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Realizing Farthest-Point Voronoi Diagrams

Therese Biedl ∗ Carsten Grimm †‡ Leonidas Palios § Jonathan Shewchuk ¶ Sander Verdonschot‖

Abstract1

The farthest-point Voronoi diagram of a set of n sites2

is a tree with n leaves. We investigate whether arbi-3

trary trees can be realized as farthest-point Voronoi di-4

agrams. Given an abstract ordered tree T with n leaves5

and prescribed edge lengths, we produce a set of n sites6

S in O(n) time such that the farthest-point Voronoi di-7

agram of S represents T . We generalize this algorithm8

to smooth strictly convex symmetric distance functions.9

Furthermore, when given a subdivision Z of Rk, we10

check in linear time whether Z realizes a k-dimensional11

farthest-point Voronoi diagram when k is a constant.12

1 Background13

In 1999, Liotta and Meijer posed the following question:14

Given a tree T , can one draw T in the plane so that the15

resulting embedding is the Voronoi diagram of some set16

of sites in the plane? They consider the ordered model :17

The tree T is given as an abstract ordered tree, i.e., as18

a set of vertices, a set of edges, and a cyclic order of the19

of the edges incident to each vertex. We are searching20

for a set of sites S such that the vertices and edges of21

the Voronoi diagram of S form an embedding of T that22

respects the cyclic order of the edges around each vertex23

in T . Liotta and Meijer showed that any ordered tree24

can be realized as a Voronoi diagram [7, 8].25

Quite related to this is the Inverse Voronoi Problem,26

which asks the question in the geometric model. Here we27

are given a tree (or more generally a graph) and addi-28

tionally a drawing of it, i.e., coordinates for all interior29

nodes and rays to infinity for all edges to leaves. We30

are searching for a set of sites S such that the Voronoi31

diagram of S is exactly this tree with this drawing. The32
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problem was introduced by Ash and Bolker [4] and the33

question can be answered in linear time [6], even if the34

tree has vertices of degree exceeding three [5].35

A number of variants have been studied. Aloupis et36

al. [3] asked an extension-version of the Inverse Voronoi37

Problem. Other papers studied the straight skeleton,38

rather than the Voronoi diagram. Aichholzer et al. re-39

solved this for the ordered-model [2], and (with a differ-40

ent set of co-authors) for the ordered-model where edge-41

directions are given [1]. The Inverse Straight Skeleton42

Problem was resolved by Biedl et al. [5].43

Our results: We ask whether trees can be realized by44

yet another computational geometry construct, namely,45

the farthest-point Voronoi-diagram (defined below). We46

consider both models and obtain the following results.47

Ordered Model: Similarly as in [3, 8], for the ordered48

model the answer is always “yes”. Thus for any given49

ordered tree T , we can find a set of sites S in convex50

position such that the farthest-point Voronoi diagram of51

S is T , with the edges in the specified order. In contrast52

to previous papers, we can also realize edge-lengths, i.e.,53

if each interior edge e is assigned a positive weight w(e),54

then we can find sites so that e has length w(e).55

We give the construction first for the “normal” (Eu-56

clidean) farthest-point Voronoi-diagram, and then gen-57

eralize it to any convex distance-function for which the58

unit circle is smooth and strictly convex.59

Geometric Model: Similarly as in [5, 6], for the ge-60

ometric model not any geometric tree can be realized.61

Nonetheless, one can test in polynomial time whether62

for a given geometric tree T there exists a set of points63

whose farthest-point Voronoi diagram realizes T . If so,64

then the set of sites is not always unique, but can be65

described as the solution space of a linear program.66

We describe this result for arbitrary fixed dimensions.67

For a given convex subdivision Z of Rk with n cells, we68

formulate a linear program with k variables that tests69

whether there exists a set of n sites whose farthest-point70

Voronoi diagram realizes Z. This linear program can be71

solved in linear time if k is constant [10].72

2 Preliminaries73

Let S be a set of sites and let p be a point in the plane.74

Let FS(p) be the smallest disc centered at p that con-75

tains all sites in S; we call this the full disc of p with76
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respect to S. For a set S of sites, the farthest-point77

Voronoi diagram of S, denoted by F-Vor(S), is defined78

as follows: A point p is a vertex of F-Vor(S) if and79

only if FS(p) passes through three or more sites in S.80

A point p is located in the relative interior of an edge81

of F-Vor(S) if and only if FS(p) passes through exactly82

two sites in S. F-Vor(S) divides the plane into regions,83

and one easily verifies that each region consists of all84

points that are farthest from one site s. We say that85

site s is relevant if there is a non-empty region of points86

for which s is the farthest point, and proper if it there87

exists a point p for which s is the unique farthest point.188

The structure of the farthest-point Voronoi diagram89

is closely related to the convex hull CH(S) of S: (i) A90

site s ∈ S is proper if and only if s is an extreme point91

of S. (ii) Two sites s and s′ are adjacent along CH(S) if92

and only if the farthest-point Voronoi regions of s and93

s′ have an unbounded edge of F-Vor(S) in common.94

(iii) The circular order of the sites along CH(S) is the95

circular order of the farthest-point Voronoi regions of S.96

3 Ordered Trees97

Consider the farthest-point Voronoi diagram F-Vor(S)98

of a set S of sites in the plane. We introduce sym-99

bolic vertices as endpoints for the unbounded edges of100

F-Vor(S). We say that F-Vor(S) is a realization of an101

ordered tree T if T is isomorphic to the abstract or-102

dered tree formed by the Voronoi vertices, the symbolic103

vertices and the Voronoi edges of F-Vor(S). In the fol-104

lowing, we consider only ordered trees without degree105

two vertices, since there are no degree two vertices in a106

farthest-point Voronoi diagram.107

(a)

s

s′

region of s

region of s′

(b)

Figure 1: (a) An ordered tree T ; (b) a realization of T
as a farthest-point Voronoi diagram. Empty squares are
leaves resp. symbolic endpoints of unbounded edges.

Given an ordered tree T , we seek to determine a set S108

of sites in the plane such that F-Vor(S) realizes T . We109

proceed in an incremental fashion where we place sites110

to create the internal vertices of T one by one.111

1For strictly-convex distance-functions “relevant” and
“proper” are the same thing; see Section 4.2 more details.

Realizing a star. We begin with an ordered tree T1112

with one internal node v of degree `. We realize T1 by113

placing ` sites s1, s2, . . . , s` on a unit circle C centered114

at the origin. The origin becomes the Voronoi vertex115

that we identify with v.116

Any subsequent site s has to be placed at a location117

that is safe for the current sites S in the following sense:118

Every vertex in the diagram for S remains a vertex in119

the diagram for S ∪ {s} and every bounded edge in the120

diagram for S remains a bounded edge in the diagram121

for S ∪ {s}. It is acceptable for a safe site to increase122

the degree of a vertex of the diagram. After the initial123

step, any site s strictly within C is safe.2124

On the other hand, any subsequence site s must be125

proper. Any site outside the convex hull CH(S) is126

proper.2 Thus, all further sites will be placed in the127

lunes that remain when we remove CH({s1, . . . , s`})128

from the disc bounded by C. See Figure 2.129

(a) (b)

Figure 2: (a) An ordered tree with one internal vertex;
(b) a realization of the ordered tree in (a) as a farthest-
point Voronoi diagram. Any subsequent sites will be
placed in the lunes (shaded blue).

Realizing larger trees. Suppose we can realize every130

ordered tree with k ≥ 1 internal vertices as farthest-131

point Voronoi diagram, for some k ∈ N. Consider an132

ordered tree Tk+1 with k + 1 internal vertices. There is133

an internal vertex v in Tk+1 that becomes a leaf when134

deleting all leaves adjacent to v. Let Tk be the tree that135

results from deleting the leaves adjacent to v. Since Tk136

is an ordered tree with k internal vertices, we can find a137

set S of sites such that F-Vor(S) is a realization of Tk.138

We seek to place additional sites such that the resulting139

farthest-point Voronoi diagram realizes Tk+1.140

Vertex v was a leaf in Tk, hence corresponds to a141

symbolic endpoint in F-Vor(S) which lies on a ray r.142

Let u be the internal vertex at which r ends (hence u is143

the neighbor of v in Tk). Ray r separates the regions of144

two sites s and s′, so by definition of F-Vor(S) for any145

2In the appendix, we provide full proofs for the claim for
smooth strictly convex symmetric distance functions.
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Figure 3: Extending the realization of an ordered tree.

point p ∈ r the full disc FS(p) goes through s and s′146

and contains all other sites in its interior.147

We want to place sites such that we create a Voronoi148

vertex at some point p on ray r (and then assign this149

point to v). To create a Voronoi vertex at p, we have150

to place a new site s′′ on the boundary of FS(p). To151

make its region appear between the ones of s and s′, we152

should place s′′ on the (shorter) circular arc A(p, s, s′)153

from s to s′ along FS(p).2 If v is adjacent to ` leaves in154

Tk+1 (` > 1 since we have no vertices of degree 2), then155

we should place `− 1 new sites along A(p, s, s′).156

Note that the choice of p is arbitrary (as long as it is157

on the ray); in particular we can therefore choose the158

distance between u and p (the future location of v) and159

realize any given edge-length of (u, v). To summarize,160

we can realize every ordered tree T as a farthest-point161

Voronoi diagram by placing the sites for some vertex162

of T on a circle and then repeatedly expanding the re-163

sulting farthest-point Voronoi diagram by placing the164

next vertex on the appropriate ray and sites for it on165

the corresponding arc. We place n sites for an ordered166

tree with n leaves. The entire construction takes O(n)167

time, since computing the coordinates of each site takes168

constant time in the real RAM model of computation.169

Theorem 1 For every ordered tree T with n ≥ 2 leaves,170

without vertices of degree two, and with edge lengths for171

edges connecting non-leaves, we can find a set S of n172

sites in O(n) time such that the farthest-point Voronoi173

diagram of S is a realization of T where every bounded174

edge in F-Vor(S) has its prescribed length.175

4 Other distance functions176

Voronoi diagrams (and similarly farthest-point Voronoi177

diagrams) can naturally be generalized to arbitrary dis-178

tance functions defined as follows: A distance function179

d is specified by giving its unit circle Cd, i.e., all those180

points considered to have distance one from the origin.181

We assume throughout that d is convex and symmetric,182

i.e., Cd is a closed curve that bounds a convex shape183

that is symmetric with respect to the origin.184

To measure distances, we use homothets of Cd, i.e.,185

scaled and translated copies. We call such a homothet186

a d-disc and say that it is centered at p if the origin was187

translated to p. Given a set S of sites, let the full d-disc188

Fd
S(p) be the smallest d-disc centered at p that encloses189

all sites of S. The d-farthest-point Voronoi diagram of a190

set S of sites, denoted by F-Vord(S), is defined as before191

by letting p be a vertex (resp. interior point of an edge)192

if and only if Fd
S(p) contains three (resp. two) sites.3193

We briefly argue that this indeed expresses “farthest”194

correctly. For two points p and q, the distance d(p, q)195

(with respect to the distance function defined by Cd)196

is defined to be the smallest scaling factor at which a197

d-disc centered at p touches q. Since d is symmetric, we198

have d(p, q) = d(q, p). In particular a point q is farthest199

from p if q is on the boundary of Fd
S(p). If p is a point200

on an edge of F-Vord(S), then by definition there are201

two sites s, s′ on Fd
S(p). Thus p is equidistant from s, s′202

and all other sites are no farther. Hence any edge of203

F-Vord(S) bounds a region where all points have the204

same farthest point. See Figure 4.205

4.1 Smooth Strictly Convex Symmetric Distances206

We call a distance function d strictly convex if the207

boundary of Cd contains no line segments, and smooth if208

any point on the boundary of Cd has a unique tangent.209

We now show that we can realize arbitrary ordered trees210

as d-farthest-point Voronoi diagram for any smooth and211

strictly convex symmetric distance function d.212

s3

s4

v1,2,3

s2

s1
v3,4,5

v1,3,5

FS(v3,4,5)

s5

Figure 4: A d-farthest-point Voronoi diagram.

The approach is the same as for the Euclidean case,213

with the only change that we use Cd, rather than geo-214

metric circles, to define arcs to place sites on. Thus, for215

a tree T1 with a single interior node v with ` incident216

leaves, place ` sites on the unit circle Cd. The origin217

becomes the Voronoi vertex that we identify with v.218

To create sites for a tree Tk+1 with k + 1 interior219

nodes, find one node v that is adjacent to only one other220

3For non-symmetric convex distances the full d-disc would be
a mirrored homothet of Cd and the correspondence to vertices
and edges of the diagram no longer holds [9].
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interior node u, and remove all incident leaves of v. Re-221

cursively find sites for the resulting tree Tk. Find the222

unbounded edge r from u on which the symbolic end-223

point for v resides, and pick an arbitrary point p on224

it. Find the full d-disc Fd
S(p); this contains the two225

sites s, s′ whose farthest regions meet at edge r on their226

boundaries. Turn p into a vertex of the d-farthest-point227

Voronoi diagram by placing sites at the shorter arc of228

Fd
S(p), placing `− 1 sites if v was incident to ` leaves.229

It remains to argue that this is correct, i.e., that all230

newly placed sites are safe and proper. In a nutshell,231

this holds because they are strictly inside Fd
S(u) and232

strictly outside CH(S). We give the full proof in the233

appendix.234

Theorem 2 Let d be a smooth and strictly convex sym-235

metric distance function. For every ordered tree T with236

n ≥ 2 leaves, without vertices of degree two, and with237

edge lengths for edges connecting non-leaves, we can find238

a set S of n sites in O(n) time such that the d-farthest-239

point Voronoi diagram of S is a realization of T where240

every bounded edge has its prescribed length.241

4.2 Polygonal Convex Symmetric Distances242

We now illustrate some of the challenges that arise when243

our distance function is not smooth or not strictly con-244

vex. Unlike for strictly convex distances, the d-bisector245

of two sites s and s′ (i.e., the set of all points that are246

equidistant from s and s′ with respect to d) is not nec-247

essarily homeomorphic to a line, and indeed, may be248

a 2-dimensional region. Ma [9] shows that this occurs249

precisely when the line segment ss′ is parallel to a line250

segment on the boundary of the unit circle Cd that de-251

fined d. This limits our ability to realize ordered trees as252

d-farthest-point Voronoi diagrams when d is polygonal,253

i.e., Cd is a k-sided convex polygon.254

Theorem 3 Let d be a convex distance function defined255

by a polygon with k edges and let T be a tree with more256

than k leaves. There is no set of sites S such that the257

d-farthest-point Voronoi diagram of S realizes T .258

Proof. For every edge e of the unit circle Cd that de-259

fines d, there may be at most one d-farthest site in the260

direction of e. More precisely, if h is a half-plane with261

S ⊂ h whose bounding line ` is parallel to e, then there262

must be at most one site on `, otherwise F-Vord(S) is263

not a tree. This implies that if F-Vord(S) is a tree then264

|S| ≤ k, so it has at most k leaves. Therefore, we cannot265

realize trees with more than k leaves. �266

For example, for the L1-distance and the L∞-267

distance, the unit circle Cd is a 4-sided polygon, so no268

tree with more than 4 leaves can be realized as farthest-269

point Voronoi diagrams under these distances.270

A second problem with distance functions that are271

not strictly convex is that not all extreme points of the272

convex hull are proper; for example point s in Figure 5273

is an extreme point of CH(S) but any point p for which274

s is farthest also has s′ as farthest point.275

However, we can prove a similar relationship. Let276

H(S) be the intersection of all d-discs that contain277

S. We refer to H(S) as the generalized convex hull278

of S. We call a site s an extreme point of H(S) if279

H(S) 6= H(S \ {s}). We give in the appendix the fol-280

lowing characterization:281

Lemma 4 A site s in S is proper if and only if s is an282

extreme point of the generalized convex hull H(S).283

s
s′

region of s′

bisector of
s and s′

Cd
s′′

region of s′′

Figure 5: If Cd (red, dotted) has a line segment as its
boundary, then the bisector of two points on it (gray,
falling) has area. The generalized convex hull H(S)
(green, shaded) may strictly include the convex hull
(dashed). The site s is a vertex of the convex hull but
not proper; removing s leaves the generalized convex
hull unchanged.

We may attempt to follow the steps of the algorithm284

from the Euclidean setting, in the hopes of always find-285

ing proper sites. We now show that this can fail. As286

before define v, u, r, s, s′ in the expansion step. Presume287

we are in a situation where Fd
S(u) contains s, s′ on adja-288

cent straight-line edges. Then the generalized hull H(S)289

coincides with Fd
S(u) on the stretch between s and s′.290

Thus, the region that we used to place sites in the earlier291

settings is empty, giving no suitable proper safe candi-292

dates. Put differently, we can no longer realize ordered293

trees in the carefree online fashion as in the Euclidean294

setting: we need to know the ordered tree in advance295

and we need to decide a-priori which site will occupy296

which edge of Cd. We conjecture that with a judicious297

choice we can realize every tree with at most k leaves if298

d is defined by a k-sided polygon, but this remains an299

open problem. Without giving details, we mention that300

all ordered trees can be realized by any convex symmet-301

ric distance-function for which Cd is strictly convex and302

smooth in at least one region, by placing all initial sites303

and later additions only within that part of Cd.304



CCCG 2016, Vancouver, British Columbia, Aug 3 – Aug 5, 2016

5 Geometric Trees305

In this section we study how to test whether a given306

geometric tree is a farthest-point Voronoi diagram in the307

Euclidean metric. Thus, we are given a tree with a fixed308

drawing in the plane, with the leaves at infinity. Re-309

interpreting this, we are given a subdivision of the plane310

into a number of unbounded cells, and we ask whether311

there exists a set of sites S such that the farthest-point312

Voronoi diagram of S contains exactly these cells. For313

this to work, each cell of the subdivision must be convex.314

Our approach generalizes to arbitrary dimension k,315

so assume that we are given a convex subdivision Z316

of Rk, where each cell in Z is an unbounded convex317

polyhedron. We wish to determine whether Z is the318

farthest-point Voronoi diagram of some set S of sites.319

Each cell in Z has some number of (k − 1)-dimensional320

facets (corresponding to edges for k = 2), and we as-321

sume that for each such facet f we know a unit normal322

vector nf . Thus, for each facet f , its supporting hyper-323

plane has the form {p : 〈nf , p〉 = αf}, where αf is a324

suitable scalar. Each facet f is incident to two cells, say325

v and w, and we use fvw as name for this facet, where v326

is the cell for which inner points have a positive distance327

from fvw (i.e., 〈p, nf 〉 ≥ αf for all points p ∈ v.)328

Assume T can be realized as farthest-point Voronoi329

diagram. Then in this realization we must have a site330

ρ(v) assigned to each cell v in such a way that the points331

in v are exactly those points for which ρ(v) is the far-332

thest site. We will from now on describe any (putative)333

realization as such a function ρ(v).334

The following result holds for realizations of Voronoi335

diagrams in two dimensions [5] and also holds for336

farthest-point Voronoi diagrams in arbitrary dimension.337

Lemma 5 (Bisector-condition) Let ρ be a realiza-338

tion of Z. For every facet fvw in Z, the hyperplane339

supporting fvw must be the bisector of ρ(v) and ρ(w).340

Put differently, given ρ(v) we can compute ρ(w) by341

reflecting ρ(v) about f , i.e., ρ(w) = ρ(v)−2(〈nf , ρ(v)〉−342

αf )nf . As this is an affine equation in v, it can be343

expressed in matrix form,344 [
ρ(w)

1

]
= [Rvw]

[
ρ(v)

1

]
where Rvw is a (k + 1) × (k + 1) matrix defined solely345

from the normal vector and scalar of the face fvw; thus,346

we have (k + 1) equalities for each facet of the given347

convex subdivision. In the following, we use w̄ for the348

vector [ρ(w) 1]
T

, so the equation becomes w̄ = Rvwv̄.349

We need a second condition. In the “regular” Voronoi350

diagram, any site must lie inside the cell of points for351

which it is the nearest site. For the farthest-point352

Voronoi diagram, we need a condition that is essentially353

the inverse.354

Lemma 6 (Outside-condition) Let ρ be a realiza-355

tion of a subdivision Z. For every facet f incident to a356

cell v, the hyperplane H supporting f has cell v on one357

side and site ρ(v) on the other.358

Proof. Say the facet is f = fvw, the case of a facet359

fwv is similar. Consider any point p inside cell v, and360

assume it is on the same side of H as ρ(v) is. Since the361

bisector condition holds, therefore ρ(w) is on the other362

side of H. This implies that p is farther from ρ(w) than363

from ρ(v), hence it should not have been in cell v. �364

We can re-write the outside-condition with the fol-
lowing two inequalities:

〈ρ(v), nvw〉 ≤ αvw ≤ 〈ρ(w), nvw〉,

where as before nvw is a unit normal vector to fvw such365

that points in cell v have inner product at least αvw =366

〈q, nvw〉 where q is any point in fvw. Crucial to our367

testing routine is the following:368

Theorem 7 Let Z be a convex subdivision of Rk. Let369

S := ρ(·) be an assignment of sites to cells in Z. Then370

Z is the farthest-point Voronoi diagram of S if and only371

if the bisector-condition and the outside-condition holds372

for all facets of Z.373

Proof. Necessity has been shown already. Suppose for374

the sake of contradiction that the two conditions hold,375

yet Z is not the farthest-point Voronoi diagram of S.376

So there exists some cell v of Z containing an interior377

point p for which the farthest site in S is not ρ(v) but378

instead some other site ρ(w) assigned to cell w.379

Shoot a ray from the interior of w toward p, and let380

fwx be the first facet (breaking ties arbitrarily) of w that381

the ray strikes. The ray strikes fwx before reaching p,382

as p is in the interior of a different cell; therefore, p is383

on x’s side of the hyperplane supporting fwx. By the384

outside condition therefore p is not on ρ(x)’s side of the385

hyperplane supporting fwx. Since fwx bisects ρ(x) and386

ρ(w) by the bisector-condition, therefore p is closer to387

ρ(w) than to ρ(x), contradicting the fact that ρ(w) is the388

site in S that is farthest from p. The result follows. �389

We can now find a suitable set S of sites with “back-390

propagation”, similarly as done for the regular Voronoi391

diagram in [5]. Form the dual graph G of the given392

convex subdivision Z, i.e., G’s vertices correspond to393

the k-cells of Z and G’s edges correspond to Z’s facets.394

Choose a distinguished k-cell v in Z (hence a distin-395

guished node in the graph). The variables in our sys-396

tem are the coordinates of the putative site ρ(v), hence397

the first k entries of vector v̄. Perform a depth-first398

search of G, during which we express the coordinates of399

every other site as a linear combination of v̄’s coordi-400

nates by composing reflections of the form w̄ = Rxwx̄.401
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Composing these reflections is simply matrix multipli-402

cation; thus we obtain a linear relationship of the form403

w̄ = R′vwv̄ for every cell w, even those that do not share404

a facet with v. (Rvw = R′vw if (v, w) is a DFS-edge.)405

Next, consider the edges of G that the depth-first406

search did not traverse. Each such edge (x,w) corre-407

sponds to a facet of Z that introduces an additional408

reflection equation of the form x̄ = Rwxw̄, which hence409

becomes another linear equality constraint imposed on410

v̄: R′vxv̄ = RwxR
′
vwv̄. However, these constraints are411

often redundant or trivial (i.e., v̄ = v̄). We can stack412

these linear equations (k+1 equations per untraversed413

edge) in the form of a matrix equation Mv̄ = b, where414

M has k variables and O(mk) rows, presuming the in-415

put had m facets.416

This linear system hence defines an affine subspace Λ417

of vectors v̄ that are compatible with the bisector condi-418

tion. Typically Λ is a single point or empty, but it could419

have dimension as high as k. The outside condition im-420

poses another system of O(mk) linear inequalities, two421

per facet. If Λ is a single point, it is now a simple matter422

to check whether v̄ = Λ satisfies all these inequalities. If423

Λ is a larger subspace, we project the inequalities onto424

the subspace Λ and solve the consequent linear program.425

Any point of the resulting Λ can be used for v̄ (hence426

gives the site for ρ(v)), and we can compute the other427

sites by reversing the reflections applied earlier. The428

solution space may still have dimension k, and this is429

unavoidable, as illustrated in Figure 6.430

The run-time is determined by the time to do com-431

pute the propagation matrices R′vw (which for n cells432

requires up to n − 1 multiplications of O(k) × O(k)-433

matrices, hence O(nk3) time), and the time to cre-434

ate the equalities and inequalities at each facet due to435

the bisector-condition and the outside-condition (which436

is O(mk3)), and the time to solve the linear program437

(which is O(f(k)(n+m)) for some function f(.) of the438

dimension [10]). Since the input-size was O(m + n) to439

describe the convex subdivision, this is linear if the di-440

mension is a constant.441

Theorem 8 Given a convex subdivision Z of Rk, where442

k is a constant, we can test in linear time whether there443

exists a set of sites whose farthest-point Voronoi dia-444

gram is Z.445

6 Conclusion446

In this paper, we showed that any ordered tree can be447

realized as the tree defined by a farthest-point Voronoi448

diagram of points in the plane. The result also holds for449

farthest-point Voronoi diagrams defined with smooth450

strictly convex symmetric distance functions, but not if451

the distance-function has a polygon as unit circle. We452

also studied geometric trees (and more generally, geo-453

metric convex subdivisions in constant dimension k) and454

2×

Figure 6: A farthest-point Voronoi diagram T (thick).
Once one site is fixed in the open gray cell G, the others
follow by reflecting at the bisectors (thick or dashed)
and realize G. Sites on the boundary of G (square) result
in sites that coincide, and sites outside G violate the
outside condition at the vertical bisector.

gave a linear-time algorithm, based on linear program-455

ming, to test whether these could be the farthest-point456

Voronoi diagram of a set of sites in Rk.457
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A Smooth strictly-convex distance functions490

Recall that the distance function d is given by specifying491

its unit circle Cd, a d-disc is a a homothet of Cd, and492

the radius of the d-disc D is the scale-factor that was493

used to obtain D from Cd. In this section, we show494

in detail that if Cd is strictly convex and smooth, then495

our algorithm to find sites whose farthest-point Voronoi496

diagram realizes a given ordered tree T works correctly.497

There are two things that must be shown: every added498

site s is d-proper (there exists a point p for which s499

is the unique farthest site) and d-safe (all previously500

placed sites remain d-proper).501

A.1 Proper sites502

Recall that an extreme point of the convex hull CH(S)503

is a site s ∈ S such that CH(S \{s}) is a strict subset of504

CH(S). Equivalently, a site s ∈ S is an extreme point505

of S if there exists a half-space ` that has all points in506

S \ {s} in its interior and s in its exterior.507

Theorem 9 Let S be a set of sites in the plane and d508

be a smooth strictly convex distance function.509

1. A site s is d-proper if and only if s is an extreme510

point of the convex hull of S.511

2. The regions of two sites si and sj share an un-512

bounded edge if and only if si and sj are consecutive513

extreme points of the convex hull of S.514

3. The d-proper sites appear in the same order along515

the convex hull of S as their corresponding regions516

in the d-farthest-point Voronoi diagram.517

Proof. To show the first claim, suppose the site s is518

d-proper. Then there is a point p such that Fd
S(p) has519

only the site s on its boundary. Since Cd is convex, the520

convex hull CH(S) is contained in Fd
S(p). Since Cd is521

strictly convex, CH(S) intersects Fd
S(p) only in point s.522

Hence, CH(S\{s}) is strictly inside Fd
S(p), which proves523

that CH(S \ {s}) ⊂ CH(S) and, thus, the site s is an524

extreme point of the convex hull CH(S).525

Conversely, suppose s is an extreme point of CH(S),526

say half-space ` separates s from the rest of S. Since Cd527

is smooth, there exist two points on Cd whose tangent528

has the same slope as the supporting line of `. By scal-529

ing Cd sufficiently much, we can hence find a homothet530

D of Cd that in the vicinity of one of these points is ar-531

bitrarily close to `. Hence D contains S \{s} and not s.532

Scaling D while keeping its center then yields a d-disc533

with only s on its boundary, proving that the region of534

s is non-empty.535

The proof of (2) and (3) is very similar to part (1)536

after observing that (si, sj) is an edge of the convex hull537

if and only if there exists a half-space ` that contains538

all points in S \ {si, sj} in its interior and si, sj in its539

exterior. With this we can find an unbounded region of540

points whose farthest site is either si or sj , and therefore541

there must be an unbounded edge separating their two542

regions. �543

As we will see below, we always choose the next site(s)544

to be outside the convex hull of the current sites. As545

such, all sites that we choose will be d-proper.546

A.2 Notations and some properties547

Before proving safety, we need some basic observations548

about homothets of a strictly convex smooth Cd.549

Theorem 10 (Ma [9]) Let D and D′ be two different550

homothets of a compact convex set Cd. Then the bound-551

aries of D and D′ intersect in at most two points, or in552

a point and a line segment, or in two line segments.553

Corollary 11 Let D and D′ be two different homothets554

of a strictly convex smooth compact set Cd. Then the555

boundaries of D and D′ intersect at most two points.556

Proof. The claim follows from Theorem 10, since the557

boundary of a homothet of a strictly convex compact set558

does not contain any line segments, by definition. �559

We say that two curves C,C ′ truly intersect at some560

point p if they have p in common, and any sufficiently561

small circle centered at p intersects the curves in four562

points and in order C,C ′, C, C ′.563

Lemma 12 Let D and D′ be two different homothets of564

a strictly convex smooth compact set Cd. If the bound-565

aries of D and D′ intersect in two points a, b, then they566

truly intersect at both a and b.567

Proof. We consider the situation near a. Since D and568

D′ are smooth, there are unique tangents ta and t′a at569

a for D and for D′, respectively. We argue that these570

tangents have different slopes.571

Since Cd is strictly convex, the slope of the tangent572

determines the point on Cd uniquely, up to reflection573

through the center-point, and the line from this point574

to the center-point has the same slope regardless of how575

we scale or translate Cd. Thus, the line from a to the576

center-point p of D has the same slope as the line from577

a to the center-point p′ of D′, so p, a, p′ are all on one578

line.579

Repeating the argument at b, we see that p, b, p′ (and580

therefore also a) are all on one line. But then D and D′581

must have the same scale-factor (else they could not582

both contain both a and b), and therefore the same583

center-point, and so are the same homothet. Contra-584

diction, so ta and t′a have different slopes. Since D and585

D′ are smooth, their boundary locally follows the lines586

along ta and t′a, which means that they truly intersect587

at a. �588
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Finally we need a rather technical observation, which589

will be crucial for defining the “lunes” which are used590

for placing sites safely.591

Lemma 13 (Inside-Outside Lemma) Let a and b592

two points in the plane and let h and h̄ be the half-593

planes bounded by the line through a and b. Consider594

two d-discs D and D′ such that595

(a) the centers of D and D′ both lie in h,596

(b) the radius of D′ is larger than the radius of D, and597

(c) the boundaries of D and D′ intersect at a and b.598

Then we have the following.599

(1) Within the half-plane h, the d-disc D′ contains D,600

i.e., h ∩D ⊂ h ∩D′.601

(2) Within the half-plane h̄, the d-disc D contains D′,602

i.e., h̄ ∩D′ ⊂ h̄ ∩D.603

a b

p′

p

D

D′

ρ

D′′

Figure 7: Two d-discs D (blue) and D′ (red) that have
their centers p and p′ on the same side as the line
through their two intersection points a and b. The ray
ρ from p through p′ first hits D, then ρ hits a copy D′′

of D centered at p′ (dotted, blue), and finally ρ hits D′.

Proof. Let p be the center of D and p′ the center of D′.604

Consider the ray ρ that shoots from p through p′. We605

argue that ρ hits D strictly before D′.606

As illustrated in Figure 7, we place a copy D′′ of D607

centered at p′. The ray ρ hits D before D′′, since D′′ is608

a copy of D translated from p to p′. Furthermore, the609

ray ρ hits D′′ strictly before D′, since D′ is a strictly610

larger copy of D′′ with the same center. This means611

that the ray ρ hits the boundary of D strictly before612

the boundary of D′. Since D and D′ are strictly convex613

and homothetic, the boundaries of D and D′ cannot614

have any intersection other than a and b. Therefore,615

within the half-space h, the boundary of D lies in the616

interior of D′, i.e., h ∩D ⊂ h ∩D′. This proves (1).617

To show (2), observe that since the boundaries of D618

and D′ intersect in two points, at both points we have619

true intersections. Due to (1), we enter D as we traverse620

the boundary of D′ from h to h̄ through a (or through621

b). Since the boundaries of D and D′ intersect only at622

a and b, we know that, within h̄, the boundary of D′623

lies in the interior of D, i.e., h̄ ∩D′ ⊂ h̄ ∩D. �624

A.3 Lunes and safe sites625

Let us assume that the sites are numbered s1, s2, . . . , sn626

in an arbitrary manner. Let vi,j,k be the point equidis-627

tant to sites si, sj , and sk; and let ei,j be the edge (if628

any) on the bisector of sites si and sj . Suppose p is a629

point along an unbounded edge ei,j defined by the sites630

si and sj , and we want to place a new site s on the631

d-arc Ad(p, si, sj) to create a new vertex at some point632

p. Define the d-lune Luned(si, sj) to be the union of all633

d-arcs Ad(p, si, sj) such that p is an interior point of ray634

r. Figure 8 depicts an example of a d-lune.635

s3

s4

s2

s1
v3,4,5

p

s

s5

Figure 8: The d-lune Luned(s3, s4) for the sites from
Figure 4 together with its defining edge e3,4. A new
site s in this d-lune creates a new vertex at p along e3,4,
where p is the center of the d-disc through s3, s4, and
s.

Lemma 14 For any two consecutive vertices si, sj on636

CH(S), if vi,j,k is the finite end of edge ei,j, then any637

point in Luned(si, sj) belongs to Fd
S(vi,j,k) \ CH(S).638

Proof. Consider Fd
S(p) for some point p on ei,j . By639

definition of a full circle it contains all sites in S,640

so CH(S) ⊂ Fd
S(p) since Cd is convex. Therefore641

A(p, si, sj) is outside CH(S). On the other hand, both642

p and vi,j,k are within one half-plane h defined by the643

line through si, sj (since ei,j consists of those points644

for which these are the farthest sites). By the Inside-645

Outside lemma therefore A(p, si, sj) (which is outside646

h) therefore is within Fd
S(vi,j,k) ∩ h. �647

So as promised previously, all newly placed sites are648

outside the convex hull of preexisting sites, and so are649

proper. Now we are ready to prove safety.650
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Lemma 15 (Safety) For any two consecutive vertices651

si, sj on CH(S), every new site in Luned(si, sj) is safe.652

Proof. Let s be be a new site for S that is contained653

in Luned(si, sj). Let ei,j be the unbounded edge where654

the regions of si and sj meet, and let vi,j,k be the vertex655

where ei,j ends. By the definition of Luned(si, sj), the656

new site s is contained in the full d-disc Fd
S(vi,j,k) that657

passes through si and sj . Thus, s is safe for vi,j,k.658

Consider a vertex vi,k,l that is connected to vi,j,k by659

the edge ei,k. We argue that Luned(si, sj)—and, there-660

fore, the new site s—is contained in Fd
S(p) for any point661

p ∈ ei,k, i.e., the new site s is safe for ei,k and vi,k,l.662

Let hs be the half-plane containing s that is bounded663

by the line through si and sk. We apply Lemma 13 in664

two ways, depending on whether p lies in hs or not.665

p

s
v1,3,5

`3,5

v3,4,5

s4

s2

s1
s3

s5

Figure 9: An example for the case p /∈ hs from the proof
of Lemma 15 with i = 3, j = 4, k = 5, and l = 1.

Suppose p /∈ hs, as illustrated in Figure 9. We ap-666

proach si and sk when we walk from vi,j,k along ei,k to-667

wards vi,k,l. Therefore, Fd
S(vi,j,k) is larger than Fd

S(p).668

Since p, vi,j,k /∈ hs, Lemma 13 implies hs ∩ Fd
S(vi,k,l) ⊂669

hs∩Fd
S(p). We know s ∈ Luned(si, sj) = hs∩Fd

S(vi,k,l).670

Therefore, s ∈ hs ∩ Fd
S(p), and, thus, s is safe for p.671

v3,4,5

s

`3,5
s4

s2

s1

v1,3,5

s3

s5

w

Figure 10: An example for the case p ∈ hs from the
proof of Lemma 15 with i = 3, j = 4, k = 5, and l = 1.

Suppose p ∈ hs, as illustrated in Figure 10. Then672

there is a point w along ei,k that intersects `i,k, since673

vi,j,k /∈ hs. We move away from si and sk when we674

walk from w along ei,k to vi,k,l. Therefore, Fd
S(p) is675

larger than Fd
S(w). Since p, w ∈ hs, Lemma 13 implies676

hs ∩ Fd
S(w) ⊂ hs ∩ Fd

S(p). We know from the previous677

case, when p /∈ hs, that s ∈ hs ∩ Fd
S(w). Therefore,678

s ∈ hs ∩ Fd
S(p) and, thus, the new site s is safe for p.679

In summary, if s ∈ Luned(si, sj) is safe for vi,j,k then680

s is safe for all edges incident to vi,j,k, except for the681

unbounded edge ei,j . We can repeat the above argu-682

ment for all neighbors of vi,j,k and their neighbors and683

so forth. In this fashion, the safety of s propagates to684

all vertices and all bounded edges of the d-farthest-point685

Voronoi diagram of S.4 Therefore s is safe for S. �686

B Polygonal distance functions: Proof of Lemma 4687

Proof. Suppose s is a proper site in S. Then there688

is a point p such that Fd
S(p) has only the site s on its689

boundary. All other sites of S are in the interior of690

Fd
S(p) by definition of full disc. Scaling Fd

S(p) down691

while staying centered at p gives another homothet D of692

Cd; note that D ⊂ Fd
S(p) since d is convex. If we shrink693

little enough then D hence contains all of S \{s}, but it694

does not contain s. Therefore, H(S \{s}) ⊆ D does not695

contain s. By definition, s is an extreme point of H(S).696

Conversely, suppose s is an extreme point of H(S).697

That means there is a homothet D of Cd that contains698

S \{s} and that does not contain s. Let p be the center699

of D. Suppose we grow D until we arrive at a d-disc D′700

centered at p with s on the boundary. We have D ⊂ D′,701

since both D and D′ are convex and symmetric to p.702

Hence, D′ is a d-disc centered at p that contains S and703

has only the site s on its boundary. This means s is the704

only d-farthest point from p, i.e. s is a proper site. �705

4In fact, the safety of s extends to all unbounded edges other
than ei,j in the diagram for S, as well.


