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Abstract

Let g(t) be the minimum number such that every graph G with average degree d(G) ≥
g(t) contains a Kt-minor. Such a function is known to exist, as originally shown by Mader.

Kostochka and Thomason independently proved that g(t) ∈ Θ(t
√
log t). This article shows

that for all fixed ǫ > 0 and fixed sufficiently large t ≥ t(ǫ), if d(G) ≥ (2 + ǫ)g(t) then we

can find this Kt-minor in linear time. This improves a previous result by Reed and Wood

who gave a linear-time algorithm when d(G) ≥ 2t−2.

1 Introduction

A major result in the theory of graph minors is that every graph G with sufficiently large

average degree d(G) contains a complete graphKt as a minor. That is, aKt can be constructed

from G using vertex deletion, edge deletion and edge contraction. Let

g(t) := min{D : every graph G with d(G) ≥ D contains a Kt-minor}.
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University, Montréal, Canada (breed@cs.mcgill.ca); Laboratoire I3S, Centre National de la Recherche Sci-

entifique, Sophia-Antipolis, France.

1

http://arxiv.org/abs/1202.2624v1


Mader [3] showed that g(t) is well-defined, and that g(t) ≤ 2t−2. Subsequently, Mader [4]

improved this bound to g(t) ≤ 16t log2 t, and later this was improved to g(t) ∈ Θ(t
√
log t) by

Thomason [8] and Kostochka [1, 2], which is best possible. Thomason [9] later determined

the asymptotic constant for this bound.

This paper considers linear-time algorithms for finding a Kt-minor in a graph with high

average degree. This question was first considered by Reed and Wood [5] who gave a O(n)-

time algorithm to find a Kt-minor in an n-vertex graph G with d(G) ≥ 2t−2. We improve on

this result by lowering the required bound on the average degree to within a constant factor

of optimal:

Theorem 1. For all fixed ǫ > 0 and fixed sufficiently large t ≥ t(ǫ), there is a O(n)-time

algorithm that, given an n-vertex graph G with average degree d(G) ≥ (2 + ǫ)g(t), finds a

Kt-minor in G.

Reed and Wood used their algorithm mentioned above as a subroutine for finding separators

in a graph excluding a fixed minor (also see [11] for a related separator result). This result

has subsequently been used by Tazari and Müller-Hannemann [7] to find shortest paths in

linear time on proper minor-closed graph classes, by Yuster and Zwick [12] to find maximum

matchings in a graph with an excluded minor, and by Wulff-Nilsen [10] in a faster shortest

path algorithm for H-minor free graphs with negative edge weights. The algorithm given here

speeds up all these results (in terms of the dependence on t).

Finally, note that Robertson and Seymour [6] describe a O(n3)-time algorithm that tests

whether a given n-vertex graph contains a fixed graph H as a minor, and that Reed and

Kawarabayashi have announced a O(n log n)-time algorithm for this problem.

2 Algorithm

Given a vertex v of a graph G, we denote by degG(v) and NG(v) the degree and neighbourhood

of v in G, respectively. We drop the subscript when G is clear from context. Define a matching

M ⊆ E(G) to be a set of edges such that no two edges in M share an endpoint. Let V (M)

be the set of endpoints of the edges in M . An induced matching in G is a matching such that

any two vertices x, y of V (M) are only adjacent in G when xy ∈ M . Given a matching M in

G, let G/M be the graph formed by contracting each edge of M in G.

We fix ǫ > 0 and t ≥ 3 such that g(t) ≥ max{t, 2t
ǫ
}. We may assume t ≥ 3 since finding aK1- or

K2-minor is trivial, and that g(t) ≥ max{t, 2t
ǫ
} for sufficiently large t, since g(t) ∈ Θ(t

√
log t).

Consider the following algorithm that takes as input a graph given as a list of vertices and

a list of edges. The implicit output of the algorithm is the sequence of contractions and

deletions that produce a Kt-minor.
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Algorithm 1 FindMinor (input: n-vertex graph G with d(G) ≥ (2 + ǫ)g(t))

1: Delete edges of G so that (2 + ǫ)g(t) ≤ d(G) ≤ (2 + ǫ)g(t) + 1.

2: Delete vertices of low degree so that the minimum degree δ(G) > 1
2d(G).

3: Let S := {v ∈ V (G) : deg(v) ≤ d(G)2}, and let B := {v ∈ V (G) : deg(v) > d(G)2}.
4: Say an edge vw ∈ E(G) is good if v,w ∈ S and |N(v) ∩ N(w)| ≤ d(G)−2

2 . Greedily

construct a maximal matching M of good edges.

5: If |M | > 1
8d(G)n, then greedily construct a maximal induced submatching M ′ of M . Let

G′ := G/M ′. Run FindMinor(G′) and stop.

6: Now assume |M | ≤ 1
8d(G)n. Let B

′ := B ∪ V (M) and S′ := S − V (M).

7: Greedily compute a maximal subset A of S′ such that each vertex u ∈ A is assigned to a

pair of vertices in N(u) ∩B′, and each pair of vertices in B′ has at most one vertex in A

assigned to it.

8: If 2|A| ≥ d(G)|B′| and B′ 6= ∅, then let G′ be the graph obtained from G as follows: For

each pair of distinct vertices x, y ∈ B′ with an assigned vertex z ∈ A, contract the edge

xz. Run FindMinor(G′[B′]) and stop.

9: Now assume 2|A| < d(G)|B′| or B′ = ∅. Choose v ∈ S′ −A.

10: If |N(v) ∩B′| ≥ t, then let G′ be the graph obtained from G as follows: For each pair of

distinct vertices x, y ∈ N(v)∩B′, if z is the vertex in A assigned to x and y, then contract

xz into x (so that the new vertex is in B′). Then G′[N(v) ∩B′] ⊇ Kt. Stop.

11: Otherwise let G′ := G[{v}∪(NG(v)∩S′)] and run an exhaustive search to find a Kt-minor

in G′.

3 Correctness of Algorithm

First, we prove that FindMinor(G) does output a Kt-minor. Define m := |E(G)|. We must

ensure the following: that FindMinor finds a Kt-minor in Steps 5 and 8; that S′ −A 6= ∅ in

Step 9; that the graph constructed in Step 10 contains a Kt subgraph; and that our exhaustive

search in Step 11 finds a Kt-minor of G.

Consider Step 5. Assume that FindMinor finds a Kt-minor in any graph G′ with |V (G′)| < n

where d(G′) ≥ (2 + ǫ)g(t). Consider the induced matching M ′. Contracting any single edge

vw of M ′ does not lower the average degree, as we only lose |N(v) ∩N(w)| + 1 ≤ d(G)
2 edges

and one vertex. Since the matching is induced, contracting every edge in M ′ does not lower

the average degree. Since |M | > 1
8d(G)n, M

′ is not empty. Thus d(G′) ≥ d(G) ≥ (2 + ǫ)g(t)

and |V (G′)| < |V (G)| = n. Thus, by induction, running the algorithm on G′ finds a Kt-minor,

and as such we find one for G.

If we recurse at Step 8, then 2|A| ≥ d(G)|B′| and B′ 6= ∅. Now |V (G′[B′])| = |B′| and
|E(G′[B′])| ≥ |A|, since every assigned vertex corresponds to an edge. Thus d(G′[B′]) =
2|E(G′[B′])|
|V (G′[B′])| ≥ 2|A|

|B′| ≥ d(G). Also, |V (G′[B′])| = |B′| < n, since otherwise A = S′ = ∅,
contradicting 2|A| ≥ d(G)|B′| > 0. Hence, by assumption, the algorithm will find a Kt-minor
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in G′[B′]. Thus the algorithm finds a Kt-minor for G.

Now we show that |S′| > |A| in Step 9. First consider the case when 2|A| < d(G)|B′|.
Note that 2m = d(G)n, and that d(G)2|B| <

∑
v∈B deg(v) ≤ 2m, and so |B| < 2m

d(G)2 .

Now |S′| = |S| − 2|M | ≥ |S| − 1
4d(G)n by Step 6. Since |S| − 1

4d(G)n = (n − |B|) − 1
4d(G)n,

substituting the above results for |B|, we get that |S′| ≥ 4d(G)−5
4d(G) n. By Step 9 and Step

6, |A| < d(G)
2 |B′| = d(G)

2 (|B| + 2|M |). Substituting the above results gives that |A| < 5
8n.

Thus, if |S′| ≤ |A| then 4d(G)−5
4d(G) n < 5

8n, so 3d(G) < 10, which is a contradiction since

d(G) ≥ (2 + ǫ)g(t) > 2g(3) = 4. (g(t) ≥ g(3) = 2, since g(t) is non-decreasing.) Hence,

|S′| > |A|. Alternatively, B′ = ∅. Then |S′| = n and A = ∅, since the vertices of A are

assigned to pairs of vertices in B′. Hence |S′| > |A|.

Now consider Step 10. G′[N(v) ∩ B′] has at least t vertices by assumption. Each pair of

distinct vertices x, y in N(v)∩B′ has an assigned vertex in A, as otherwise v would have been

assigned to x and y. Hence the vertex z exists, and x and y are adjacent after contracting xz.

Therefore all pairs of vertices in N(v)∩B′ become adjacent, and G′[N(v)∩B′] is a complete

graph, and we have found our Kt-minor in G.

Finally consider Step 11. G′ is an induced subgraph of G, and so if we can find Kt as a minor

in G′, we have a Kt-minor in G. We use an exhaustive search, so all we need to ensure is

that G′ really does have a Kt-minor. Thus, we simply need to ensure that d(G′) ≥ g(t). By

Step 1 and Step 2, degG(v) >
1
2d(G) ≥ ǫ

2g(t) ≥ t, so by Step 10, v has some neighbour in S′.

Let w be a vertex of G′ − v. Thus vw is an edge and v,w ∈ S′. Since neither v nor w was

matched by M , and since M is maximal, vw is not good. Since v,w ∈ S′ ⊆ S, this means

that |N(v)∩N(w)| > d(G)−2
2 . From Step 10, we now know that v has at most t−1 neighbours

in B′, so |N(v)∩N(w)∩ S′| > d(G)−2
2 − (t− 1). Every common neighbour of v and w in S′ is

a neighbour of w in G′, by definition, so degG′(w) >
d(G)−2

2 − (t− 1). Since v is dominant in

G′, we have d(G′) ≥ d(G)−2
2 − (t−1), which is at least g(t) as required since d(G) ≥ (2+ ǫ)g(t)

and ǫg(t) ≥ 2t.

4 Time Complexity

Now that we have shown that FindMinor will output a Kt-minor, we must ensure it does

so in O(n)-time (for fixed t and ǫ).

First, suppose FindMinor runs without recursing. Recall that our input graph G is given

as a list of vertices and a list of edges, from which we will construct adjacency lists as it is

read in. Since our goal in Step 1 is to ensure that m ≤ 1
2 ((2 + ǫ)g(t) + 1)n, we can do this by

taking, at most, the first 1
2((2 + ǫ)g(t) + 1)n edges, and ignoring the rest. This can be done

in O(n)-time, and from now on we may assume that m ∈ O(n). In Step 2, since we are only

deleting vertices of bounded degree, this can be done in O(n)-time. Clearly, Steps 3, 6 and
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9 can be implemented in O(n)-time. By definition, the degree of any vertex in S or S′ is at

most ((2 + ǫ)g(t) + 1)2. Hence Steps 4, 5, 7, 8 and 10 take O(n)-time. Finally, for Step 11

note that |V (G′)| ≤ d(G)2 + 1, so exhaustive search runs in O(1)-time for fixed t. Hence the

algorithm without recursion runs in O(n)-time.

Should FindMinor recurse, we need to ensure that the order of the graph we recurse on is a

constant factor less than n. Then the overall time complexity is O(n) (by considering the sum

of a geometric series). In Step 5, since |M ′| ≥ 1
2d(G)2

|M |, it follows that |M ′| ≥ 1
16d(G)3

n. This

ensures that |V (G′)| ≤ (1 − 1
16d(G)3 )n. In Step 8, the order of G′[B′] is at most 2|A|

d(G) ≤ 2n
d(G) .

Hence it follows that the overall time complexity is O(n).
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