The θ_5-graph is a spanner

Prosenjit Bose, Pat Morin, André van Renssen and Sander Verdonschot

Carleton University

June 20, 2013
- Partition plane into k cones
- Add edge to ‘closest’ vertex in each cone
Graphs with short detours between vertices

For every u and w, there is a path with length $\leq t \cdot |uw|$
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarkson</td>
<td>1987</td>
<td>θ-graphs with $k > 8$ are $(1 + \varepsilon)$-spanners</td>
</tr>
<tr>
<td>Keil</td>
<td>1988</td>
<td></td>
</tr>
<tr>
<td>Ruppert & Seidel</td>
<td>1991</td>
<td>θ-graphs with $k > 6$ have spanning ratio $\frac{1}{1 - 2\sin(\theta/2)}$</td>
</tr>
</tbody>
</table>
Clarkson 1987 \(\theta\)-graphs with \(k > 8\) are \((1 + \varepsilon)\)-spanners

Keil 1988 \(\theta\)-graphs with \(k > 6\) have spanning ratio

\[
\frac{1}{1 - 2\sin(\theta/2)}
\]

Ruppert & Seidel 1991 \(\theta\)-graphs with \(k > 6\) have spanning ratio

El Molla 2009 \(\theta_2\) and \(\theta_3\) are not spanners

Bonichon et al. 2010 \(\theta_6\) is a planar 2-spanner
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarkson</td>
<td>1987</td>
<td>θ-graphs with $k > 8$ are $(1 + \varepsilon)$-spanners</td>
</tr>
<tr>
<td>Keil</td>
<td>1988</td>
<td>θ-graphs with $k > 8$ are $(1 + \varepsilon)$-spanners</td>
</tr>
<tr>
<td>Ruppert & Seidel</td>
<td>1991</td>
<td>θ-graphs with $k > 6$ have spanning ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 \over 1 - 2\sin(\theta/2)$</td>
</tr>
<tr>
<td>El Molla</td>
<td>2009</td>
<td>θ_2 and θ_3 are not spanners</td>
</tr>
<tr>
<td>Bonichon et al.</td>
<td>2010</td>
<td>θ_6 is a planar 2-spanner</td>
</tr>
</tbody>
</table>

What about θ_4 and θ_5?
Asymmetric
Steps can get further away
Asymmetric

Steps can get further away
Induction on size of canonical triangle
Base case: smallest canonical triangle
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case 1: \(w \) lies near the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case 2: w lies far from the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case 2: w lies far from the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case 2: w lies far from the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case 2: w lies far from the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case 2: w lies far from the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: \(w \) lies far from the bisector
Connectedness

- Base case: smallest canonical triangle
- IH: There exists a path between every two vertices with a smaller canonical triangle
- Case2: w lies far from the bisector
Find a vertex v with

- A path $w \rightarrow v$ shorter than $a \cdot |\triangle uw|$
Find a vertex v with
- A path $w \leadsto v$ shorter than $a \cdot |\triangle_{uw}|$
- A canonical triangle smaller than $b \cdot |\triangle_{uw}|$
Spanning Ratio - Strategy

- Find a vertex v with
 - A path $w \rightsquigarrow v$ shorter than $a \cdot |\triangle_{uw}|$
 - A canonical triangle smaller than $b \cdot |\triangle_{uw}|$
- Then there is a path $u \rightsquigarrow w$ shorter than $c \cdot |\triangle_{uw}|$
Spanning Ratio - Cases

The θ_5-graph is a spanner
Spanning Ratio - Case 1

Case 1

\[w \Rightarrow v \leq a \cdot |\triangle uw| \leq b \cdot |\triangle uv| \leq |\triangle uw| \]
Spanning Ratio - Case 1

Case 1

\(w \leadsto v \leq a \cdot |\triangle_{uw}| \)
Spanning Ratio - Case 1

Case 1

- $w \leadsto v \leq a \cdot |\triangle_{uw}|$
- $|\triangle_{uv}| \leq b \cdot |\triangle_{uw}|$
Case 1

- \(w \leadsto v \leq a \cdot |\triangle_{uw}| \)
- \(|\triangle_{uv}| \leq b \cdot |\triangle_{uw}| \)
- Done!
Works for Case 2 and 3.
Case 4

Our strategy doesn't work everywhere. But it does work in a large part. Left with a small region that we can't solve. What about v, u, and w?
Case 4

- Our strategy doesn’t work everywhere
Case 4

- Our strategy doesn’t work everywhere
- But it does work in a large part
Case 4

- Our strategy doesn’t work everywhere
- But it does work in a large part
- Left with a small region that we can’t solve
Case 4

- Our strategy doesn’t work everywhere
- But it does work in a large part
- Left with a small region that we can’t solve
- What about v_u?
Case 4

- Our strategy doesn’t work everywhere
- But it does work in a large part
- Left with a small region that we can’t solve
- What about \(v_u \)?
Case 4b

- \(w \leftrightarrow v \leq a \cdot |\triangle_{uw}| \)
- \(|\triangle_{uv}| \leq b \cdot |\triangle_{uw}| \)
- Done!
Case 4c

- Convert to worst-case
Case 4c

- Convert to worst-case
Case 4c

- Convert to worst-case
- $w \leadsto v \approx 0$
- $|\triangle uv| \approx |\triangle uw|$
- Done!
Case 4d
- Convert to worst-case
Case 4d
- Convert to worst-case
Case 4d

- Convert to worst-case
Case 4d

- Convert to worst-case
Spanning Ratio - Case 4d

Case 4d
- Convert to worst-case
Case 4d

- Convert to worst-case
Case 4d

- Convert to worst-case
- Equivalent to Case 1
- Done!
Case 4e
Case 4e

- v_u is close to $w \Rightarrow$ Done!
Case 4e

- v_u is close to $w \Rightarrow \text{Done!}$
Case 4e

- v_u is close to $w \Rightarrow$ Done!
- v_u above v_w
Case 4e

- v_u is close to w \implies Done!
- v_u above v_w
 - Convert to worst-case
Case 4e

- v_u is close to w \Rightarrow Done!
- v_u above v_w
 - Convert to worst-case
 - Done!
Case 4e

- v_u is close to $w \Rightarrow$ Done!
- v_u above $v_w \Rightarrow$ Done!
- v_u right of v_w
Case 4e

- v_u is close to $w \Rightarrow$ Done!
- v_u above $v_w \Rightarrow$ Done!
- v_u right of v_w
 - Convert to worst-case
Case 4e

- \(v_u\) is close to \(w\) \(\Rightarrow\) Done!
- \(v_u\) above \(v_w\) \(\Rightarrow\) Done!
- \(v_u\) right of \(v_w\)
 - Convert to worst-case
Case 4e

- v_u is close to w \implies \text{Done!}
- v_u above v_w \implies \text{Done!}
- v_u right of v_w
 - Convert to worst-case
Case 4e

- v_u is close to $w \Rightarrow$ Done!
- v_u above $v_w \Rightarrow$ Done!
- v_u right of v_w
 - Convert to worst-case
 - Done!
There is a path between any pair of vertices, of length

\[\leq c \cdot |\triangle| \]
There is a path between any pair of vertices, of length

\[\leq c \cdot |\triangle| = 2(2 + \sqrt{5}) \cdot |\triangle| \approx 8.472 \cdot |\triangle| \]
There is a path between any pair of vertices, of length

\[\leq c \cdot |\triangle| = 2(2 + \sqrt{5}) \cdot |\triangle| \approx 8.472 \cdot |\triangle| \]

To compute the spanning ratio, use the smallest of \(\triangle_{uw}\) and \(\triangle_{wu}\)

Worst-case when \(\triangle_{uw} = \triangle_{wu}\)
There is a path between any pair of vertices, of length
\[c \cdot |\triangle| \leq 2(2 + \sqrt{5}) \cdot |\triangle| \approx 8.472 \cdot |\triangle| \]

To compute the spanning ratio, use the smallest of \triangle_{uw} and \triangle_{wu}

Worst-case when $\triangle_{uw} = \triangle_{wu}$

The θ_5-graph has spanning ratio at most
\[\frac{\cos \frac{\pi}{10}}{\cos \frac{\pi}{5}} \cdot c \approx 9.960 \]
Lower bound
Lower bound

The θ_5-graph is a spanner

Spanning ratio ≈ 3.798
Lower bound

The θ_5-graph is a spanner

Spanning ratio ≈ 3.798
Lower bound

The θ_5-graph is a spanner

Spanning ratio ≈ 3.798
Lower bound

The θ_5-graph is a spanner.

Spanning ratio $\approx 3.798.$
Lower bound

The θ_5-graph is a spanner with a spanning ratio of approximately 3.798.
Lower bound

The θ_5-graph is a spanner

Spanning ratio ≈ 3.798
The θ_5-graph is a spanner.
Lower bound

The θ_5-graph is a spanner

Spanning ratio ≈ 3.798.

Sander Verdonschot (Carleton University)
Lower bound

The θ_5-graph is a spanner with a spanning ratio of approximately 3.798.
Lower bound

The θ_5-graph is a spanner.

Spanning ratio ≈ 3.798.

Sander Verdonschot (Carleton University)
Lower bound

The θ_5-graph is a spanner

Spanning ratio ≈ 3.798.

Sander Verdonschot (Carleton University)
Lower bound

Spanning ratio
\[\approx 3.798 \]
Conclusion

- We showed that the θ_5-graph is a constant geometric spanner.
- Its spanning ratio lies in

$$3.798 \leq \ldots \leq 9.960$$
We showed that the θ_5-graph is a constant geometric spanner.

Its spanning ratio lies in

$$3.798 \leq \ldots \leq 9.960$$

Open:
- Close the gap
We showed that the θ_5-graph is a constant geometric spanner. Its spanning ratio lies in $3.798 \leq \ldots \leq 9.960$

Open:
- Close the gap
- Is θ_4 a spanner?
Conclusion

- We showed that the θ_5-graph is a constant geometric spanner.
- Its spanning ratio lies in $3.798 \leq \ldots \leq 9.960$.

Open:
- Close the gap
- Is θ_4 a spanner? Yes! (WADS 2013)