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Abstract. A geometric graph is angle-monotone if every pair of ver-
tices has a path between them that—after some rotation—is x- and y-
monotone. Angle-monotone graphs are

√
2-spanners and they are increas-

ing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-
monotone graphs in 2014 and proved that Gabriel triangulations are an-
gle-monotone graphs. We give a polynomial time algorithm to recognize
angle-monotone geometric graphs. We prove that every point set has a
plane geometric graph that is generalized angle-monotone—specifically,
we prove that the half-θ6-graph is generalized angle-monotone. We give a
local routing algorithm for Gabriel triangulations that finds a path from
any vertex s to any vertex t whose length is within 1 +

√
2 times the

Euclidean distance from s to t. Finally, we prove some lower bounds and
limits on local routing algorithms on Gabriel triangulations.

1 Introduction

A geometric graph has vertices that are points in the plane, and edges that are
drawn as straight-line segments, with the weight of an edge being its Euclidean
length. A geometric graph need not be planar. Geometric graphs that have
relatively short paths are relevant in many applications for routing and network
design, and have been a subject of intense research. A main scenario is that we
are given a point set and must construct a sparse geometric graph on that point
set with good shortest path properties.

If the shortest path between every pair of points has length at most t times
the Euclidean distance between the points, then the geometric graph is called
a t-spanner, and the minimum such t is called the spanning ratio. Since their
introduction by Paul Chew in 1986 [10], spanners have been heavily studied [18].
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Besides the existence of short paths, another issue is routing—how to find
short paths in a geometric graph. One goal is to find paths using local routing
where the path is found one vertex at a time using only local information about
the neighbours of the current vertex plus the coordinates of the destination.
A main example of such a method is greedy routing : from the current vertex
u take any edge to a vertex v that is closer (in Euclidean distance) to the
destination than u is. The geometric graphs for which greedy routing succeeds
in finding a path are called greedy drawings. These have received considerable
attention because of their potential ability to replace routing tables for network
routing, and because of the noted conjecture of Papadimitriou and Ratajczak [19]
(proved in [5, 16]) that every 3-connected planar graph has a greedy drawing.
One drawback is that a path found by greedy routing may be very long compared
to the Euclidean distance between the endpoints. Of course this is inevitable if
the geometric graph has large spanning ratio.

When a geometric graph is a t-spanner, we can ideally hope for a local routing
algorithm that finds a path whose length is at most k times the Euclidean
distance between the endpoints, for some k, where, of necessity, k ≥ t. The
maximum ratio, k, of path length to Euclidean distance is called the routing ratio.
For example, the Delaunay triangulation, which is a t-spanner for t ≤ 1.998 [21],
permits local routing with routing ratio k ≤ 5.90 [7]. It is an open question
whether the spanning ratio and routing ratio are equal, though there is a provable
gap for L1-Delaunay triangulations [7] and TD-Delaunay triangulations [9].

Other “good” paths. Recently, a number of other notions of “good” paths
in geometric graphs have been investigated. Alamdari et al. [2] introduced self-
approaching graphs, where any two vertices s and t are joined by a self-approaching
path—a path such that a point moving continuously along the path from s
to any intermediate destination r on the path always gets closer to r in Eu-
clidean distance. In an increasing-chord graph, this property also holds for the
reverse path from t to s. The self-approaching path property is stronger than the
greedy path property in two ways: it applies to every intermediate destination
r, and it requires that continuous motion (not just the vertices) along the path
to r always gets closer to r. The significance of the stronger property is that
self-approaching and increasing-chord graphs have bounded spanning ratios of
5.333 [15] and 2.094 [20], respectively. An important characterization is that a
path is self-approaching if and only if at each point on the path, there is a 90◦

wedge that contains the rest of the path [15].

Angelini et al. [4] introduced monotone drawings, where any two vertices s
and t are joined by a path that is monotone in some direction. This is a natural
desirable property, but not enough to guarantee a bounded spanning ratio.

Angle-monotone paths. In this paper we explore properties of another class
of geometric graphs with good path properties. These are the angle-monotone
graphs which were first introduced by Dehkordi, Frati, and Gudmundsson [12] as
a tool to investigate increasing-chord graphs. (We note that Dehkordi et al. [12]
did not give a name to their graph class.)



A polygonal path with vertices v0, v1, . . . , vn is β-monotone for some angle
β if the vector of every edge (vi, vi+1) lies in the closed 90◦ wedge between
β− 45◦ and β+ 45◦. (In the terminology of Dehkordi et al. [12] this is a θ-path.)
In particular, an x-y-monotone path (where x and y coordinates are both non-
decreasing along the path) is a β-monotone path for β = 45◦ (measured from the
positive x-axis). A path is angle-monotone if there is some angle β for which it is
β-monotone. To visualize this, note that a path is angle-monotone if and only if it
can be rotated to be x-y-monotone. An angle-monotone path is a special case of
a self-approaching path where the wedges containing the rest of the path all have
the same orientation. See Figure 1. This implies that an angle-monotone path
is also angle-monotone when traversed in the other direction, and thus, has the
increasing-chord property. Observe that angle-monotone paths have spanning
ratio

√
2—this is because x-y-monotone paths do.

s t s

t

β

Fig. 1. The difference between a self-approaching st path (left) with 90◦ wedges each
containing the rest of the path, and an angle-monotone path (right) where the 90◦

wedges all have the same orientation β.

A geometric graph is angle-monotone if for every pair of vertices u, v, there is
an angle-monotone path from u to v. Note that the angle β may be different for
different pairs u, v. Dehkhori et al. [12] introduced angle-monotone graphs, and
proved that they include the class of Gabriel triangulations (triangulations with
no obtuse angle). Their main goal was to prove that any set of n points in the
plane has a planar increasing-chord graph with O(n) Steiner points and O(n)
edges. Given their result that Gabriel graphs are increasing chord, this follows
from a result of Bern et al. [6] that any point set can be augmented with O(n)
points to a point set whose Delaunay triangulation is Gabriel.

The notion of angle-monotone graphs can be generalized to wedges of angle
γ different from 90◦. (A precise definition is given below.) We call these angle-
monotone graphs with width γ, or generalized angle-monotone graphs. For γ <
180◦, they still have bounded spanning ratios.

Results. The main themes we explore are: Which geometric graphs are angle-
monotone? Can we create a sparse (generalized) angle-monotone graph on any
given point set? Do angle-monotone graphs permit local routing?



Our first main result is a polynomial time algorithm to test if a geometric
graph is angle-monotone. This is significant because it is not known whether in-
creasing chord graphs can be recognized in polynomial time (or whether the prob-
lem is NP-hard). Our algorithm extends to generalized angle-monotone graphs
for any width γ < 180◦.

Our next result is that for any point set in the plane, there is a plane geometric
graph on that point set that is angle-monotone with width 120◦. In particular,
we prove that the half-θ6-graph has this property. Width 90◦ cannot always
be achieved because it would imply spanning ratio

√
2 which is known to be

impossible for some point sets, as discussed below under Further Background.
The rest of the paper is about local routing algorithms, where we concentrate

on a subclass of angle-monotone graphs, namely the Gabriel triangulations. We
give a local routing algorithm for Gabriel triangulations that achieves routing
ratio 1+

√
2 ≈ 2.41. This is better than the best known routing ratio for Delaunay

triangulations of 5.90 [7]. Also, our algorithm is simpler. The algorithm succeeds,
i.e. finds a path to the destination, for any triangulation, and we prove that the
algorithm has a bounded routing ratio for triangulations with maximum angle
less than 120◦. For Delaunay triangulations, we prove a lower bound on the
routing ratio of 5.07, but leave as an open question whether the algorithm ever
does worse. Finally, we give some lower bounds on the routing ratio of local
routing algorithms on Gabriel triangulations, and we prove that no local routing
algorithm on Gabriel triangulations can find self-approaching paths.

As is clear from this outline, we leave many interesting open questions, some
of which are listed in the Conclusions section.

Further Background. The standard Delaunay triangulation is not self-ap-
proaching in general [2], and therefore not angle-monotone.

The Gabriel graph of point set P is a graph in which for every edge (u, v)
the circle with diameter uv contains no points of P . A Gabriel graph that is
a triangulation is called a Gabriel triangulation. Any Gabriel triangulation is a
Delaunay triangulation. Observe that a triangulation is Gabriel if and only if it
has no obtuse angles. Not every point set has a Gabriel triangulation, e.g. three
points forming an obtuse triangle.

There are several results on constructing self-approaching/increasing-chord
graphs on a given set of points. Alamdari et al. [2] constructed an increasing
chord network of linear size using Steiner points, and Dehkordi et al. [12] im-
proved this to a plane network. It is an open question whether every point set
admits a plane increasing-chord graph without adding Steiner points. However,
for the more restrictive case of angle-monotone graphs, the answer is no: any
angle-monotone graph has spanning ratio

√
2 but there is a point set (specifi-

cally, the vertices of a regular 23-gon) for which any planar geometric graph has
spanning ratio at least 1.4308 [13]. An earlier example was given by Mulzer [17].

Preliminaries and Definitions. A polygonal path with vertices v0, v1, . . . , vn
is β-monotone with width γ for some angles β and γ with γ < 180◦ if the
vector of every edge (vi, vi+1) lies in the closed wedge of angle γ between β −
γ
2 and β + γ

2 . When we have no need to specify β, we say that the path is



angle-monotone with width γ, or “generalized angle-monotone”. A path that is
generalized angle-monotone is a generalized self-approaching path [1] and thus
has bounded spanning ratio depending on γ [1]. But in fact, we can do better:

Observation 1 [proof in Appendix A] The spanning ratio of an angle-monotone
path with width γ < 180◦ is at most 1/ cos γ2 .

A geometric graph is angle-monotone with width γ if for every pair of vertices
u, v, there is an angle-monotone path with width γ from u to v. When we have
no need to specify γ, we say that the graph is “generalized angle-monotone”.

Note that in an angle-monotone path (with width 90◦) the distances from
v0 to later vertices form an increasing sequence. Furthermore, any β-monotone
path from u to v lies in a rectangle with u and v at opposite corners and with
two sides at angles β±45◦, and the union of such rectangles over all β ∈ [0, 360◦)
forms the disc with diameter uv. (See Figure 5 in Appendix.) This implies:

Lemma 1. Any angle-monotone path from u to v lies inside the disc with di-
ameter uv.

2 Recognizing Angle-monotone Graphs

In this section we give an O(nm2) time algorithm to test if a geometric graph
with n vertices and m edges is angle-monotone. The idea is to look for angle-
monotone paths from a node s to all other nodes, and then repeat over all choices
of s. For a given source vertex s, the algorithm explores nodes u in non-decreasing
order of their distance from s. At each vertex u we store information to capture
all the possible angles β for which there is a β-monotone path from s to u. We
show how to propagate this information along an edge from u to v.

We begin with some notation. We will measure angles counterclockwise from
the positive x-axis, modulo 360◦. To any ordered pair u, v of vertices (points) of
our geometric graph we associate the vector v − u and we denote its angle by
α(u, v). If S is a set of angles that lie within a wedge of angle less than 180◦, then
we define the minimum of S to be the most clockwise angle, and the maximum
of S to be the most counter-clockwise angle. More formally, α is the minimum
of S if for any other β ∈ S, β − α ∈ [0, 180◦), and similarly for maximum.

Although there may be exponentially many angle-monotone paths from s
to u, each such path has two extreme edges. More precisely, if P is an angle-
monotone path from s to u, then the angles, α(e), e ∈ P , lie in a 90◦ wedge, and
so this set has a minimum and maximum that differ by at most 90◦. We will
store a list of all such min-max pairs with vertex u. Each pair defines a wedge
of at most 90◦. Since each pair is defined by two edges, there are at most O(m2)
such pairs (though we will show below that we only need to store O(m) of them).

The algorithm starts off by looking at every edge (s, u) and adding the pair
(α(s, u), α(s, u)) to u’s list. Then the algorithm explores vertices u 6= s in non-
decreasing order of their distance from s. To explore vertex u, consider each edge
(u, v) and each pair (α(e), α(f)) stored with u, and update the list of pairs for



vertex v as follows. If α(u, v) is within 90◦ of α(e) and within 90◦ of α(f) then
add to v’s list the pair (min{α(u, v), α(e)},max{α(u, v), α(f)}).

If ever the algorithm tries to explore a vertex that has no pairs stored with
it, then halt—the graph is not angle-monotone. To justify correctness we prove:

Lemma 2. When the algorithm has explored all the vertices closer to s than v,
then there exists an angle-monotone path from s to v with extreme edges e and
f if and only if the pair (α(e), α(f)) is in v’s list.

Proof. The proof is by induction on the distance from s to v.
For the “only if” direction, let P be an angle-monotone path from s to v with

extreme edges e and f , and let u be the penultimate vertex of P . The subpath
of P from s to u is an angle-monotone path. Suppose its extreme edges are e′

and f ′ where e = e′ or f = f ′ or both. Now, u is closer to s so by induction the
pair (α(e′), α(f ′)) is in u’s list. Because P is angle-monotone, α(u, v) is within
90◦ of α(e′) and α(f ′). Thus the update step applies. During the update step we
add the angle α(u, v) to the pair (α(e′), α(f ′)), which gives the pair (α(e), α(f)).
Thus we add the pair (α(e), α(f)) to v’s list.

For the “if” direction, suppose that the pair (α(e), α(f)) is in v’s list. This
pair was added to v’s list because of an update from some vertex u closer to
s applied to some pair (α(e′), α(f ′)) in u’s list. By induction, there exists an
angle-monotone path P from s to u with extreme edges e′ and f ′, and because
the update is only performed when α(u, v) is within 90◦ degrees of α(e′) and
α(f ′) therefore the edge (u, v) can be added to P to produce an angle-monotone
path with extreme edges e and f . ut

To improve the efficiency of the algorithm we observe that it is redundant
to store at a vertex v a pair whose wedge contains the wedge of another pair.
Therefore, we only need to store O(m) pairs at each vertex, at most one pair
whose first element is α(e) for each edge e. We can simply keep with each vertex
v a vector indexed by edges e, in which we store the minimal pair (α(e), α(f))
(if any) associated with v so far. Finally, observe that during the course of
the algorithm, each edge (u, v) is handled once in an update step. With the
refinement just mentioned, handling an edge costsO(m). Therefore the algorithm
runs in time O(m2) for a single choice of s, and in time O(nm2) overall.

The algorithm can be generalized to recognize angle-monotone graphs of
width γ for fixed γ < 180◦. It is no longer legitimate to explore vertices in order
of distance from s, since a generalized angle-monotone path will not necessarily
respect this ordering. However, we can run the algorithm in phases, where phase
i captures all the angle-monotone paths of width γ that start at s and have at
most i edges. Since no angle-monotone path can repeat a vertex, there are at
most n − 1 edges in any angle-monotone path. Thus we need n − 1 phases. In
each phase, for each directed edge (u, v) we update each pair (α(e), α(f)) stored
at u as follows. If α(u, v) is within γ of α(e) and within γ of α(f) then add to
v’s list the pair (min{α(u, v), α(e)},max{α(u, v), α(f)}). In this way, each of the
n − 1 phases takes time O(m2), so the total run-time of the algorithm over all
choices of s becomes O(n2m2).



3 A Class of Generalized Angle-Monotone Graphs

In this section we show that every point set in the plane has a plane geometric
graph that is angle-monotone with width 120◦. In particular, we will prove that
the half-θ6-graph has this property. As noted in the Introduction, there are point
sets for which no plane graph is angle-monotone with width 90◦. It is an open
question to narrow this gap and find the minimum angle γ for which every point
set has a plane graph that is angle-monotone with width γ (and thus spanning
ratio 1/ cos γ2 ).

We first define the half-θ6-graph. For each point u ∈ P , partition the plane
into 60◦ cones with apex u, with each cone defined by two rays at consecutive
multiples of 60◦ from the positive x-axis. Label the cones C0, C1, C2, C3, C4, and
C5 in clockwise order around u, starting from the cone containing the positive
y-axis. See Figure 2(a).

For two vertices u and v the canonical triangle Tuv is the triangle bounded
by: the cone of u that contains v; and the line through v perpendicular to the
bisector of that cone. See Figure 2(b). Notice that if v is in an even cone of u, then
u is in an odd cone of v. We build the half-θ6-graph as follows. For each vertex u
and each even i = 0, 2, 4, add the edge uv provided that v is in the Ci cone of u
and Tuv is empty. We call v the Ci-neighbour of u. For simplicity, we assume that
no two points lie on a line parallel to a cone boundary, guaranteeing that each
vertex connects to exactly one vertex in each even cone. Hence the graph has
at most 3n edges in total. The half-θ6-graph is a type of Delaunay triangulation
where the empty region is an equilateral triangle in a fixed orientation as opposed
to a disk [8]. It can be computed in O(n log n) time [18].

C0

C1

C3

C4

C5

u
C2

u

v

(a) (b)

u

v

(c)

T uv
u‘

v ‘

x

Fig. 2. (a) 6 cones originating from point u, (b) Canonical triangle Tuv, (c) path σu

(solid) with its empty canonical triangles shaded, path σv (dashed) and their common
vertex x.

To prove angle-monotonicity properties of the half-θ6-graph, we use an idea
like the one used by Angelini [3]. His goal was to show that every abstract tri-
angulation has an embedding that is monotone, i.e. angle-monotone with width
180◦. (The same result was obtained in [14] with a different proof.) Angelini did
this by showing that the Schnyder drawing of any triangulation is monotone,



and in fact, upon careful reading, his proof shows that any Schnyder drawing is
angle-monotone with the smaller width 120◦. Schnyder drawings are a special
case of half-θ6-graphs [8] so it is not surprising that Angelini’s proof idea extends
to the half-θ6-graph in general.

Theorem 1. The half-θ6-graph is angle-monotone with width 120◦.

Proof. We must prove that for any points u and v, there is an angle-monotone
path from u to v of width 120◦. Assume without loss of generality that v is in
the C0 cone of u. See Figure 2(b).

Our path from u to v will be the union of two paths, each of which is angle-
monotone of width 60◦. We begin by constructing a path σu from u in which
each vertex is joined to its C0 neighbour. This is a β-monotone path of width
60◦ for β = 90◦. If the path contains v we are done, so assume otherwise. Let u′

be the last vertex of the path that lies in Tuv. Note that v cannot lie in the C0

cone of u′. Let S be the subpath of σu from u to u′, together with the C0 cone
of u′. Then S separates Tuv into two parts. Suppose that v lies in the right-hand
part (the other case is symmetric). See Figure 2(c).

Next, construct a path σv from v in which each vertex is joined to its C4

neighbour. This is a β-monotone path of width 60◦ for β = 210◦.
We now claim that σu and σv have a common vertex x. Then as our final

path from u to v we take the portion of σu from u to x followed by the portion
of σv backwards from x to v. Since the reverse of σv is β-monotone with width
60◦ for β = 30◦, the final path is β-monotone with width 120◦ for β = 60◦.

It remains to prove that x exists. Let v′ be the last vertex of σv that lies
strictly to the right of S. Let u′′ be the last vertex of σu that lies below v′. We
claim that u′′ is the C4 neighbour of v′, and thus that u′′ provides our vertex
x. Let T be the empty canonical triangle from u′′ to its C0-neighbour (or the
empty C0 cone of u′′ in case u′′ has no C0-neighbour). First note that u′′ is in
the C4 cone of v′—otherwise v′ would be in T . Next note that Tv′u′′ is empty—
otherwise v would have a C4-neighbour that is in T or is to the right of S. ut

Theorem 1 implies that the spanning ratio of the half-θ6-graph is 2, which
was already known [11]. The best routing ratio achievable for the half-θ6-graph is
5/
√

3 ≈ 2.887 [9]. (This was the first proved separation between spanning ratio
and routing ratio.) Since angle-monotone paths of width 120◦ have spanning
ratio 2, this implies that no local routing algorithm can compute angle-monotone
paths with width 120◦ on the half-θ6-graph.

4 Local Routing in Gabriel Triangulations

In this section we give a simple local “angle” routing algorithm that finds a path
from s to t in any triangulation. Like previous algorithms, the path walks only
along edges of triangles that intersect the line segment st. The novelty is that
the next edge of the path is chosen based on angles relative to the vector st.



The details of the algorithm are in Section 4.1. In Section 4.2 we prove
that the algorithm has routing ratio 1 +

√
2 on Gabriel graphs, and discuss its

behaviour on Delaunay triangulations. In Section 4.3 we give lower bounds on
the routing and competitive ratios of local routing algorithms on Gabriel graphs.

4.1 Local Angle Routing

Our algorithm is simple to describe: Suppose we want a route from s to t in
a triangulation. Orient st horizontally, t to the right. Suppose we have reached
vertex p. Consider the last (rightmost) triangle that is incident to p and intersects
the line segment st. The triangle has two edges incident to p. Of these two edges,
take the one that has the minimum angle to the horizontal ray from p to the
right. See Figure 3. Pseudo-code can be found below in Algorithm 1. Note that in
the pseudo-code, the angle test is equivalently replaced by two tests, identifying
steps of type A and B for easier case analysis. For an example of a path computed
by the algorithm, see Figure 4. Observe that the algorithm always succeeds in
finding a route from s to t because it always advances rightward in the sequence
of triangles that intersect line segment st.

s t

p

a

b

s t

p
a

b

r
r

Fig. 3. Local routing from s to t. At vertex p, with pab being the rightmost triangle
incident to p that intersects line segment st, we route from p to a because the (unsigned)
angle apr is less than angle bpr. A step of type A is shown on the left and a step of
type B on the right.

4.2 Analysis of the Algorithm

In this section we will prove that the above algorithm has routing ratio exactly
1 +
√

2 on Gabriel triangulations, which have maximum angle at most 90◦. In
the last part of the section we generalize the analysis to triangulations with a
larger maximum angle, and we show that the routing ratio is at least 5.07 on
Delaunay triangulations.

The intuition for bounding the routing ratio on Gabriel triangulations is to
replace each segment of the route by the most extreme segment possible. See
Figure 4. Any step of type B is replaced by a 45◦ segment plus a horizontal
segment. Any step of type A is replaced by a vertical segment plus a horizontal
segment. Vertical segments are the bad ones, but each vertical must be preceded



Algorithm 1: Local angle routing

1 p← s
2 while p 6= t do
3 Let T = pab be the rightmost triangle containing p that intersects segment

st, with p and a on the same side of line st.
4 if a is closer to line st than p then /* step of type A */

5 p← a
6 else /* step of type B */

7 if |slope(pa)| ≤ |slope(pb)| then
8 p← a
9 else

10 p← b

s t

p1

q2

p2

p3

p4

q4

q5

p5q3q1

Fig. 4. Example of route computed by Algorithm 1 (heavy blue path). In dotted red,
a longer route obtained by replacing each segment of the route by the most extreme
angle. Both routes are within (1 +

√
2) of ||st||.

by 45◦ segments, which means that instead of travelling 1 unit horizontally (the
optimum route) we have travelled

√
2 along a 45◦ segment plus 1 vertically,

giving us the 1 +
√

2 ratio. We now give a more formal proof.

For each edge e = (pi, pi+1) of the path, let dx(e) = ||x(pi) − x(qp+1)|| and
dy(e) = ||y(pi)− y(pi+1)||. Let A (resp. B) be the set of edges of the path where
the algorithm makes a step of type A (resp. type B). (Context will distinguish
edge sets from steps.) Let xB =

∑
e∈B dx(e) and xA =

∑
e∈A dx(e).

Lemma 3. On any Gabriel triangulation the path computed by Algorithm 1 is
x-increasing.

Proof. Let us show that each step is x-increasing. Consider a step from p, with
a and b as defined in Algorithm 1. Assume without loss of generality that p and
a are above line st and b is below. Since T is the last triangle incident to p that
intersects st, the clockwise ordering of T is pab. Refer to Figure 3.



If the algorithm takes a step of type B then a is above p (in y coordinate)
and b is below p. Since ∠bpa ≤ 90◦, thus x(a) and x(b) are greater than x(p). If
the algorithm takes a step of type A then since b is below st and a is above st
and ∠bap ≤ 90◦, thus x(a) is greater than x(p). ut

Theorem 2. On any Gabriel triangulation, Algorithm 1 has a routing ratio of
1 +
√

2 and this bound is tight.

Proof. We first bound
∑
e∈B ||e||. Observe that each edge in B forms an angle

with the horizontal line through p that is at most 45◦. Thus
∑
e∈B dy(e) ≤ xB

and
∑
e∈B ||e|| ≤

√
2xB .

We next bound
∑
e∈A ||e||. Observe that edges in A move us closer to the line

st, and must be balanced by previous steps (of type B) that moved us farther
from the line st. This implies that

∑
e∈A dy(e) ≤

∑
e∈B dy(e) ≤ xB (where the

last step comes from the first observation). Since ||e|| ≤ dx(e) + dy(e), thus∑
e∈A ||e|| ≤ xA +

∑
e∈A dy(e) ≤ xA + xB .

Putting these together, the length of the path is bounded by
∑
e∈A ||e|| +∑

e∈B ||e|| ≤ xA + xB +
√

2xB ≤ (1 +
√

2)(xA + xB). Finally, by Lemma 3,

xA + xB = ||st||, so this proves that the routing ratio is at most (1 +
√

2).
An example to show that this analysis is tight is given in Appendix B. ut

We conclude this section with two results on the behaviour of the routing
algorithm on other triangulations. Proofs are deferred to Appendix B.

Theorem 3. In a triangulation with maximum angle α < 120◦ Algorithm 1 has
a routing ratio of (sinα+ sin α

2 )/ sin 3α
2 and this bound is tight.

Theorem 4. The routing ratio of Algorithm 1 on Delaunay triangulation is
greater than 5.07.

We believe that the routing ratio of Algorithm 1 on Delaunay triangulations
is close to 5.07, but leave that as an open question. We remark that Algorithm 1
is different from the generalization of Chew’s Routing Algorithm for Delaunay
triangulations [10] (cf. the algorithm described in [7]).

4.3 Limits of Local Routing Algorithms on Gabriel Triangulations

In this section we prove some limits on local routing on Gabriel triangulations.
Proofs are deferred to Appendix B.

A routing algorithm on a geometric graph G has a competitive ratio of c
if the length of the path produced by the algorithm from any vertex s to any
vertex t is at most c times the length of the shortest path from s to t in G, and
c is the minimum such value. (Recall that the routing ratio compares the length
of the path produced by the algorithm to the Euclidean distance between the
endpoints. Thus the competitive ratio is less than or equal to the routing ratio.)

A routing algorithm is k-local (for some integer constant k > 0) if it makes
forwarding decisions based on: (1) the k-neighborhood in G of the current posi-
tion of the message; and (2) limited information stored in the message header.



Theorem 5. Any k-local routing algorithm on Gabriel triangulations has rout-
ing ratio at least 1.4966 and competitive ratio at least 1.2687.

Although Gabriel triangulations are angle-monotone [12], Theorem 5 shows
that no local routing algorithm can compute angle-monotone paths since that
would give routing ratio

√
2. The following theorem tells us that even less con-

strained paths cannot be computed locally:

Theorem 6. There is no k-local routing algorithm on Gabriel triangulations
that always finds self-approaching paths.

5 Conclusions

We conclude this paper with some open questions.

1. What is the minimum angle γ for which every point set has a plane geometric
graph that is angle-monotone with width γ (and thus has spanning ratio
1/ cos γ2 )? We proved γ ≤ 120◦, and it is known that γ > 90◦.

2. Is there a local routing algorithm with bounded routing ratio for any angle-
monotone graph? Any increasing-chord graph?

3. We bounded the routing ratio of our local routing algorithm on triangula-
tions based on the maximum angle in the triangulation, but how does this
relate to the property of being generalized angle-monotone? If a triangula-
tion has bounded maximum angle, is it generalized angle-monotone? The
only thing known is that maximum angle 90◦ implies angle-monotone with
width 90◦ [12].

4. Is the standard Delaunay triangulation generalized angle-monotone? In par-
ticular, proving that the Delaunay triangulation is angle-monotone with
width strictly less than 120◦ would provide a different proof that the Delau-
nay triangulation has spanning ratio less than 2 [21]. It is known that the
Delaunay triangulation is not angle-monotone with width 90◦ (see Section 1).

5. How does our local routing algorithm behave on standard Delaunay trian-
gulations? We proved a lower bound of 5.07 on the routing ratio. We believe
the routing ratio is close to this value, but have no upper bound.
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A Omitted Proofs for Section 1

Proof (Proof of Observation 1). In the worst case we travel the two equal sides
of an isoceles triangle with base length 1 and two angles of γ/2. If ` is the side
length, the ratio is 2`, and we have cos γ2 = 1

2/`. Thus the ratio is 1/ cos γ2 . ut

u

v

β

Fig. 5. Illustration of Lemma 1. A β-monotone path (in blue) inside the rectangle with
both sides at angles β ± 45◦. This rectangle lies inside the disc of diameter uv.

B Omitted Proofs for Section 4

Proof (Proof of Theorem 2). To complete the proof, we show an example for
which our algorithm gives a routing ratio of 1 +

√
2. Consider the configuration

shown in Figure 6. It is a Gabriel triangulation and the route computed by the
algorithm is as shown. Observe that the size of the leftmost circle can be made
arbitrarily small compared to ||st||. Hence, when s = (0, 0) and t = (1, 0), the
route can be arbitrarily close to the polyline s→ (1, 1)→ t. Thus we can build
a point set such that the length of the computed route is as close to 1 +

√
2 as

we want. ut

Proof (Proof sketch for Theorem 3). Following the intuitive justification for the
routing ratio of Algorithm 1 on Gabriel triangulations, lengthen the route by
replacing each segment of the route by the most extreme segment possible. Any
step of type B is replaced by a segment at angle α

2 plus a horizontal segment. Any
step of type A is replaced by a segment at angle α plus a horizontal segment.
In all cases angles are measured from the forward horizontal. See Figure 7.
Segments of type A are the bad ones, but each such segment must be preceded



s
t

q1
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p2

Fig. 6. Example that gives a lower bound on the routing ratio of our routing algorithm
on Gabriel triangulations. The route found by the algorithm is drawn as a heavy blue
path.

by angle α
2 segments, which means that instead of travelling 1 unit horizontally

(the optimum route) we have travelled on a segment of angle α
2 and then on

a segment of angle −α (both angles measured w.r.t the forward horizontal).
Let these segments have lengths `1 and `2 respectively. In the triangle formed
by these three segments, the `1 segment is opposite angle α, the `2 segment
is opposite angle α

2 and the unit horizontal is opposite angle 180◦ − 3α
2 . We

need 180◦ − 3α
2 > 0, i.e. α < 120◦. By the sine law, `1 = sinα/ sin 3α

2 and
`2 = sin α

2 / sin 3α
2 . Thus the distance travelled is `1 +`2 = (sinα+sin α

2 )/ sin 3α
2 .

To show that the bound is tight, we generalize the example of Figure 6. The
resulting example is shown in Figure 8. ut
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Fig. 7. Intuition for general routing.
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Fig. 8. The worst case situation for general routing.

Proof (Proof of Theorem 4). Let us explain the example of Figure 9. This De-
launay triangulation is defined in the following way: The first triangle sp1q1 is
such that the slope of line sp1 is slightly smaller than the slope of sq1, so we
route to p1. Let q2 be a point on the empty circle C0 containing s, p1 and q1
that is slightly below the x-axis. Let C1 be the circle that goes through p1 and
q2 such that the tangent of C1 at q2 is horizontal. Let p2 be a point on C1 such
that the slope of p1p2 is slightly smaller than the slope of p1q2. We place point t
at the rightmost intersection of C1 and the x-axis, and we place vertices densely
on the arc of C1 between p2 and t. The route in the example of Figure 9 has
length about 5||st||. Moving p1 closer and closer to s leads to 5.07 as a lower
bound on the routing ratio of Algorithm 1 on Delaunay triangulations. ut

Proof (Proof of Theorem 5).
Let us consider the triangulation of Figure 10. This triangulation is defined

as follows: all the triangles intersecting the segment st are right triangles. The
first one is isosceles and symmetric with respect to the x-axis. Then we have a
fan of 2k − 2 triangles each having a horizontal side and pointing alternately
upward and downward. Let q and q′ be respectively the upper rightmost and
lower rightmost points of this set of triangles. The next triangle qq′B is such
that the angle ∠q′qB = 22.5◦. The point t is on the intersection of the line q′B
and the x-axis. We complete the triangulation with two triangles, qBA and ABt
having common hypotenuse AB. Finally we make the fan of of 2k − 2 triangles
arbitrarily thin and we assume that ||qq′|| = 2.

Now let us consider any deterministic k-local routing algorithm. We consider
two triangulations: The first is the one described above (and shown in Fig. 10)
and the second one is obtained from the first by reflecting over the x-axis the
part of the triangulation that lies to the right of qq′. No deterministic k-local
routing algorithm computing a path from s to t can distinguish between the two
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Fig. 9. Example that gives a 5.0 lower bound on the routing ratio of Algorithm 1 on
Delaunay triangulations.

point sets until a vertex less than k hops away from q or q′ is reached. Let q′′ be
the vertex k hops away from q or q′ that is reached by the algorithm on either
triangulation.

Since the fan is arbitrarily thin, q′′ can be assumed to be arbitrarily close to
q or to q′.

Each case, q or q′, leads to a non-optimal path for one of the point sets;
we only consider the first case as the second will follow by symmetry. If q′′ is
arbitrarily close to q then, for the point set shown in Fig. 10, the shortest paths
from q′′ to t go through A or B and are of length ||qB|| + ||Bt|| = 2||qB|| =
4 cos(22.5◦). Moreover ||sq|| =

√
2 and ||st|| = 1+1/ tan(22.5◦). Hence the length

of the complete path computed by the algorithm is at least
√
2+4 cos(22.5◦)

1+1/ tan(22.5◦) ||st|| ≈
1.496605761, which proves the routing ratio lower bound. The shortest route
from s to t goes through q′ and is of length ||sq′||+ ||q′B||+ ||q′t|| =

√
2 + (1−

cos(45◦))/ sin(22.5◦)+2 cos(22.5◦). Thus a lower bound on the competitive ratio

is
√
2+4 cos(22.5◦)√

2+(1−cos(45◦))/ sin(22.5◦)+2 cos(22.5◦)
≈ 1.268761101. ut

Proof (Proof sketch for Theorem 6). We apply reasoning as in the previous proof,
but this time on the triangulation of Figure 11, where the fat segment qq′ rep-
resents a fan of 2k− 2 thin triangles. As before we assume that the algorithm is
routing through q (if not we consider the symmetric triangulation with respect
to the x-axis). Moving from s to q the distance toward B is not decreasing.
Hence a self approaching path that goes through the edge sq cannot go through
the vertex B. Hence once at vertex q the only possibility is to use the edge qA.
But moving along the edge qA the distance toward t is not decreasing. Hence,
there is no self approaching path from s to t that goes through q.

So for any deterministic k-local routing algorithm, there exists a triangulation
on which the algorithm will not find a self-approaching path. ut
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Fig. 10. Example for lower bounds on the routing ratio and competitive ratio of any
k-local routing algorithm on Gabriel triangulations.
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Fig. 11. Example of Gabriel triangulation used to show that no k-local routing algo-
rithm can compute self-approaching paths.
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