 7π
10

− 1

)
· |wvw|

Since c > sin 7π
10 / sin π

10 ≈ 2.618, we have that c·(sin π
10/ sin 7π

10)−1 > 0. Therefore |wvw|+c·|Tuvw | <
c · |Tuw|.

Case 3. vw lies in Cu0 . Again, we have a path of length at most |wvw|+ c · |Tuvw | between u and
w and we need to bound this length by c · |Tuw|.

Given any initial position of vw in Cu0 , moving vw to the left increases |wvw| while leaving |Tuvw |
unchanged. Therefore the path length is maximized when vw lies on the boundary of either Cu0 or
Cw3 , whichever it hits first (see Figure 6b).

Again, consider what happens when we move vw along these boundaries. Similar to the previous
case, if vw lies on the boundary of Cu0 and we move it away from u by ∆, |Tuvw | increases by ∆,
while |wvw| might decrease by at most ∆. Since c > 1, the total path length is maximized by
moving vw as far from u as possible, until it hits the boundary of Cw3 . Once there, the situation is
symmetric to the previous case, with |Tuvw | = |Tuw|−|wvw| ·(sin π

10/ sin 7π
10). Therefore the theorem

holds in this case as well.

7

Case 4. vw lies in Cu4 . This is the hardest case. Similar to the previous two cases, the size of Tuvw
can be arbitrarily close to that of Tuw, but in this case |wvw| does not approach 0. This means that
simply invoking the inductive hypothesis on Tuvw does not work, so another strategy is required.
We first look at a subcase where we can apply induction directly, before considering the position
of vu, the closest vertex to u in C0.

Case 4a. vw lies in Cu4 ∩Cb3. This situation is illustrated in Figure 6c. Given any initial position
of vw, moving w to the right onto b increases the total path length by increasing |wvw| while not
affecting |Tuvw |. Here we use the fact that vw already lies in Cb3, otherwise we would not be able
to move w onto b while keeping vw in Cw3 . Now the total path length is maximized by placing vw
on the left corner of Twu. Since this situation is symmetrical to the worst-case situation in Case 1,
the theorem holds by the same analysis.

Next, we distinguish four cases for the position of vu (the closest vertex to u in C0), illustrated
in Figure 7a. The cases are: (4b) w lies in Cvu4 , (4c) w lies in Cvu0 , (4d) w lies in Cvu1 and vu lies in
Cw3 , and (4e) w lies in Cvu1 and vu lies in Cw4 . These are exhaustive, since the cones C4, C0 and C1

are the only ones that can contain a vertex above the current vertex, and w must lie above vu, as
vu is closer to u. Further, if w lies in Cvu1 , vu must lie in one of the two opposite cones of w.

We can solve the first two cases by applying our inductive hypothesis to Tvuw.

(a) (b) (c)

u

w vu

u

w

vu

u

w
4b

4c

4d

4e

Figure 7: (a) The four different cases for the position of vu. (b) The worst-case configuration with
w in Cvu4 . (c) A configuration with w in Cvu0 , after moving vu onto the right side of Cu0 .

Case 4b. w lies in Cvu4 . To apply our inductive hypothesis, we need to show that |Tvuw| < |Tuw|.
If that is the case, we obtain a path between vu and w of length at most c · |Tvuw|. Since vu is
the closest vertex to u, there is a direct edge from u to vu, resulting in a path between u and w of
length at most |uvu|+ c · |Tvuw|.

Given any intial positions for vu and w, moving w to the left increases |Tvuw| while leaving |uvu|
unchanged. Moving vu closer to b increases both. Therefore the path length is maximal when w
lies on x and vu lies on b (see Figure 7b). Using the law of sines, we can express |Tvuw| as follows.

|Tvuw| =
sin 3π

5

sin 3π
10

· |wvu| =
sin 3π

5

sin 3π
10

·
sin π

10

sin 3π
5

· |Tuw| =
sin π

10

sin 3π
10

· |Tuw| =
1

2

(
3−
√

5
)
· |Tuw|

8

Since 1
2

(
3−
√

5
)
< 1, we have that |Tvuw| < |Tuw| and we can apply our inductive hypothesis to

Tvuw. Since |uvu| = |Tuw|, the complete path has length at most c · |Tuw| for

c ≥ 1

1− 1
2

(
3−
√

5
) =

1

2

(
1 +
√

5
)
≈ 1.618.

Case 4c. w lies in Cvu0 . Since vu lies in Cu0 , it is clear that |Tvuw| < |Tuw|, which allows us
to apply our inductive hypothesis. This gives us a path between u and w of length at most
|uvu| + c · |Tvuw|. For any initial location of vu, we can increase the total path length by moving
vu to the right until it hits the side of Cu0 (see Figure 7c), since |Tvuw| stays the same and |uvu|
increases. Once there, we have that |uvu| + |Tvuw| = |Tuw|. Since c > 1, this immediately implies
that |uvu|+ c · |Tvuw| ≤ c · |Tuw|, proving the theorem for this case.

To solve the last two cases, we need to consider the positions of both vu and vw. Recall that
for vw, there is only a small region left where we have not yet proved the existance of a short path
between u and w. In particular, this is the case when vw lies in cone Cu4 , but not in Cb3.

(a) (b) (c)

u uu

w

vu

vw

`

w

vu

vw

`

w

vu

vw

Figure 8: (a) The regions where vu (light) and vw (dark) can lie. (b) The worst case when vu lies
on a given line `. (c) The worst case for a fixed position of w.

Case 4d. w lies in Cvu1 and vu lies in Cw3 . We would like to apply our inductive hypothesis to Tvuvw ,
resulting in a path between vu and vw of length at most c · |Tvuvw |. The edges (w, vw) and (u, vu)
complete this to a path between u and w, giving a total length of at most |uvu|+ c · |Tvuvw |+ |vww|.

First, note that vu cannot lie in Twvw , as this region is empty by definition. Since vw lies in Cu4 ,
this means that vw must lie in Cvu4 . We first show that Tvuvw is always smaller than Tuw, which
means that we are allowed to use induction. Given any initial position for vu, consider the line `
through vu, perpendicular to the bisector of C3 (see Figure 8a). Since vw cannot be further from w
than vu, the size of Tvuvw is maximized when vw lies on the intersection of ` and the top boundary
of Twu. We can increase |Tvuvw | further by moving vu along ` until it reaches the bisector of Cw3
(see Figure 8b). Since the top boundary of Twu and the bisector of Cw3 approach each other as
they get closer to w, the size of Tvuvw is maximized when vu lies on the bottom boundary of Twu
(ignoring for now that this would move vu out of Tuw). Now it is clear that |Tvuvw | < |Tuvw |. Since
we already established that Tuvw is smaller than Tuw in the proof of Theorem 1, this holds for Tvuvw
as well and we can use induction.

9

All that is left is to bound the total length of the path. Given any initial position of vu, the path
length is maximized when we place vw at the intersection of ` and the top boundary of Twu, as this
maximizes both |Tvuvw | and |wvw|. When we move vu away from vw along ` by ∆, |uvu| decreases
by at most ∆, while |Tvuvw | increases by sin 3π

5 / sin 3π
10 ·∆ > ∆. Since c > 1, this increases the total

path length. Therefore the worst case again occurs when vu lies on the bisector of Cw3 , as depicted
in Figure 8b. Moving vu down along the bisector of Twu by ∆ decreases |uvu| by at most ∆, while
increasing |wvw| by 1/ sin 3π

10 ·∆ > ∆ and increasing |Tvuvw |. Therefore this increases the total path
length and the worst case occurs when vu lies on the left boundary of Tuw (see Figure 8c).

Finally, consider what happens when we move vu ∆ towards u, while moving w and vw such
that the construction stays intact. This causes w to move to the right. Since vu, w and the left
corner of Tuw form an isosceles triangle with apex vu, this also moves vu ∆ further from w. We saw
before that moving vu away from w increases the size of Tvuvw . Finally, it also increases |wvw| by
1/ sin 3π

10 ·∆ > ∆. Thus, the increase in |wvw| cancels the decrease in |uvu| and the total path length
increases. Therefore the worst case occurs when vu lies almost on u and vw lies in the corner of
Twu, which is symmetric to the worst case of Case 1. Thus the theorem holds by the same analysis.

Case 4e. w lies in Cvu1 and vu lies in Cw4 . We split this case into three final subcases, based on
the position of vu. These cases are illustrated in Figure 9a. Note that vu cannot lie in C2 or C3 of
vw, as it lies above vw. It also cannot lie in Cvw4 , as Cvw4 is completely contained in Cu4 , whereas vu
lies in Cu0 . Thus the cases presented below are exhaustive.

Case 4e-1. |Twvu | ≤ c−1
c · |Tuw|. If Twvu is small enough, we can apply our inductive hypothesis

to obtain a path between vu and w of length at most c · |Twvu |. Since there is a direct edge between
u and vu, we obtain a path between u and w of length at most |uvu|+ c · |Twvu |. Any edge from u
to a point inside Tuw has length at most |Tuw|, so we can bound the length of the path as follows.

|uvu|+ c · |Twvu | ≤ |Tuw|+ c · c− 1

c
· |Tuw| = |Tuw|+ (c− 1) · |Tuw| = c · |Tuw|

In the other two cases, we use induction on Tvwvu to obtain a path between vw and vu of length
at most c · |Tvwvu |. The edges (u, vu) and (w, vw) complete this to a (self-intersecting) path between
u and w. We can bound the length of these edges by the size of the canonical triangle that contains
them, as follows.

|uvu|+ |wvw| ≤ |Tuw|+ |Twu| ≤ |Tuw|+
1

cos π5
· |Tuw| =

√
5 · |Tuw|

All that is left now is to bound the size of Tvwvu and express it in terms of Tuw.

Case 4e-2. vu lies in Cvw0 . In this case, the size of Tvwvu is maximal when vu lies on the top
boundary of Tuw and vw lies at the lowest point in its possible region: the left corner of Tbu
(see Figure 9b). Now we can express |Tvwvu | as follows.

|Tvwvu | =
sin π

10

sin 7π
10

· |bvw| =
sin π

10

sin 7π
10

· 1

cos π5
· |Tuw| = 2

(√
5− 2

)
· |Tuw|

10

(a) (b) (c)

u

w

vw

2

3

u

vw

b bvu w

u

w

y

vw

vu

1

Figure 9: (a) The three subcases for the position of vu. (b) The situation that maximizes Tvwvu
when vu lies in Cvw0 . (c) The worst case when vu lies in Cvw1 .

Since 2
(√

5− 2
)
< 1, we can use induction. The total path length is bounded by c · |Tuw| for

c ≥
√

5

1− 2
(√

5− 2
) = 2 +

√
5 ≈ 4.236.

Case 4e-3. vu lies in Cvw1 . Since |Twvu | > c−1
c · |Tuw|, Tvwvu is maximal when vw lies on the left

corner of Twu and vu lies on the top boundary of Tuw, such that |Twvu | = c−1
c · |Tuw| (see Figure 9c).

Let y be the intersection of Tvwvu and Twu. Note that since vw lies on the corner of Twu, y is also
the midpoint of the side of Tvwvu opposite vw. We can express the size of Tvwvu as follows.

|Tvwvu | =
|vwy|
cos π5

=
|wvw| − |wy|

cos π5
=

|Tuw|
cos π5

− cos π
10 · |wvu|

cos π5

=

|Tuw|
cos π5

− cos π
10 ·

sin 3π
10

sin 3π
5

· |Twvu |

cos π5
=

|Tuw|
cos π5

− cos π
10 ·

sin 3π
10

sin 3π
5

· c− 1

c
· |Tuw|

cos π5

=

(
1

c
+ 5− 2

√
5

)
· |Tuw|

Thus we can use induction for c > 1/
(
2
√

5− 4
)
≈ 2.118 and the total path length can be bounded

by c · |Tuw| for

c ≥
√

5 + 1

2
√

5− 4
=

1

2

(
7 + 3

√
5
)
≈ 6.854.

�

Using this result, we can compute the exact spanning ratio.

Theorem 3 The θ5-graph is a spanner with spanning ratio at most
√

50 + 22
√

5 ≈ 9.960.

11

Proof. Given two vertices u and w, we know from Lemma 2 that there is a path between them of
length at most c ·min (|Tuw|, |Twu|), where c = 2

(
2 +
√

5
)
≈ 8.472. This gives an upper bound on

the spanning ratio of c ·min (|Tuw|, |Twu|) /|uw|. We assume without loss of generality that w lies in
the right half of Cu0 . Let α be the angle between the bisector of Cu0 and the line uw (see Figure 4b).
In the proof of Theorem 1, we saw that we can express |Twu| and |uw| in terms of α and |Tuw|,
as |Twu| = (cos(π5 − α)/ cosα) · |Tuw| and |uw| = (cos π5 / cosα) · |Tuw|, respectively. Using these
expressions, we can write the spanning ratio in terms of α.

c ·min (|Tuw|, |Twu|)
|uw|

=

c ·min

(
|Tuw|,

cos(π5−α)
cosα · |Tuw|

)
cos π

5
cosα · |Tuw|

=
c

cos π5
·min

(
cosα, cos

(
π
5 − α

))
To get an upper bound on the spanning ratio, we need to maximize the minimum of cosα and
cos
(
π
5 − α

)
. Since for α ∈ [0, π/5], one is increasing and the other is decreasing, this maximum

occurs at α = π/10, where they are equal. Thus, our upper bound becomes

c

cos π5
· cos π

10 =

√
50 + 22

√
5 ≈ 9.960.

�

4 Lower bound

u

w

v1

v2

v3

v4

Figure 10: A path with a large spanning
ratio.

In this section, we derive a lower bound on the spanning
ratio of the θ5-graph.

Theorem 4 The θ5-graph has spanning ratio at least
1
2(11
√

5− 17) ≈ 3.798.

Proof. For the lower bound, we present and analyze a
path between two vertices that has a large spanning ra-
tio. The path has the following structure (illustrated in
Figure 10).

The path can be thought of as being directed from
w to u. First, we place w in the right corner of Tuw.
Then we add a vertex v1 in the bottom corner of Twu.
We repeat this two more times, each time adding a new
vertex in the corner of Tviu furthest away from u. The
final vertex v4 is placed on the top boundary of Cv31 , such
that u lies in Cv41 . Since we know all the angles involved,
we can compute the length of each edge, taking |uw| = 1
as baseline.

|wv1| =
1

cos π5
|v1v2| = |v2v3| = 2 sin π

5 tan π
5 |v3v4| =

sin π
10

sin 3π
5

tan π
5 |v4u| =

sin 3π
10

sin 3π
5

tan π
5

Since we set |uw| = 1, the spanning ratio is simply |wv1| + |v1v2| + |v2v3| + |v3v4| + |v4u| =
1
2(11
√

5− 17) ≈ 3.798. Note that the θ5-graph with just these 5 vertices would have a far smaller

12

spanning ratio, as there would be a lot of shortcut edges. However, a graph where this path is the
shortest path between two vertices can be found in Appendix A. �

5 Lower bound on θ-routing

In this section, we show that always following the edge to the closest vertex in the cone that
contains the destination can generate very long paths in the θ5-graph. More formally, we look at
the competitiveness of this routing algorithm. A routing algorithm is c-competitive on a graph G if
for each pair of vertices in the graph, the routing algorithm finds a path of length at most c times
the Euclidean distance between the two vertices.

We look at the competitiveness of the θ-routing algorithm, the standard routing algorithm for
θ-graphs with at least seven cones: From the current vertex u, follow the edge to the closest vertex
in Tuw, where w is the destination. This step is repeated until the destination is reached. We
construct a θ5-graph for which the θ-routing algorithm returns a path with spanning ratio Ω(n).

Lemma 5 The θ-routing algorithm is not o(n)-competitive on the θ5-graph.

Proof. We construct the lower bound example on the competitiveness of the θ-routing algorithm
on the θ5-graph by repeatedly extending the routing path from source u to destination w. First,
we place w such that the angle between uw and the bisector of Tuw is θ/4. To ensure that the
θ-routing algorithm does not follow the edge between u and w, we place a vertex v1 in the upper
corner of Tuw that is furthest from w. Next, to ensure that the θ-routing algorithm does not follow
the edge between v1 and w, we place a vertex v′1 in the upper corner of Tv1w that is furthest from
w. We repeat this step until we have created a cycle around w (see Figure 11a).

To extend the routing path further, we again place a vertex v2 in the corner of the current
canonical triangle. To ensure that the routing algorithm still routes to v1 from u, we place v2
slightly outside of Tuv1 . However, another problem arises: vertex v′1 is no longer the vertex closest
to v1 in Tv1w, as v2 is closer. To solve this problem, we also place a vertex x1 in Tv1v2 such that v′1
lies in Tx1w (see Figure 11b). By repeating this process four times, we create a second cycle around
w.

To add more cycles around w, we repeat the same process as described above: place a vertex
in the corner of the current canonical triangle and place an auxiliary vertex to ensure that the
previous cycle stays intact. Note that when placing xi, we also need to ensure that it does not lie
in Txi−1w, to prevent shortcuts from being formed (see Figure 11b). This means that in general xi
does not lie arbitrarily close to the corner of Tvivi+1 .

This way we need to add auxiliary vertices only to the (k − 1)-th cycle, when adding the k-th
cycle, hence we can add an additional cycle using only a constant number of vertices. Since we
can place the vertices arbitrarily close to the corners of the canonical triangles, we ensure that the
distance to w stays almost the same, regardless of the number of cycles. Hence, each ‘step’ of the
form vi to v′i via xi has length cos(θ/4)/ cos(θ/2) · |viw|. Since cos(θ/4)/ cos(θ/2) is greater than 1
for the θ5-graph and |viw| can be arbitrarily close to |uw|, every step has length greater than |uw|.
Using n points, we can construct n/2 of these steps and the total length of the path followed by the
θ-routing algorithm is greater than n/2 · |uw|. Thus the θ-routing algorithm is not o(n)-competitive
on the constructed graph. �

13

u

wv1

v′1

v2

x1

v1
v2 v3

x1

x2

(a) (b)

Figure 11: (a) A lower bound example for θ-routing on the θ5-graph, consisting of three cycles: the
first cycle is coloured blue, the second cycle is coloured orange, and the third cycle is coloured red.
(b) The placement of vertices such that previous cycles stay intact when adding a new cycle.

6 Conclusions

We showed that there is a path between every pair of vertices in the θ5-graph, of length at most√
50 + 22

√
5 ≈ 9.960 times the straight-line distance between them. This is the first constant

upper bound on the spanning ratio of the θ5-graph, proving that it is a geometric spanner. We also
presented a θ5-graph with spanning ratio arbitrarily close to 1

2(11
√

5− 17) ≈ 3.798, thereby giving
a lower bound on the spanning ratio. There is still a significant gap between these bounds, which is
caused by the upper bound proof mostly ignoring the main obstacle to improving the lower bound:
that every edge requires at least one of its canonical triangles to be empty. Hence we believe that
the true spanning ratio is closer to the lower bound.

While our proof for the upper bound on the spanning ratio returns a spanning path between the
two vertices, it requires knowledge of the neighbours of both the current vertex and the destination
vertex. This means that the proof does not lead to a local routing strategy that can be applied in,
say, a wireless setting. This raises the question whether it is possible to route competitively on this
graph, i.e. to discover a spanning path from one vertex to another by using only information local
to the current vertices visited so far.

References

[1] Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
2007.

[2] B. E. Flinchbaugh and L. K. Jones. Strong connectivity in directional nearest-neighbor graphs.
SIAM Journal on Algebraic and Discrete Methods, 2(4):461–463, 1981.

14

[3] Andrew Chi Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

[4] L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proceedings of
the 2nd Annual Symposium on Computational Geometry (SoCG 1986), pages 169–177, 1986.

[5] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

[6] Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In Pro-
ceedings of the 19th Annual ACM Symposium on the Theory of Computing (STOC 1987),
pages 56–65, 1987.

[7] Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel Smid, and Norbert Zeh. Approx-
imating geometric bottleneck shortest paths. Computational Geometry: Theory and Applica-
tions, 29(3):233–249, 2004.

[8] Prosenjit Bose, Mirela Damian, Karim Doüıeb, Joseph O’Rourke, Ben Seamone, Michiel
Smid, and Stefanie Wuhrer. π/2-angle Yao graphs are spanners. ArXiv e-prints, 2010.
arXiv:1001.2913.

[9] J. Mark Keil. Approximating the complete Euclidean graph. In Proceedings of the 1st Scandina-
vian Workshop on Algorithm Theory (SWAT 1988), volume 318 of Lecture Notes in Computer
Science, pages 208–213, 1988.

[10] J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete Euclidean
graph. Discrete & Computational Geometry, 7(1):13–28, 1992.

[11] Jim Ruppert and Raimund Seidel. Approximating the d-dimensional complete Euclidean
graph. In Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG
1991), pages 207–210, 1991.

[12] Prosenjit Bose, André van Renssen, and Sander Verdonschot. On the spanning ratio of theta-
graphs. In Proceedings of the 13th Algorithms and Data Structures Symposium (WADS 2013),
volume 8037 of Lecture Notes in Computer Science, pages 182–194, 2013.

[13] Prosenjit Bose, Jean-Lou De Carufel, Pat Morin, André van Renssen, and Sander Verdonschot.
Optimal bounds on theta-graphs: More is not always better. In Proceedings of the 24th
Canadian Conference on Computational Geometry (CCCG 2012), pages 305–310, 2012.

[14] Peter Rysavy. Wireless broadband and other fixed-wireless systems.
http://www.networkcomputing.com/netdesign/bb1.html. Accessed 30 June 2014.

[15] SATEL Oy. What is a radio modem? http://www.satel.com/products/what-is-a-radio-
modem. Accessed 30 June 2014.

[16] Pat Morin and Sander Verdonschot. On the average number of edges in theta graphs. In
Proceedings of the 11th Meeting on Analytic Algorithmics and Combinatorics (ANALCO14),
pages 121–132, 2014.

15

http://arxiv.org/abs/1001.2913

[17] Iyad Kanj. Geometric spanners: Recent results and open directions. In Proceedings of the
3rd International Conference on Communications and Information Technology (ICCIT 2013),
pages 78–82, 2013.

[18] Nawar M. El Molla. Yao spanners for wireless ad hoc networks. Master’s thesis, Villanova
University, 2009.

[19] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. Connections between
theta-graphs, Delaunay triangulations, and orthogonal surfaces. In Proceedings of the 36th In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG 2010), volume
6410 of Lecture Notes in Computer Science, pages 266–278, 2010.

[20] Mirela Damian and Kristin Raudonis. Yao graphs span Theta graphs. Discrete Mathematics,
Algorithms and Applications, 4(2):1250024, 2012.

[21] Prosenjit Bose, Mirela Damian, Karim Doüıeb, Joseph O’Rourke, Ben Seamone, Michiel Smid,
and Stefanie Wuhrer. π/2-angle Yao graphs are spanners. International Journal of Computa-
tional Geometry & Applications, 22(1):61–82, 2012.

[22] Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, André van Renssen, and Sander Verdonschot.
On the stretch factor of the Theta-4 graph. In Proceedings of the 13th Algorithms and Data
Structures Symposium (WADS 2013), volume 8037 of Lecture Notes in Computer Science,
pages 109–120, 2013.

[23] Luis Barba, Prosenjit Bose, Mirela Damian, Rolf Fagerberg, Wah Loon Keng, Joseph
O’Rourke, André van Renssen, Perouz Taslakian, Sander Verdonschot, and Ge Xia. New
and improved spanning ratios for Yao graphs. In Proceedings of the 30th Annual Symposium
on Computational Geometry (SoCG 2014), pages 30–39, 2014.

16

A Lower bound on the spanning ratio

Action Shortest path

1 Start with a vertex v1. -
2 Add v2 in Cu0 , such that v2 is arbitrarily close to the top right corner of

Tv1v2 .
v1v2

3 Remove edge (v1, v2) by adding two vertices, v3 and v4, arbitrarily close
to the counter-clockwise corners of Tv1v2 and Tv2v1 .

v1v4v2

4 Remove edge (v1, v4) by adding two vertices, v5 and v6, arbitrarily close
to the clockwise corner of Tv1v4 and the counter-clockwise corner of Tv4v1 .

v1v3v2

5 Remove edge (v2, v3) by adding two vertices, v7 and v8, arbitrarily close
to the clockwise corner of Tv2v3 and the counter-clockwise corner of Tv3v2 .

v1v6v4v2

6 Remove edge (v1, v6) by adding two vertices, v9 and v10, arbitrarily close
to the clockwise corner of Tv1v6 and the counter-clockwise corner of Tv6v1 .

v1v5v4v2

7 Remove edge (v4, v5) by adding two vertices, v11 and v12, arbitrarily close
to the counter-clockwise corner of Tv4v5 and the clockwise corner of Tv5v4 .

v1v5v6v4v2

8 Remove edge (v5, v6) by adding two vertices, v13 and v14, arbitrarily close
to the counter-clockwise corner of Tv5v6 and the clockwise corner of Tv6v5 .

v1v5v14v6v4v2

9 Remove edge (v5, v14) by adding two vertices, v15 and v16, arbitrarily
close to the counter-clockwise corner of Tv5v14 and the clockwise corner
of Tv14v5 .

v1v5v13v6v4v2

10 Remove edge (v6, v13) by adding two vertices, v17 and v18, arbitrarily
close to the clockwise corner of Tv6v13 and the counter-clockwise corner
of Tv13v6 .

v1v3v8v2

11 Remove edge (v2, v8) by adding a vertex v19 in the union of, and arbi-
trarily close to the intersection point of Tv2v8 and Tv8v2 .

v1v3v7v2

12 Remove edge (v3, v7) by adding two vertices, v20 and v21, arbitrarily close
to the counter-clockwise corner of Tv3v7 and the clockwise corner of Tv7v3 .

v1v5v12v2

13 Remove edge (v2, v12) by adding a vertex v22 arbitrarily close to the
counter-clockwise corner of Tv2v12 .

v1v10v6v4v2

14 Remove edge (v1, v10) by adding a vertex v23 in the union of Tv1v10 and
Tv10v1 , arbitrarily close to the top boundary of Cv101 , and such that v1
lies in Cv231 , arbitrarily close to the bottom boundary.

v1v5v12v4v2

15 Remove edge (v4, v12) by adding two vertices, v24 and v25, arbitrarily
close to the counter-clockwise corner of Tv4v12 and the clockwise corner
of Tv12v4 .

v1v5v13v14v6v4v2

16 Remove edge (v13, v14) by adding two vertices, v26 and v27, arbitrarily
close to the clockwise corner of Tv13v14 and the counter-clockwise corner
of Tv14v13 .

v1v9v18v6v4v2

17 Remove edge (v9, v18) by adding two vertices, v28 and v29, arbitrarily
close to the clockwise corner of Tv9v18 and the counter-clockwise corner
of Tv18v9 .

v1v5v16v11v4v2

18 Remove edge (v11, v16) by adding two vertices, v30 and v31, arbitrarily
close to the counter-clockwise corner of Tv11v16 and the clockwise corner
of Tv16v11 .

v1v23v10v6v4v2

17

v1

v2v3

v4

v5

v6

v7 v8

v9

v10

v11

v12

v13
v14

v15
v16

v17

v18

v19

v20

v21

v22v23

v24

v25

v26
v27

v28

v29

v30
v31

Figure 12: A θ5-graph with a spanning ratio that matches the lower bound. The shortest path
between v1 and v2 is indicated in orange.

18

	Introduction
	Connectivity
	Spanning ratio
	Lower bound
	Lower bound on -routing
	Conclusions
	Lower bound on the spanning ratio

