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Power domination on triangular grids

Prosenjit Bose ∗ Claire Pennarun† Sander Verdonschot‡

Abstract

The concept of power domination emerged from the
problem of monitoring electrical systems. Given a graph
G and a set S ⊆ V (G), a set M of monitored vertices
is built as follows: at first, M contains only the vertices
of S and their direct neighbors, and then each time a
vertex in M has exactly one neighbor not in M , this
neighbor is added to M . The power domination number
of a graph G is the minimum size of a set S such that
this process ends up with the set M containing every
vertex of G. We here show that the power domination
number of a triangular grid Tk with hexagonal-shape

border of length k − 1 is exactly

�
k

3

�
.

1 Introduction

Power domination is a problem that arose from the con-
text of monitoring electrical systems [10, 1], and was
reformulated in graph terms by Haynes et al. [9].

Given a graph G and a set S ⊆ V (G), we build a set
M as follows: at first, M is the closed neighborhood
of S, i.e. M = N [S], and then iteratively a vertex u
is added to M if u is the only neighbor of a monitored
vertex v that is not in M (we say that v propagates to
u). At the end of the process, we say that M is the set
of vertices monitored by S. We say that G is monitored
when all its vertices are monitored. The set S is a power
dominating set of G if M = V (G), and the minimum
cardinality of such a set is the power domination number
of G, denoted by γP (G).

Power domination has been particularly well studied
on regular grids and their generalizations: the exact
power domination number has been determined for the
square grid [6] and other products of paths [3], for the
hexagonal grid [7], as well as for cylinders and tori [2].
These results are particularly interesting in comparison
with the ones on the same classes for (classical) domi-
nation: for example, the problem of finding the domi-
nation number of grid graphs Pn × Pm was a difficult
problem which was solved only recently [8]. They also
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rely heavily on propagation: it is generally sufficient to
monitor (with adjacency alone) a small portion of the
graph in order to propagate to the whole graph.

We here continue the study of power domination in
grid-like graphs by focusing on triangular grids with
hexagonal-shaped border.

A triangular grid Tk has vertex set V (Tk) =
{(x, y, z) | x, y, z ∈ [0..2k − 2], x− y + z = k − 1}. Two
vertices (x, y, z) and (x�, y�, z�) are adjacent if and only
if |x� − x|+ |y� − y|+ |z� − z| = 2. The graph Tk has a
regular hexagonal shape, and k is the number of vertices
on each edge of the hexagon. Figure 1 shows the two
triangular grids T2 and T3. Note that Tk appears as a
subgraph of Tk+1 (where (1, 1, 1) has been added to the
coordinates of each vertex in Tk).

We prove the following theorem:

Theorem 1 For k ∈ N∗, γP (Tk) =

�
k

3

�
.
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Figure 1: The graphs T2 and T3, along with the coordi-
nates of the vertices.

An inner vertex v ∈ V (Tk) with coordinates (x, y, z)
has 6 neighbors with the following coordinates: (x, y +
1, z+1), (x−1, y, z+1), (x−1, y−1, z) , (x, y−1, z−1)
, (x + 1, y, z − 1) and (x + 1, y + 1, z) (see Figure 2a).
The coordinates of a vertex v are denoted by (v1, v2, v3).
The line lvj=i is the set of vertices {(v1, v2, v3) | vj = i}
(see Figure 2b).

One interesting property of the triangular grids is
that if an equilateral triangle having one side of the
hexagonal border as base is monitored, then the bor-
der allows the propagation until the whole graph is
monitored. For example, it suffices to monitor the set
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(x+ 1, y, z − 1) (x+ 1, y + 1, z)

(x, y + 1, z + 1)

(x− 1, y, z + 1)(x− 1, y − 1, z)

(x, y − 1, z − 1)
(x, y, z)

(a)

lv1=2

lv2=3

(b)

Figure 2: (a) The coordinates of the neighbors around
an inner vertex v = (x, y, z). (b) The lines lv1=2 and
lv2=3 in T3.
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Figure 3: The propagation steps to monitor T3 once the
set T (in the gray area) is monitored. Propagation steps
indexed by the same number can be done in parallel.

T = {v = (v1, v2, v3) ∈ V (G) | 0 ≤ v1, v2 ≤ k−1, k−1 ≤
v3 ≤ 2k − 2} to monitor Tk (see Figure 3).

We assume throughout the section that k ≥ 4: ob-
serve that if k ≤ 3, then γP (Tk) = 1, with S =
{(k − 2, k − 2, k − 1)} (for k = 2, 3).

2 Upper bound

We begin by giving a construction for the upper bound:

Lemma 2 For k ∈ N∗, γP (Tk) ≤
�
k

3

�
.

Proof. Let i =
�
k
3

�
, and d = k − i − 1 if k ≡ 0, 1

mod 3, d = k − i− 2 otherwise. Let S� be the following
set of vertices (see Figure 4): S� = {(1+3�, d+�, k+d−
2− 2�), 0 ≤ � ≤ i− 1}. In other words, S� contains the
vertex v = (1, d, k+d−2) and vertices whose coordinates
are obtained by adding (3, 1,−2) up to i − 1 times to
the coordinates of v. If k �≡ 0 mod 3, S = S� ∪ {(k −
1, k − 1, k − 1)}. Otherwise, S = S�. Then we have,
depending on the value of k modulo 3:

• k = 3i: |S| = i =
�
3i
3

�
.

• k = 3i+ 1: |S| = i+ 1 =
�
3i+1
3

�
.

• k = 3i+ 2: |S| = i+ 1 =
�
3i+2
3

�
.

In each case, S is a set with cardinality
�
k
3

�
, and S

progressively power dominates the whole triangular grid
Tk. �

(3i + 1, d + i, k + d− 2− 2i)

(4, d + 1, k + d− 4)

(1, d, k + d− 2)
(0, 0, k − 1) (0, k − 1, 2k − 2)

Figure 4: Construction and propagation of the set S�:
d = k − i − 1 if k ≡ 0, 1 mod 3, d = k − i − 2 if k ≡ 2
mod 3. Red square-framed vertices are in S�, blue circle-
framed vertices are in N [S�]. Dark gray vertices are
monitored in the first propagation round, gray ones in
the second round, and the light gray one in the third
round. Observe how the pattern of monitored vertices
repeats.

3 Lower bound

Let A ⊂ V (Tk) be a set of vertices of the graph. We
define the border BA ⊆ A of A as follows: BA = {v ∈
A,N(v) \ A �= ∅}. Let Avj=i denote the set of vertices
of A in a given line lvj=i. We define the j-shifted set

A� = A(j) of A as follows (see Figure 5): |A�| = |A|, and
for each line lvj=i, A

� contains the |Avj=i| vertices with
smallest coordinates vj+1 (for example, the 1-shifted set
of A contains only left-most vertices on each horizontal
line). More formally,

A�
vj=i = {(v1, v2, v3) | vj = i, vj+1 = �+α, 0 ≤ � < |Avj=i|},

with α = 0 if 0 ≤ i ≤ k − 1, and α = i − (k − 1) if
k ≤ i ≤ 2k − 2.

Lemma 3 Let A� be the j-shifted set of A. Then
|BA� | ≤ |BA|.

Proof. In this proof, since j is fixed, we simplify the
notation lvj=i into li. Let ai be the number of vertices
in A (and in A�) in line li and bi (resp. b�i) be the
number of vertices in BA (resp. BA�) in line li. We
show that bi ≥ b�i for every line li, 0 ≤ i ≤ 2k − 2. We
consider three cases depending on the value of i (when
0 ≤ i < k−1, when i = k−1 and when k ≤ i ≤ 2k−2):
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Figure 5: (Left) Blue-square vertices are in the set A.
(Right) Blue-square vertices are in the 1-shifted set A�

of A: the left-most vertices of each line lv1=i are in A�.

• 0 ≤ i < k − 1: we thus have |li+1| = |li| + 1 and
|li| = |li−1| + 1. Let us consider vertices in line li
which are in A but not in the border of A: there
are ai − bi such vertices. By definition, we have
ai − bi ≤ ai. Their neighbors (if they exist) in li−1

and li+1 are in A. We have thus both ai − bi ≤
ai+1 − 1, and ai − bi ≤ ai−1. Hence ai − bi ≤
min{ai+1 − 1, ai−1, ai} for 1 ≤ i < k− 1 (for i = 0,
we have ai− bi ≤ min{ai+1−1, ai}). We can apply
the same reasoning to the vertices that are in A�

but not in the border of A�: since the vertices of
A� are consecutive on lines li−1, li and li+1, we get
that ai − b�i = min{ai+1 − 1, ai−1, ai} (for i = 0, we
have ai − b�i = min{ai+1 − 1, ai}). Note that the
inequalities we get for A turn into equalities on A�.
Then ai − bi ≤ ai − b�i, and thus bi ≥ b�i.

• We have a similar proof when k−1 < i ≤ 2k−2, for
which we have |li+1| = |li|−1 and |li| = |li−1|−1: in
that case, we get ai−b�i = min{ai−1−1, ai+1, ai} ≥
ai − bi.

• i = k− 1: we thus have |li+1| = |li−1| = |li|+1. As
for the previous case, first consider vertices which
are in A but not in the border of A: by defini-
tion ai − bi ≤ ai, and we have ai+1 ≥ ai − bi and
ai−1 ≥ ai − bi. Thus ai − bi ≤ min{ai+1, ai−1, ai}.
Similarly, we get that ai− b�i = min{ai+1, ai−1, ai}.
Thus ai − bi ≤ ai − b�i, and so bi ≥ b�i.

�

We define the shifting process of a set A ⊂ V (Tk) as

the following iterative process: A�+1 = ((A
(1)
� )(2))(3),

with A0 = A. In other words, we successively apply 1-
shift, 2-shift and 3-shift to the set A until a fixed point
A�∗ is reached. We show that this fixed point exists and
that the vertices of the resulting set form a particular
shape:

Lemma 4 (i) This shifting process stops, i.e. there
exists �∗ such that A�∗+1 = A�∗ .

(ii) Let A∗ = A�∗ . If v = (x, y, z) ∈ A∗, then all ver-
tices v� = (x�, y�, z�) with y� ≤ y and z� ≤ z are also
in A∗ (see Figure 6).

A∗

Figure 6: The set A∗ has a staircase shape.

Proof. (i) We define the weight in A of a vertex as
follows: wA(v) = v1 + 2v2 + 2v3 if v ∈ A, wA(v) = 0
otherwise. Similarly, the weight of a set S relatively to
A is wA(S) =

�
v∈S wA(v). For simplicity, we denote

by wA the global weight of the set A: wA = wA(Tk).
Let A� be the j-shifted set of A. We show that if

A� �= A, then wA� < wA.
Recall that for every vertex v = (v1, v2, v3) of Tk,

v1 − v2 + v3 = k − 1. We first show that if v and v� are
two vertices with vj(v

�) = vj(v) and vj+1(v
�) < vj+1(v),

then w(v�) < w(v):

• j = 1: v1(v
�) = v1(v) and v2(v

�) < v2(v), so
v3(v

�) = k − 1 − v1(v
�) + v2(v

�) = k − 1 − v1(v) +
v2(v

�) < v3(v). Thus w(v
�) < w(v).

• j = 2: v2(v
�) = v2(v) and v3(v

�) < v3(v). Since
v1(v)−v2(v)+v3(v) = v1(v

�)−v2(v
�)+v3(v

�), we get
v1(v)+v3(v) = v1(v

�)+v3(v
�). Thus w(v)−w(v�) =

v1(v)+2v2(v)+2v3(v)−v1(v
�)−2v2(v

�)−2v3(v
�) =

v3(v)− v3(v
�). So w(v�) < w(v).

• j = 3: v3(v
�) = v3(v) and v1(v

�) < v1(v), so
v2(v

�) = v1(v
�) + v3(v

�) − k + 1 = v1(v
�) + v3(v) −

k + 1 ≤ v2(v). Thus w(v
�) < w(v).

By definition on a j-shifted set, for each line lvj=i,

wA�(lvj=i)− wA(lvj=i) =
�

v�∈A�\A
w(v�)−

�

v∈A\A�

w(v) ,

and either Avj=i = A�
vj=i, and this sums to 0, or

Avj=i �= A�
vj=i, and it is strictly negative. Therefore

A� �= A implies wA� < wA. Since the global weight of
any set is always positive, this directly concludes the
proof of item (i).

(ii) Let v = (v1, v2, v3) be a vertex in A∗. The vertices
u1 = (v1 + 1, v2, v3 − 1), u2 = (v1, v2 − 1, v3 − 1) and
u3 = (v1 − 1, v2 − 1, v3) (i.e. the north-west, west and
south-west neighbors of v) are also in A∗: otherwise, we
could again shift the set A∗ and get the set A∗ − {v}+
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{ui}, which has less weight than A∗, a contradiction.
Since this is true for every vertex of A∗, the proposition
holds. �

We can now prove the lower bound:

Lemma 5 For k ∈ N∗, γP (Tk) ≥
2k − 1

6
.

Proof. Let S be a power dominating set of Tk. If |S| >
k
3 , then the result holds. Thus we assume |S| ≤

�
k
3

�
. In

power domination, propagation from a set S is done by
rounds. We decide of an arbitrary order on the vertices
monitored by S during each round. This defines a (non-
unique) total order m1, . . . ,m|V (G)\N [S]| on the vertices
of V (G) \N [S]. We then define the set M [t] as follows:
M [0] = N [S], and M [t+ 1] = M [t] ∪ {mt+1}.

The key idea of this proof is to consider the size of
the sets BM [t], to bound it and to deduce a bound on
|S|. It is a classical way to prove lower bounds for power
domination in regular lattices (see for example the lower
bound proof on strong products [3]). However, on the
contrary to what happens in other cases, the size of the
sets BM [t] is not globally bounded from below: at the
end of the propagation, no vertices belong to the border
of the monitored set. We thus “stop” the propagation
in the middle of the process and reason from there.

Claim 1. For any 0 ≤ i ≤ |V (G) \ N [S]|, we have
|BM [i]| ≤ 6|S|.

Proof. We prove it by induction on i: |BM [0]| =
|BN [S]| ≤ 6|S| by definition. If the vertex mi+1 becomes
monitored by propagation from a vertex v in BM [i], then
v is not in BM [i+1], and at most one vertex (mi+1) is
added to BM [i+1]. Thus |BM [i+1]| ≤ |BM [i]|. Using the
induction hypothesis, we conclude that |BM [i+1]| ≤ 6|S|.
(�)

Let M be the set M [t] containing |V (Tk|
2 vertices (as

soon as k ≥ 3, we get |V (Tk|
2 = 3k2−3k+1

2 ≥ 7(k+1)
3 ≥

7|S| ≥ |M [0]|, and so M exists), and let M∗ be the set
defined from M by Lemma 4(i).

Claim 2. We have 2k − 1 ≤ |BM∗ |.
Proof. We now prove that for every index 0 ≤ i ≤

2k−2, the line lv1=i contains at least one vertex of BM∗ .
Suppose there exists an index 0 ≤ i ≤ 2k − 2 such

that all vertices of the line lv1=i are in M∗. If 0 ≤ i ≤
k − 1, then the vertex w = (i, k + i − 1, 2k − 2) (i.e.
the right-most vertex of the line lv1=i) is in M∗, and
so by Lemma 4(ii), all vertices of the set {(v1, v2, v3) |
v2 ≤ k + i − 1} are also in M∗ (see Figure 7a). Since
k + i − 1 > k − 1, then strictly more than half of the
vertices of Tk are in M∗, and so M∗ has strictly more
than the required number of vertices, a contradiction.
Similarly, if k − 1 < i ≤ 2k − 2: the vertex w = (i, 2k −
2, 3k−3− i) (i.e. the right-most vertex of the line lv1=i)
is in M∗, and thus by Lemma 4(ii), all vertices of the

set {(v1, v2, v3) | v3 ≤ 3k − 3− i} are also in M∗. Since
3k − 3 − i > k − 1, then strictly more than half of the
vertices of Tk are in M∗, a contradiction. Thus every
line lv1=i contains at least one vertex not in M∗.

Suppose now that one of the lines lv1=i contains no
vertex of M∗. If 0 ≤ i ≤ k − 1 (see Figure 7b), then
the vertex w = (i, 0, k− 1− i) (i.e. the left-most vertex
of the line lv1=i) is not in M∗. By the contrapositive of
Lemma 4(ii), the line lv3=k−1−i also contains no vertices
of M∗, and so all vertices of M∗ are included in the set
{(v1, v2, v3) | v3 < k − 1 − i} (they are all on the left
and above line lv3=k−1−i). Thus M∗ contains strictly
less than the half of the vertices of Tk, a contradiction.
Similarly, if k − 1 < i ≤ 2k − 2, then the vertex w =
(i, i − k + 1, 0) is not in M∗. By the contrapositive of
Lemma 4(ii), the line lv2=i−k+1 also contains no vertices
of M∗, and so all vertices of M∗ are included in the set
{(v1, v2, v3) | v2 < i − k + 1} (they are all on the left
and below line lv2=i−k+1). Since in that case i−k+1 <

k − 1, then again, |M∗| = |M | < |V (Tk)|
2 vertices, a

contradiction.

lv1=i

lv3=k−i−1

M ∗

lv1=i

lv2=k+i−1

M ∗

(a) (b)

Figure 7: (a) If all vertices of a line lv1=i are in M∗

(0 ≤ i ≤ k−1), then all vertices of Tk with v2 ≤ k+i−1
are also in M∗. (b) If the line lv1=i contains no vertices
of M∗ (1 ≤ i ≤ k − 1), then all vertices of M are above
and left of line lv3=k−i−1.

We thus get that each line lv1=i contains at least one
vertex of M∗ and not all its vertices are in M∗. Thus
each line contains at least one vertex of BM∗ , and so
2k − 1 ≤ |BM∗ |. (�)

By Lemma 3, |BM∗ | ≤ |BM |, hence 2k − 1 ≤ |BM |.
Using Claim 1, we get 2k − 1 ≤ |BM | ≤ 6|S|, and so

|S| ≥ 2k − 1

6
, which concludes the proof. �

We know that γP (Tk) is an integer. Since there is no
integer between 2k−1

6 = k
3 − 1

6 and
�
k
3

�
, then Lemma 5

directly implies that
�
k
3

�
≤ γP (Tk).

This then gives our global result:

γP (Tk) =

�
k

3

�
,

concluding the proof of Theorem 1.
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4 Discussion

We carried on with the study of power domination in
regular lattices, and examined the value of γP (G) when
G is a triangular grid with hexagonal-shaped border.
We showed that in that case, γP (G) =

�
k
3

�
.

The process of propagation in power domination led
to the development of the concept of propagation radius,
i.e. the number of propagation steps necessary in order
to monitor the whole graph [4]. It would be interesting
to study the propagation radius of our constructions (in
particular in the case of triangular grids) and to try and
find a power dominating set minimizing this radius.

It seems that the border plays an important role in the
propagation when the grid has an hexagonal shape, and
so the next step in the understanding of power domina-
tion in triangular grids would be to look into grids with
non-hexagonal shape. For example, what is the power
domination number of a triangular grid with triangular
border?

Finally, the relation of our results with the ones pre-
sented for hexagonal grids by Ferrero et al. [7] has to be
noted: they show (with techniques different from the
ones used in this paper) that γP (Hn) =

�
2n
3

�
, where

n is the dimension of the hexagonal grid Hn, and so
γP (Hn) = γP (T2n). Moreover, it is interesting to re-
mark that Hn is an induced subgraph of T2n. We al-
ready know [5] that in general, the power domination
number of an induced subgraph can be either smaller
or arbitrarily large compared to the power domination
number of the whole graph. It would then be very inter-
esting to investigate further under which conditions in-
duced subgraphs have the same power dominating num-
ber as the whole graph.
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Applicandae Mathematicae, 134(1):75–86, 2014.

[5] P. Dorbec, S. Varghese and A. Vijayakumar. Heredity
for generalized power domination. Discrete Mathemat-
ics & Theoretical Computer Science, 18(3), 2016.

[6] M. Dorfling and M. A. Henning. A note on power dom-
ination in grid graphs. Discrete Applied Mathematics,
154(6):1023–1027, 2006.

[7] D. Ferrero, S. Varghese and A. Vijayakumar. Power
domination in honeycomb networks. Journal of Discrete
Mathematical Sciences and Cryptography, 14(6):521–
529, 2011.
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