On Plane Constrained Bounded-Degree Spanners

Prosenjit Bose, Rolf Fagerberg, André van Renssen
and Sander Verdonschot

Carleton University, University of Southern Denmark

April 15, 2012
Geometric Spanners

Given:
- Set of points in the plane

Goal:
- Approximate the complete Euclidean graph
Geometric Spanners

Given:

- Set of points in the plane

Goal:

- Approximate the complete Euclidean graph
Geometric Spanners

Given:
- Set of points in the plane

Goal:
- Approximate the complete Euclidean graph

shortest path $\leq k \cdot$ Euclidean distance
Geometric Spanners

- Small spanning ratio
- Planarity
- Bounded degree
- Small number of hops
- Low total edge length
Geometric Spanners

- Small spanning ratio
- Planarity
- Bounded degree
- Small number of hops
- Low total edge length
Empty square (L_1) Delaunay triangulation
\[\leq 3.16 \text{ (Chew - 1986)} \]
\[= 2.61 \text{ (Bonichon et al. - 2012)} \]

Empty circle (L_2) Delaunay triangulation
\[\leq 5.08 \text{ (Dobkin et al. - 1987)} \]
\[\leq 2.42 \text{ (Keil, Gutwin - 1992)} \]

Empty equilateral triangle Delaunay triangulation
\[= 2 \text{ (Chew - 1989)} \]
Equivalent to half-θ_6-graph (Bonichon et al. - 2010)
Plane Bounded-Degree Spanners

<table>
<thead>
<tr>
<th>Degree</th>
<th>k</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>10.02</td>
<td>Bose et al. - 2005</td>
</tr>
<tr>
<td>23</td>
<td>7.79</td>
<td>Li, Wang - 2004</td>
</tr>
<tr>
<td>17</td>
<td>28.54</td>
<td>Bose et al. - 2009</td>
</tr>
<tr>
<td>14</td>
<td>3.53</td>
<td>Kanj, Perković - 2008</td>
</tr>
<tr>
<td>6</td>
<td>98.91</td>
<td>Bose et al. - 2012</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Bonichon et al. - 2010</td>
</tr>
</tbody>
</table>
Constrained Geometric Spanners

Given:
- Set of points in the plane \(V \)
- Set of constraints \(\subseteq V \times V \)

Goal:
- Approximate visibility graph
Given:
- Set of points in the plane V
- Set of constraints $\subseteq V \times V$

Goal:
- Approximate visibility graph
Constrained Geometric Spanners

Given:
- Set of points in the plane V
- Set of constraints $\subseteq V \times V$

Goal:
- Approximate visibility graph
Given:
- Set of points in the plane V
- Set of constraints $\subseteq V \times V$

Goal:
- Approximate visibility graph
Constrained Geometric Spanners

<table>
<thead>
<tr>
<th>k</th>
<th>B.D.</th>
<th>Plane</th>
<th>Authors</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + \epsilon$</td>
<td></td>
<td></td>
<td>Clarkson - 1987</td>
<td>Delaunay triangulation</td>
</tr>
<tr>
<td>$1 + \epsilon$</td>
<td>✔</td>
<td></td>
<td>Das - 1997</td>
<td>Delaunay triangulation</td>
</tr>
<tr>
<td>5.08</td>
<td>✔</td>
<td>✔</td>
<td>Karavelas - 2001</td>
<td></td>
</tr>
<tr>
<td>2.42</td>
<td>✔</td>
<td>✔</td>
<td>Bose, Keil - 2006</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✔</td>
<td>✔</td>
<td>Our result</td>
<td>Half-θ_6-graph</td>
</tr>
<tr>
<td>6</td>
<td>✔</td>
<td>✔</td>
<td>Our result</td>
<td>Half-θ_6-graph</td>
</tr>
</tbody>
</table>
6 Cones around each vertex: 3 positive, 3 negative
Connect to ‘closest’ vertex in each positive cone
Connect to ‘closest’ vertex in each positive cone
Connect to ‘closest’ vertex in each positive cone
Connect to ‘closest’ **visible** vertex in each positive cone
Connect to ‘closest’ **visible** vertex in each positive cone
Constrained Half-θ_6-graph

- Connect to ‘closest’ visible vertex in each positive subcone
● Connect to ‘closest’ **visible** vertex in each positive **subcone**
Connect to ‘closest’ **visible** vertex in each positive **subcone**
Theorem

The constrained half-θ_6-graph is a 2-spanner of the visibility graph
Spanning ratio

Theorem

The constrained half-θ_6-graph is a 2-spanner of the visibility graph

Proof by induction on the area of the equilateral triangle
Induction hypothesis:
- there is a path of length at most one side plus the longer top segment
Spanning ratio

Induction hypothesis:

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Spanning ratio

Induction hypothesis:

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Induction hypothesis:

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Spanning ratio

Induction hypothesis:

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Spanning ratio

Induction hypothesis:
- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment

![Diagram showing the induction hypothesis with a red path and a gray shaded area.](image-url)
Spanning ratio

Induction hypothesis:

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Spanning ratio

Induction hypothesis:

- there is a path of length at most \textbf{one side} plus \textbf{the longer top segment}
- If the larger side is empty, the length is at most \textbf{one side} plus \textbf{the shorter top segment}
Spanning ratio

Induction hypothesis:
- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Induction hypothesis:
- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
Spanning ratio

Induction hypothesis:

- there is a path of length at most one side plus the longer top segment
- If the larger side is empty, the length is at most one side plus the shorter top segment
The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
Theorem

The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
The constrained half-\(\theta_6\)-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
The constrained half-θ_6-graph has a bounded degree subgraph that is a 6-spanner of the visibility graph.
A modification of the previous graph gives maximum degree $6 + c$.
A modification of the previous graph gives maximum degree $6 + c$.
Conclusion

- Improved the spanning ratio of the best known plane constrained spanner to 2
- Introduced the first plane constrained bounded-degree spanner, with a maximum degree of $6 + c$
- Main open problem: Can we do better than $6 + c$?