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Logic

Logic gives precise meaning to statements
tells us precisely what statements mean
allows computers to reason without the baggage of language

the building block of logic is the proposition
a declarative sentence that is either true or false

"Carleton University is located in Ottawa"
" "
" "

sentences that are not declarative are not propositions:
"How are you feeling today?"
"Pay attention!"

sentences that are neither true nor false are not propositions:
" "
"This sentence is false."

we can assign propositions names like  for short
the truth value of a proposition is either  (true) or  (false)
a single proposition should express a single fact:

"It is Monday and I am in class" is better expressed as two propositions: "It is Monday", "I am in class"

Connectives

How do we assert two propositions are true (or otherwise related) at once?

use connectives to create compound propositions
negation: if  is a propostion, then "it is not the case that  is true" is a compound proposition called the negation of , written 

The negation of "The network is functioning normally" is "It is not the case that the network is functioning normally" (or
just "The network is not functioning normally")
as a general rule, the original propositions you define should not contain a negation
the truth value of a negation can be determined using a truth table:

conjunction ("and"): if  and  are propositions, then "  and " is a compound proposition called the conjunction of  and ,
written 

"The program is fast and the program is accurate" (or just, "The program is fast and accurate")
conjunction has the following truth table:

there are many ways to express conjunction: "and", "but", "so", "also", ...
disjunction ("or"): if  and  are propositions, then "  or " is a compound proposition called the disjunction of  and , written 

"I work hard or I fail"
disjunction has the following truth table:
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disjunction in logic differs a bit from casual language
there are two kinds of "or": inclusive and exclusive

inclusive: "Students must have taken computer science or calculus to enroll in this course"
exclusive: "The meal comes with a soup or salad"

we will always assume inclusive or when we use the  symbol
for exclusive or, we write  and use the following truth table:

implication ("if...then"): if  and  are propositions, then the implication "if  then " is a compound propositon, written 
"If the website is down, then the technical support person must fix it"
We call  the hypothesis and  the conclusion
implication has the following truth table:

there are many ways to write  in English:
if  then 

 implies 
if , 

 only if 
 is sufficient for 

a sufficient condition for  is 
 if 
 whenever 
 when 
 is necessary for 
 follows from 

a necessary condition for  is 
when  is false,  is true regardless of the truth value of 
given , we can define a few special propositions:

 is the converse
 is the contrapositive
 is the inverse

biconditional ("if and only if"): if  and  are propositions, then the biconditional "  if and only if " is a compound propositon,
written 

"You will pass this course if and only if you study"
The biconditional has the following truth table:
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"if and only if" is often abbreviated to "iff"
we say "  is necessary and sufficient for ", "if  then , and conversely", or "  iff "

A quick note on precedence:

we will use brackets as much as possible to make precedence clear
as a general rule, negation applies to whatever is directly after only

 is 
use brackets for everything else so there is no ambiguity

Translating Sentences

Let  be the proposition "the computer lab uses Linux",  be the proposition "a hacker breaks into the computer" and  be the
proposition "the data on the computer is lost."

 means "If the computer in the lab uses Linux then a hacker will not break into the computer, and
if a hacker does not break into the computer then the data on the computer will not be lost."

 means "It is not the case that either the computer in the lab uses Linux or a hacker will break into the
computer." (This is a bit awkward. We will learn how to phrase this better later.)

 means "The data on the computer is lost if and only if the computer in the lab does not use Linux and a
hacker breaks into the computer."

How could we translate "If the hard drive crashes then the data is lost"?
Let  be the proposition "the hard drive crashes" and  be the proposition "the data is lost." The sentence translates to 

.
How could we translate "The infrared scanner detects motion only if the intruder is in the room or the scanner is defective"?

Let  be the proposition "the infrared scanner detects motion",  be the proposition "the intruder is in the room" and  be
the proposition "the scanner is defective." The sentence translates to .

How could we translate "If the server is down and the network connection is lost, then email is not available but I can still play
games" into propositional logic?

Let  be the proposition "the server is down",  be the proposition "the network connection is lost",  be the proposition
"email is available" and  be the proposition "I can play games." The sentence translates to .

Truth Tables

How can we determine the truth value of compound propositions?

we need the truth values of the propositions that make them up
we can use truth tables to look at all possible combinations

To make a truth table:

one column for every proposition
break the compound proposition into parts
one row for every truth value combination
fill the table in by working with smaller parts first and building to the whole compound proposition

A truth table for  is:

Now, given values for  and , we can look at the appropriate row of the last column to find the truth value of the whole expression.
Adding more variables means adding more rows. The truth table for  is:
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If there are  variables, there are  different truth value combinations and therefore  rows. To make the table, fill the first half of
the first column with  and the last half with . Then fill the second column by repeating this pattern in each half, and so on. This is
an easy way to guarantee all possibilities are covered. Here is another example of a truth table, this time for :

Sometimes truth value doesn't depend on the other truth values: the compound proposition is always true or always false, regardless
of the truth assignments of the propositions. For example,  is always true, regardless of whether  is true or false:

Such a statement is a tautology. On the other hand,  is always false, regardless of whether  is true or false:

Such a statement is a contradiction. If a statement is neither a tautology nor a contradiction, then the truth values do alter the
outcome and we say that the statement is a contingency. Here are some examples that we will classify as tautologies, contradictions,
or contingencies:

Observe that every row in the last column has value . Therefore, the proposition is a tautology.
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Observe that every row in the last column has value . Therefore, the proposition is a contradiction. Notice how we relabelled
two large compound propositions in order to save space in the truth table.

Observe that the rows of the last column have both s and s. Therefore, the proposition is a contingency.

Logical Equivalences

There is often more than one way to write a proposition. For instance,  and  mean the same thing. We write  to mean
"the proposition  is logically equivalent to the proposition ". How do we tell if two expressions are logically equivalent? The first
method is to use truth tables:

logical equivalence = same truth tables
to see if two expressions are logically equivalent, just check their truth tables to see if they match

Some examples:

To check if  and  are logically equivalent:

Since columns corresponding to  and  match, the propositions are logically equivalent. This particular
equivalence is known as De Morgan's Law.
Are  and  logically equivalent?
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Since columns corresponding to  and  match, the propositions are logically equivalent. This
particular equivalence is known as the Distributive Law.

The second method is to use a series of known logical equivalences to go from one propostion to the other

Identity Law:  and 
Idempotent Law:  and 
Domination Law:  and 
Negation Law:  and 
Double Negation Law: 
Commutative Law:  and 
Associative Law:  and 
Distributive Law:  and 
Absorption Law:  and 
De Morgan's Law:  and 
Implication Equivalence: 
Biconditional Equivalence: 

Any equivalence can be used, but let's stick with these. Let's see some examples.

 and 

Since each proposition is logically equivalent to the next, we must have that  and  are logically
equivalent.

We can also use this technique to classify a proposition as a tautology or a contradiction by determining if the proposition is logically
equivalent to  or , respectively.

Is  a tautology, contradiction or contingency?

Since each proposition is logically equivalent to the next, we must have that  and  are logically equivalent.
Therefore, regardless of the truth values of  and , the truth value of  is . Thus,  is a
tautology.

Here are several more examples that use logical equivalences:
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However,  is not equivalent to , since it is its negation. Therefore, the two propositions are not logically
equivalent.

 and 

Since the last two columns do not match, the propositions are not logically equivalent.
 and 

Since the last two columns match, the propositions are logically equivalent. We can also see this using logical equivalences:

Since each proposition is logically equivalent to the next, we must have that the two propositions are logically equivalent.
Are the statements "if food is good, it is not cheap" and "if food is cheap, it is not good" saying the same thing? Let  be the
proposition "food is good" and  be the proposition "food is cheap." The first statement is  and the second statement is 

. We now apply some logical equivalences.

Since the two statements are logically equivalent, they are saying the same thing.

Predicate Logic

Problem with propositional logic: how does one say, "Everyone in this class is a student"?

not very useful to use that as a proposition: it says too much!
propositions should talk about one thing: "person  is in this class", "person  is a student"
so we could say "  is in this class   is a student   is in this class   is a student "
two propositions per person: this is a lot of work!

Idea: "being a student" and "being in this class" are properties that people can have, and "everyone" quantifies which people have
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the property. We can define a propositional function that asserts that a predicate is true about some object.

Suppose  denotes the predicate "is a student". Then  means "  is a student" for some object . This works for all predicates: "is
greater than", "is shorter than", "is a boat", 

Once we have defined a propositional function, any object we give to it produces a truth value. For example, if  means "  is
greater than ", then:

 is false
 is false
 is true

We don't need to stop at one variable, either: if  denotes "  is greater than ", then:

 is false
 is true

This doesn't fully solve the original problem them: we now have to write . To fix this, we need quantifiers

Universe of Discourse

Before we can think about quantifiers, we need to think about the universe of discourse. In the above example about students, there
are at least two possible universes of discourse. If the universe is "all people in the class", then saying  is in this class" is redundant.
However, if the universe of discourse is "all people", then it is important!

As another example, consider  to denote "  is greater than ". Here, the universe is assumed to be, say, the set of all real
numbers. If the universe of discourse was the set of all people, we would have statements like "John is greater than ", which makes
no sense.

It is important to define a universe of discourse! Think of the universe of discourse as the set of all values (names) that you can plug
into the propositional functions being considered.

Universal Quantification

Given a propositional function , the \emph{universal quantification} of  is the proposition "  is true for all values  in the
universe of discourse." We write  and say "for all , " or "for every , ." The symbol  is the universal quantifier.

This notation is essentially shorthand. If the universe of discourse consists of the objects , then  means 
. Of course, if the universe of discourse is infinite (for example, the integers or real numbers), then such shorthand

becomes necessary.

Observe that since  is essentially a conjunction, it must be the case that it has truth value  precisely when the predicate is
true for all objects in the universe of discourse and  otherwise. Therefore, if the predicate  is false for at least one object in the
universe of discourse, then  has truth value . Here are some examples that use universal quantification:

Let  denote "  is greater than ", where the universe of discourse is the set of integers. Then the truth value of  is ,
since, for example,  is . Note that if the universe of discourse had been the set of all integers greater than or equal to ,
then  would have truth value .
Let  denote " " where the universe of discourse is the set of real numbers. Is  true? What if the universe of
discourse is the set of integers? Observe that  if and only if , which is true if and only if , which is
true if and only if  or . Therefore, if the universe of discourse is the set of real numbers, any real number strictly
between  and  gives an example where the statement is false. For example, . Therefore,  is false if
the universe of discourse is the set of real numbers.If the universe of discourse is the set of integers, however,  is true,
since there is no integer strictly between  and .

Exisential Quantification

Given a propositional function , the existential quantification of  is the proposition "  is true for at least one value  in the
universe of discourse." We write  and say "there exists an  such that " or "for some , ." The symbol  is the
existential quantifier.

Again, this notation is essentially shorthand. If the universe of discourse consists of the objects , then  means 
.
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Observe that since  is essentially a disjunction, it must be the case that it has truth value  precisely when the predicate is
true for at least one object in the universe of discourse and  otherwise. Therefore, if the predicate  is false for all objects in the
universe of discourse, then  has truth value . Here are some examples that use existential quantification:

Let  denote "  is greater than ", where the universe of discourse is the set of integers. Then the proposition  has
truth value , since, for example,  is true. If the universe of discourse had been the set of all integers less than or equal to ,
then  would have truth value .
Let  denote " ", where the universe of discourse is the set of integers. Then the truth value of  is ,
because no integer has this property (since it implies that ).

Binding of Quantifiers

The scope of a quantifier is the smallest proposition following it:

We would instead write .

It is valid to write, for example, , but the  in each quantifier could be completely different elements of the universe
of discourse! Conversely, we might want to make sure they are not the same: .

For example, if the universe of discourse is the set of integers,  means "  is a even", and  means "  can odd":

 is true, since (for example)  is an even integer
 is true, since (for example)  is an odd integer

 is true, since the s can be different
 is false, since no integer is both even and odd

Negating Quantifiers

How do we negate a quantified statement?

What is the negation of "all people like math"?
"it is not the case that all people like math"

 true when at least one person does not like math
 there exists one person who does not like math

What is the negation of "at least one person likes math"?
"it is not the case that at least one person likes math"

 true when there are no people who like math
 every person does not like math

We have the following quantifier negation rules:

This follows from De Morgan's law and the fact that quantifiers are essentially shorthand for conjunction and disjunction. Here are
some examples of quantifier negation:

The negation of  is 
Then negation of  is 

Translating Sentences with Predicates and Quantifiers

Universal quantifiers: look for keywords like "every", "all"
Existential quantifiers: look for keywords like "some", "at least one"

In the following examples, the universe of discourse is all people.

"Every student in this class will learn about logic"
Let  denote "  is a student in this class" and  denote "  will learn about logic".
The sentence is .
Note: the answer is not  because the  in  is not bound.
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Note: the answer is not  because this is saying every person is a student in this class and will learn about
logic (too strong!)

"Some student in this class will learn about calculus"
Let  denote "  is a student in this class" and  denote "  will learn about calculus".
The sentence is .
Note: the answer is not  because the  in  is not bound.
Note: the answer is not  because this does not assert the existence of any students in this class (too
weak!)

Let  denote "  is an instructor" and  denote "  knows everything." Then the statement "no instructor knows
everything" can be translated as .

We can apply quantifier negation to this to get .
Applying De Morgan's Law, we get .
Applying Implication Equivalence, we get  ("if you are an instructor, then you don't know
everything").
The statement "some instructors don't know everything" can be translated as .

Multiple quantifiers are possible:

Let  denote "  and  are friends." Then  means "everyone has at least one friend." Note that this is not the
same as , since this means "there is one person who is friends with everyone."
Let  denote "  is male",  denote "  is female",  denote "  is a student in this class" and  denote "  knows 

." Then the statement "every female student in this class knows at least one male student in this class" can be translated as 
.

Here are some more complex examples:

Let the universe of discourse be all Olympic athletes. Let  denote "  uses performance enhancing drugs" and  denote
"  wins a medal." The direct translation of  is awkward. Applying some logical equivalences, we get

This translates much more cleanly to "there is at least one olympic athlete who uses performance enhancing drugs but does not
win a medal."
Let the universe of discourse be all people. Let  denote "  is female",  denote "  is a parent" and  denote "  is
the mother of ." Then the statement "if a person is female and a parent, then that person is someone's mother" can be
translated as , or equivalently, .
Let the universe of discourse be all people and let  denote "  is the best friend of ." To translate the statement
"everyone has exactly one best friend", note that to have exactly one best friend, say , then no other person  is that person's
best friend, unless . The statement can therefore be translated as .

Arguments and Validity

Now that we know how to state things precisely, we are ready to think about putting statements together to form arguments. A
rigorous argument that is valid constitutes a proof. We need to put the statements together using valid rules.

For example, given the premises:

"if it is cloudy outside, then it will rain"
"it is cloudy outside"

a conclusion might be "it will rain". Intuitively, this seems valid.

An argument is valid if the truth of the premises implies the conclusion. Given premises , and conclusion , the
argument is valid if and only if . Note that false premises can lead to a false conclusion!

Rules of Inference

How do we show validity? We use the rules of inference:

Addition: given , conclude 
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Conjunction: given  and , conclude 
Simplification: given , conclude  and 
Modus Ponens: given  and , conclude 
Modus Tollens: given  and , conclude 
Hypothetical Syllogism: given  and , conclude 
Disjunctive Syllogism: given  and , conclude 
Resolution: given  and , conclude 

To show that the premises imply the conclusion, we apply the rules of inference to the premises until we get the conclusion. Here are
some examples of how to show an argument is valid:

Consider the argument:
It is not sunny this afternoon and it is colder than yesterday.
We will go swimming only if it is sunny.
If we do not go swimming, then we will take a canoe trip.
If we take a canoe trip, we will be home by sunset.
Therefore, we will be home by sunset.

To determine if this argument is valid, we should begin by translating it into logic. Let  denote "It is sunny this afternoon", 
denote "It is colder than yesterday",  denote "We will go swimming",  denote "We will take a canoe trip" and  denote "We will
be home by sunset." The premises are therefore , , ,  and the conclusion is . Apply the following
rules of inference.

Since we were able to derive the conclusion from the premises using the rules of inference, the argument is valid.

It is also valid to replace premises with others that are logically equivalent. For example, an implication can be replaced with its
contrapositive.

Consider the argument:
If you send me an email message, then I will finish writing the program.
If you do not send me an email message, then I will go to sleep early.
If I go to sleep eaerly, then I will wake up feeling refreshed.
Therefore, if I do not finish writing the program, I will wake up feeling refreshed.

We begin by translating this argument into logic. Let  denote "You send me an email message",  denote "I will finish writing
the program",  denote "I will go to sleep early" and  denote "I will wake up feeling refreshed." The premises are therefore 

, ,  and the conclusion is . Apply the following rules of inference.

Since we were able to derive the conclusion from the premises using the rules of inference, the argument is valid.
Consider the arugment:

Either I study or I fail.
I did not study.
Therefore, I fail.

Let  denote "I study" and  denote "I fail". The premises are therefore  and  and the conclusion is . Apply the following
rules of inference.
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Not all arguments are valid! To show an argument is invalid, find truth values for each proposition that make all of the premises true,
but the conclusion false.

This works because proving an argument is valid is just showing that an implication is true. Therefore, to show an argument is invalid,
we need to show that the implication is false. An implication is false only when the hypothesis is true and the conclusion is false. Since
the hypothesis is the conjunction of the premises, this means that each premise is true and the conclusion is false.

Consider the argument:
If I did all the suggested exercises, then I got an A+
I got an A+
Therefore, I did all of the suggested exercises.

Let  denote "I did all of the suggested excerises" and  denote "I got an A+." The premises are therefore  and  and the
conclusion is . To show this argument is invalid, we find truth values to make all of the premises true, but the conclusion false.
If we set  and , we have  and , and so the premises are true. However, the conclusion
is , and so the argument is invalid.

In the above example, it happens that there is only one truth setting that results in all premises being true and the conclusion being
false. In general, there could be many different such truth settings.

Arguments with Quantified Statements

Until now, we have restricted our attention to propositional logic. Recall that  is a propositional function, and so when  is an
element of the universe of discourse, we simply have a proposition that can be dealt with using the rules of inference for propositions.
For predicate logic, we need a few more rules of inference that will allow us to deal with quantified statements.

Universal Instantiation: given , conclude  for any  in the universe of discourse (if  holds for everything, it must
hold for each particular thing)
Existential Generalization: given  for some  in the universe of discourse, conclude  (if I can find an element for
which  is true, then there must exist at least one such element)
Universal Generalization: given  for an arbitrary  in the universe of discourse, conclude  (here,  must be arbitrary;
it must hold for any !)
Existential Instantiation: given , conclude  for some  in the universe of discourse (you must pick a new  about
which you know nothing else)

Here are some examples of arguments with quantified statements:

Consider the following argument, where the universe of discourse is the set of all things.:
All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Let  denote "  is a man",  denote "  is mortal" and  denote Socrates. The premises are therefore 
and  and the conclusion is . Apply the following rules of inference.

Since we were able to derive the conclusion from the premises using the rules of inference, the argument is valid. Notice that in
Step 3, we chose to apply Universal Instantiation and used the object . Of course, we could have used any object in the
universe of discourse, but no other object would allow us to reach the desired conclusion.
Consider the following argument, where the universe of discourse is the set of all people.

A student in this class has not read the textbook.
Everyone in this class did well on the first assignment.
Therefore, someone who did well on the first assignment has not read the textbook.

1.
2.
4.
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Let  denote "  is a student in this class",  denote "  has read the textbook" and  denote "  did well on the first
assignment." The premises are therefore  and  and the conclusion is .
Apply the following rules of inference.

Since we were able to derive the conclusion from the premises using the rules of inference, the argument is valid. Notice that in
Step 3, we chose to apply Existential Instantiation and used the object . This is valid because we have not seen  before and
therefore know nothing else about it. We later apply Universal Instantiation using , but this is valid because this rule can be
applied using any object. Note that applying these rules in the opposite order would not have been valid, since we would have
already seen  when applying Existential Instantiation.
Consider the following argument, where the universe of discourse is the set of people.

All human beings are from Earth.
Every person is a human being.
Therefore, every person is from Earth

Let  denote "  is a human being" and  denote "  is from Earth." The premises are therefore  and 
 and the conclusion is . Apply the following rules of inference.

Since we were able to derive the conclusion from the premises using the rules of inference, the argument is valid. Notice that in
Step 6, we chose to apply Universal Generalization and used the object . This is valid because we could have performed the
instantiations in Steps 3 and 4 with any object, and so  could be any object in the universe of discourse.

The next example will help to illustrate when Universal Generalization may not be applied.

Consider the following argument, where the universe of discourse is the set of people.
If John knows discrete mathematics, he will pass this course.
John knows discrete mathematics.
Therefore, everyone will pass this course

Let  denote "  knows discrete mathematics",  denote "  will pass this course" and  denote John. The premises are
therefore  and  and the conclusion is . One might be tempted to apply the following rules of inference.

The Universal Generalization applied in Step 4 is not valid since  represents only John and not necessarily any object in the
universe of discourse. By itself, this does not show that the argument is invalid, however, since this simply may not be the
correct way to prove it. To show the argument is invalid, we need to assign truth values such that the premises are true but the
conclusion is false. Set ,  so that the premises are true, but set  for some person  to make the
conclusion false. Therefore, the argument is invalid.

Methods of proof

C(x) x B(x) x A(x) x
�x (C(x) @ ¬B(x)) �x (C(x) → A(x)) �x (A(x) @ ¬B(x))

1.
2.
3.
4.
5.
6.
7.
8.
9.

�x (C(x) @ ¬B(x))
�x (C(x) → A(x))
C(a) @ ¬B(a)
C(a)
C(a) → A(a)
A(a)
¬B(a)
A(a) @ ¬B(a)
�x (A(x) @ ¬B(x))

M �x (A(x) @ ¬B(x))
Existential Instantiation (1)
Simplification (3)
Universal Instantiation (2)
Modus Ponens (4,5)
Simplification (3)
Conjunction (6,7)
Existential Generalization (8)

a a
a

a

H(x) x E(x) x �x (H(x) → E(x))
�x H(x) �x E(x)

1.
2.
3.
4.
5.
6.

�x (H(x) → E(x))
�x H(x)
H(c) → E(c)
H(c)
E(c)
�x E(x)

M �x E(x)
Universal Instantiation (1)
Universal Instantiation (2)
Modus Ponens (3,4)
Universal Generalization (5)

c
c

D(x) x P(x) x j
D(j) → P(j) D(j) �x P(x)

1.
2.
3.
4.

D(j) → P(j)
D(j)
P(j)
�x P(x)

M �x P(x)
Modus Ponens(1, 2)
Universal Generalization (3)

j

D(j) = T P(j) = T P(a) = F a



How do we go about forming arguments (proofs)?

Direct proofs: to prove an implication , start by assuming that  is true, and then prove that  is true under this
assumption.

Prove that if  is an odd integer, then  is an odd integer.

Assume that  is an odd integer. Therefore, we can write  for some integer . So 
. This has form  for an integer  and is therefore odd.

Indirect proof: Recall that . Therefore, to prove , we could instead prove  using a direct
proof: assume  and prove .

Prove that if  is odd, then  is odd.

We instead prove that if  is even, then  is even. Assume  is even; then  for some integer . So 
, which has the form  for an integer  and is therefore even.

Prove that the sum of two rational numbers is rational.

We will attempt to prove this directly: if  and  are rational numbers, then  is a rational number. Assume that  and 
are rational numbers. Then  and  where  and  by the definition of rational numbers.
Now, . Since ,  and  are both integers. Since , we have .
Therefore,  is rational. A direct proof succeeded!

Prove that if  is an integer and  is odd, then  is odd.

We will attempt to prove this directly. Assume  is an integer and  is odd. Then  and so . It
is not obvious how to proceed at this point, so we will turn to an indirect proof. Assume  is even. Then , and so 

. Therefore,  is even. An indirect proof worked!

Vacuous/trivial proofs: When trying to prove  and  is false, then the statement follows automatically.
Let  denote "if , then ". Prove .

The statement is "if , then . But it is not the case that , so the hypothesis is false and therefore the
implication is true.

Proof by contradiction: Suppose we want to prove the proposition . If we can instead show that  (that is,  leads to a
contradiction), then  must be false. Thus,  is true. Observe that if we want to prove  by contradiction, we assume 

.
Prove that  is irrational.

Instead, assume that  is \emph{rational} and try to derive a contradiction. If  is rational, then  for some
integers  with . We can further assume that  and  have no common factor, since if they do, we can divide
through by this common factor to produce new values of  and .

Now, since , we have  and so . Therefore,  is even and so  is even. Since  is even, we
have  for some integer . Now, substitute this value of  into  to get . We now have
that , so  is even and thus  is even. Therefore, both  and  are even, so they have a common factor of . This
contradicts the assumption that  and  have no common factor, and so our assumption that  is rational must be
wrong. Therefore,  is irrational.

Proof by cases: To prove a statement of the form , we can instead prove 
, since it is logically equivalent to the original proposition.

Prove that if  and  are real numbers, then .

We can consider the following cases:

1.  and . Then , and so the statement holds.
2.  and . Then , and so , and so the statement holds.
3.  and . Then , and so , and so the statement holds.
4.  and . Then  and , and so , and so the statement

holds.

Observe that these four cases cover all possible choices for  and . Since the statement holds in every case, the
statement must be true for all real numbers.

Equivalence proofs: To prove the biconditional , prove . The phrase "if and only if" indicates that an
equivalence proof will be needed; a common error is to prove  but not .
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Prove that  is odd if and only if  is odd.

We must prove two things. First, we show that if  is odd then  is odd. We will do so directly: assume that  is odd. Then 
 for some integer . Thus, , which has the form 

and is thus odd.

We now show that if  is odd then  is odd. We will do this indirectly: assume  is even. Then  for some integer .
Thus, , which has the form  and is thus even.

Existence proofs: To prove that something exists, one must prove the proposition . Such proofs can be either
constructive, where one finds an  such that  is true, or non-constructive, where we prove  without finding an 
such that  is true.

Prove that there exists a positive integer that can be written as the sum of cubes in two different ways.

We simply observe that . This is an example of a constructive existence proof because we
have found an integer with the desired property.

Prove that there are two irrational number  and  such that  is rational.

We know that  is rational by a previous example. Consider . It is not immediately obvious if this number is
rational or irrational. If it is rational, then we have proved the statement correct by taking . If  is
irrational, then we are not yet done. Instead, take  and . By our assumption, both of these numbers are
irrational, but , which is rational. We therefore know that either  or 
and  satisfy the requirements of the statement. This is an example of a non-constructive existence proof because
we do not know which of these pairs has the desired property, only that one of them does.

Uniqueness proofs: To prove that an object is unique, we must first prove that it exists. Suppose the object is . To show it is
unique, we then prove that if , then  does not have the property.

Prove that if  is an integer, then there exists a unique integer  such that .

To show existence, we let  and observe that . We must now show uniquess; we do so using
contradiction. Suppose that  and  with . Then , and so , which is a
contradiction.

Counterexamples: The previous proof methods showed how to prove that a statement is true. To prove a statement of the form 
 is false, we need only find one  such that  is false. Such an  is called a counterexample.

Show the statement "every positive integer is the sum of the squares of three integers" is false.

We simply need to come up with an integer where this is not true. To do this, observe that it is clear that the three squares
must be smaller than the number. Consider the integer ; the squares smaller than  are ,  and . We can exhaustively
try all combinations of three of these squares. It is not too difficult to see that no combination of three of these numbers
add to , since we have  and , and there is no way to add one or subtract one from either of
these numbers. Therefore,  is a counterexample.

It is important to note that counterexamples have two components: first, one must come up with the counterexample , and
then one must prove that  is false.

Here are some more examples of proofs:

If  and  are rational, then  is rational.

This is false. A counterexample is  and . Then , which is irrational.

If  is an integer and  is odd, then  is even.

We use an indirect proof and show that if  is odd then  is even. If  is odd, then  for some integer .
Therefore, . Since  is an integer,  must
be odd. Since  is also odd, and the sum of two odd numbers is even, we have that  is even.

We could instead use a proof by contradiction. Assume that the conclusion is false, so that  is odd. Since  is odd,  must be
odd since the product of two odd numbers is odd. This implies that  is odd for the same reason. Since  is also odd, and the
sum of two odd numbers is even, we have that  is even, which contradicts the premise that  is odd. Therefore, 
must be even.

If  is rational, then  is rational.
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This is an example where you must pay close attention to the universe of discourse (in this case, the rational numbers). Notice
that  is a rational number, but  is not defined (and therefore not a rational number).

If we restrict  to non-zero rational numbers, then the statement is true: if  is rational, then  for some integers 
and , and so  which is a rational number.

Between any two rational numbers, there is a rational number.

Suppose we have two rational numbers  and . Assume that  (if this is not the case, just switch  and ). Since  and  are
rational, we have  and  for some integers . We need to show that there is a rational number  such that 

. Define  to be:

We have expressed  as the ratio of two integers, so  is rational. We still have to show that  and . (Recall we assumed
that .) Notice that , so . Similarly, . Therefore, 

.

The real number equation  has a unique solution.

We first prove that the solution exists: we can rearrange  to be , which is a solution. To show it is
unique, suppose we have two solutions  and . Then  and . Therefore, . Subtracting 
from both sides gives , and dividing both sides by  gives : this means that any other solution other than  is
equal to , which is another way of saying that  is the unique solution to the equation.

Sets

A set is an unordered collection of objects.

The objects in a set are called the set's elements or members. They are usually listed inside braces. We write  if  is an element
(member) of a set .

 is a set with  elements. It is the same as the set  (order does not matter) and the set  (repetition
does not matter). Typically, all objects are the same (for example, numbers), but they do not have to be:  is a
set.

Ellipses are used when a pattern is clear:  is the set of all integers from  to , inclusive.

Some sets we use a lot:

 is the set of real numbers
 is the set of natural numbers
 is the set of integers
 is the set of rational numbers

It is possible to have a set with no elements: . This is the empty set and is usually denoted . This is not the same as , which is a
set with one element (that happens to be a (empty) set).

The number of distinct elements in a set  is called its cardinality and is denoted . If  is infinite (for example, ), we say the set is
infinite.

One common way to define a set is set builder notation. Here are two examples:

Set Operations

Several operations can be performed on sets.

Union: Given two sets  and , the union  is the set of all elements that are in either  or . For example, if 
and , then . Note that .

x = 0 1/x

x x x = a/b a y 0
b y 0 1/x = b/a

x y x < y x y x y
x = a/b y = c/d a, b, c, d z

x < z < y z

z = = = =
x + y

2

+a
b

c
d

2

ad+bc
bd

2
ad + bc

2bd

z z z > x z < y
x < y z = (x + y)/2 > (x + x)/2 = x z > x z = (x + y)/2 < (y + y)/2 = y

x < z < y

5x + 3 = a

5x + 3 = a x = (a + 3)/5
x y 5x + 3 = a 5y + 3 = a 5x + 3 = 5y + 3 3

5x = 5y 5 x = y x
x x

x ! A x
A

{1, 2, 3} 3 {1, 3, 2} {1, 1, 2, 3, 3, 3, 3}
{1, 3, red, blue, John}

{1, 2, 3, 4,… , 50} 1 50

ℝ
ℕ
ℤ
ℚ

{} ∅ {∅}

S |S| |S| ℤ

ℝ = {r | r is a real number}
O = {x | x is an odd integer}

A B A C B A B A = {1, 3, 5}
B = {2, 3, 6} A C B = {1, 2, 3, 4, 5, 6} A C B = {x | (x ! A) A (x ! B)}



Intersection: Given two sets  and , the intersection  is the set of all elements that are in both  and . For example, if 
 and , then . Note that . We say that  and 

are disjoint if .

Difference: Given two sets  and , the difference  is the set of all elements that are in  but not in . For example, if 
 and , then . Note that .  is also denoted 

.

Complement: Given a set , the complement  is the set of all elements that are not in . To define this, we need some
definition of the universe of all possible elements . We can therefore view the complement as a special case of set difference,
where . For example, if  and , then . Note that

.

Cartesian Product: Given two sets  and , the cartesian product  is the set of ordered pairs where the first element is in 
and the second element is in . We have . For example, if  and ,
then .

Subsets

A set  is a subset of a set  if every element of  is an element of . We write . Another way of saying this is that  if and
only if .

For any set S, we have:

Proof: Must show that . Since  is always false, the implication is always true. This is an example of a
trivial or vacuous proof.

Proof: Must show that . Fix an element . We must show that . This implication is

A B A B B A B
A = {1, 2, 3, 4} B = {3, 4, 5, 6} A B B = {3, 4} A B B = {x | (x ! A) @ (x ! B)} A B

A B B = ∅

A B A ∖ B A B
A = {1, 2, 3, 4} B = {3, 4} A ∖ B = {1, 2} A ∖ B = {x | (x ! A) @ (x " B)} A ∖ B
A + B

A A
⎯ ⎯⎯⎯

A
U

= U ∖ AA
⎯ ⎯⎯⎯

U = ℤ A = {x | x is an odd integer} = {x | x is an even number}A
⎯ ⎯⎯⎯

= {x | x " A}A
⎯ ⎯⎯⎯

A B A × B A
B A × B = {(a, b) | a ! A @ b ! B} A = {1, 2, 3} B = {a, b}

A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

A B A B A � B A � B
�x (x ! A → x ! B)

∅ � S

�x (x ! ∅ → x ! S) x ! ∅

S � S

�x (x ! S → x ! S) x x ! S → x ! S



equivalent to , which is a tautology. Therefore, by Universal Generalization, .

If  and , then we say  is a proper subset of  and write .

Power Sets

The power set of a set  is the set of all subsets of , denoted . For example, if , then

Notice that .

Set Equality

Two sets are equal if they contain the same elements. One way to show that two sets  and  are equal is to show that  and 
:

Note: it is not enough to simply check if the sets have the same size! They must have exactly the same elements. Remember, though,
that order and repetition do not matter.

Membership Tables

We combine sets in much the same way that we combined propositions. Asking if an element  is in the resulting set is like asking if a
proposition is true. Note that  could be in any of the original sets.

What does the set  look like? We use  to denote the presence of some element  and  to denote its absence.

This is a membership table. It can be used to draw the Venn diagram by shading in all regions that have a  in the final column. The
regions are defined by the left-most columns.

We can also use membership tables to test if two sets are equal. Here are two methods of showing if :

Showing each side is a subset of the other:

�x (x ! S → x ! S)
x ! S A x " S S � S

A � B A y B A B A � B

A A (A) A = {1, 2, 3}
(A) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

|(A)| = 2|A|

A B A � B
B � A

A � B @ B � A z
z
z

�x ((x ! A → x ! B) @ (x ! B → x ! A))
�x (x ! A ↔ x ! B)
A = B

x
x

A C (B B C) 1 x 0

A
1
1
1
1
0
0
0
0

B
1
1
0
0
1
1
0
0

C
1
0
1
0
1
0
1
0

B B C
1
0
0
0
1
0
0
0

A C (B B C)
1
1
1
1
1
0
0
0

1

= CA B B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

x !



Using membership tables:

Since the columns corresponding to the two sets match, they are equal.

It is not sufficient to simply draw the Venn diagrams for two sets to show that they are equal: you need to show why your Venn
diagram is correct (typically with a membership table).

There is an additional way to prove two sets are equal, and that is to use set identities. In the following list, assume  and  are sets
drawn from a universe .

Identity Law: , 
Idempotent Law: , 
Domination Law: , 

Complementation Law: 
Commutative Law: , 
Associative Law: , 
Distributive Law: , 
Absorption Law:  and 
De Morgan's Law: , 
Complement Law: , 
Difference Equivalence: 

Note the similarities to logical equivalences! Here are some examples of how to determine if two sets are equal:

Is  equal to ? First, we can use a membership table:

x ! A B B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

→
→
→
→
→
→
→

x " A B B
¬(x ! A B B)
¬(x ! A @ x ! B)
¬(x ! A) A ¬(x ! B)
x " A A x " B

x ! A x !A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

x ! CA
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

x ! CA
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

→
→
→
→
→
→

x " A A x " B
¬(x ! A) A ¬(x ! B)
¬(x ! A @ x ! B)
¬(x ! A B B)
x " A B B

x ! A B B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
1
1
1
1
0
0
0
0

B
1
1
0
0
1
1
0
0

C
1
0
1
0
1
0
1
0

A B B
1
1
0
0
0
0
0
0

A B B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

0
0
1
1
1
1
1
1

A
⎯ ⎯⎯⎯

0
0
0
0
1
1
1
1

B
⎯ ⎯⎯⎯

0
0
1
1
0
0
1
1

CA
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

0
0
1
1
1
1
1
1

A B
U

A C ∅ = A A B U = A
A C A = A A B A = A
A C U = U A B ∅ = ∅

= AA
⎯ ⎯⎯⎯⎯ ⎯⎯⎯

A C B = B C A A B B = B B A
A C (B C C) = (A C B) C C A B (B B C) = (A B B) B C
A B (B C C) = (A B B) C (A B C) A C (B B C) = (A C B) B (A C C)
A C (A B B) = A A B (A C B) = A

= CA B B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

= BA C B
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

A
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

A C = UA
⎯ ⎯⎯⎯

A B = ∅A
⎯ ⎯⎯⎯

A ∖ B = A B B
⎯ ⎯⎯⎯

(A ∖ C) B (B ∖ C) (A B B) B C
⎯ ⎯⎯⎯



Since the columns corresponding to the two sets match, they are equal. We can also use set identities:

Is  equal to ? Let's use some set identities:

Note that, in general,  (\eg, let ). Therefore, these sets are not equal. (Note the similarity to
finding truth settings that invalidate an argument!)

Functions

Suppose we want to map one set to the other: given an element of set  (the input), return an element of set  (the output).

For example, suppose  and . We might want to
know, given a user, what is that user's password: the input is the user (from ) and the output is that user's password (from ).

Let  and  be two sets. A function from  to  is an assignment of exactly one element from  to each element of . We write 
 if  is the unique element assigned by the function  to the element . If  is a function from  to , we write 

.

It makes sense to model the password example above as a function because each user has exactly one password. Here are two other
examples:

Suppose user root has password , john has password , and guest has password . Call the password
function . Then . We can also visualize  as follows:

Consider a function  that assigns a grade to each student in the class:

A
1
1
1
1
0
0
0
0

B
1
1
0
0
1
1
0
0

C
1
0
1
0
1
0
1
0

A ∖ C
0
1
0
0
0
0
0
0

B ∖ C
0
1
0
0
0
1
0
0

(A ∖ C) B (B ∖ C)
0
1
0
0
0
0
0
0

A B B
1
1
0
0
0
0
0
0

C
⎯ ⎯⎯⎯

0
1
0
1
0
1
0
1

(A B B) B C
⎯ ⎯⎯⎯

0
1
0
0
0
0
0
0

(A ∖ C) B (B ∖ C) =

=

=

(A B ) B (B B )C
⎯ ⎯⎯⎯

C
⎯ ⎯⎯⎯

(A B B) B ( B )C
⎯ ⎯⎯⎯

C
⎯ ⎯⎯⎯

(A B B) B C
⎯ ⎯⎯⎯

Difference Equivalence

Associative Law

Idempotent Law

(A ∖ C) B (C ∖ B) A ∖ B

(A ∖ C) B (C ∖ B) =

=
=
=

(A B ) B (C B )C
⎯ ⎯⎯⎯

B
⎯ ⎯⎯⎯

(A B ) B (C B )B
⎯ ⎯⎯⎯

C
⎯ ⎯⎯⎯

(A B B) B ∅
∅

Difference Equivalence

Associative Law
Complement Law
Domination Law

A ∖ B y ∅ A = {1, 2}, B = {1}

A B

A = {x | x is a user on our computer system} B = {x | x is a valid password}
A B

A B A B B A
f (a) = b b ! B f a ! A f A B
f : A → B

123 p455w0rd hello
p p(����) = 123, p(����) = p455w0rd, p(�����) = hello p

g



Functions can be specified in several ways:

writing out each pair explicitly: 
a diagram, as in the last two examples
a formula: 

Consider the function . We call  the domain of  and  the codomain of . Furthermore, if , then  is the image of
 and  is the preimage of . The set of all images of elements of  is called the range of . For example:

In the grades example above:
domain: 
codomain: 
range: 

 is the image of 
 is a preimage of 

Let  be defined by .
domain: 
codomain: 
range: 

If  is a subset of the domain, we can also look at its image: the subset of  that consists of the images of the elements in : 
. In the grades example above, .

Notice that in the grades example,  had two elements map to it, while  had none. We can classify functions based on such
situations.

Injectivity

A function  is said to be injective or one-to-one if  for all  and  in the domain of . The function is said to
be an injection.

Recall that, by contraposition,  if and only if .

Basically, this means that each element of the range has exactly one pre-image. Equivalently, each element of the codomain has at
most one pre-image. In a function diagram, this means there is at most one incoming arrow to every element on the right hand side.

To show a function is injective:

assume  and show that , or
assume  and show that 

To show a function is not injective, give an  and  such that  but .

Here are some examples:

The function on the left is injective, but the function on the right is not:

 defined by  is injective. To see this, assume . Then:

p(����) = 123,…

f (x) = 2 + 1x2

f : A → B A f B f f (a) = b b
a a b A f

{Tim, Jo, Lee, Tom, Mark}
{A, B, C, D, F}

{A, B, C, D}
A Tim
Tim A

f : ℤ → ℤ f (x) = x2

ℤ
ℤ

{x | x is a non-negative perfect square}

S B S
f (S) = {f (s) | s ! S} g({Tim, Jo, Lee}) = {A, B}

A F

f (f (x) = f (y)) → (x = y) x y f

(f (x) = f (y)) → (x = y) (x y y) → (f (x) y f (y))

f (x) = f (y) x = y
x y y f (x) y f (y)

x y x y y f (x) = f (y)

f : ℤ → ℤ f (x) = 3x + 2 f (x) = f (y)



The previous proof falls apart for :

which is not the same thing as ! Indeed,  is not injective since  and .

Surjectivity

A function  is said to be surjective or onto if for every element , there is an element  such that . The
function is said to be a surjection.

Basically, this means that every element of the codomain has a pre-image. Equivalently, the codomain and range are the same. In a
function diagram, this means there is at least one incoming arrow to every element on the right hand side.

To show a function is surjective, start with an arbitrary element  and show what the preimage of  could be: show an 
such that . To show a function is not surjective, give a  such that  for any .

Here are some examples:

The function on the left is surjective, but the function on the right is not:

 defined by  is not surjective, since there is no  such that  where  is an integer.
 defined by  is surjective. To see this, suppose we have image . To determine which pre-

image gives this, observe that  is the same as , which is the same as . So, to get an output
of , give input .

Notice that:

injective  at most one image
surjective  at least one image

If a function is both injective and surjective, then each element of the domain is mapped to a unique element of the codomain (range).
A function that is both injective and surjective is bijective. Such a function is called a bijection.

To show a function is bijective, show:

it is injective (using the above techniques)
it is surjective (using the above techniques)

Remember to show both parts, since functions can be any combination of injective and surjective. For example, from left-to-right, the
following functions are injective but not surjective, surjective but not injective, injective and surjective, and neither injective nor
surjective:

Inverse of a Function

If a function  is bijective, then  is invertible. Its inverse is denoted  and assigns to  the unique element  such that 
: that is, .

3x + 2
3x

x

=
=
=

3y + 2
3y
y

f (x) = x2

x2

x2‾‾√
±x

=

=

=

y2

y2‾‾3
±y

x = y f (x) = x2 f (1) = 1 = f (+1) 1 y +1

f : A → B b ! B a ! A f (a) = b

b ! B b a ! A
f (a) = b b f (a) y b a ! A

f : ℤ → ℤ f (x) = x2 x = +1x2 x
f : ℝ → ℝ f (x) = 3x + 2 3x + 2 = y

3x + 2 = y 3x = y + 2 x = (y + 2)/3
y (y + 2)/3

↔
↔

f f f +1 b ! B a ! A
f (a) = b (b) = a ↔ f (a) = bf +1



Inverses are not defined for functions that are not bijections.

if  is not injective, then some  has two pre-images. Thus,  would have more than one value and therefore  would
not be a function
if  is not surjective, then some  has no pre-image. Thus,  would have no value and therefore  would not be a
function

The inverse can be found by reversing the arrows in the diagram, or by isolating the other variable in the formula. Note that the
inverse of  is .

Here are some examples of functions and their inverses:

Consider the following function:

The function is injective and surjective and therefore bijective and invertible. We have .
 defined by  is bijective as we have already seen and is thus invertible. We know that 

. Therefore, . (Note: it doesn't matter what variable you use, as long
as you are consistent!)

 defined by  is not invertible since it is not surjective.

Composition of Functions

Given two functions  and , we can use the output of one as the input to the other to create a new function . In this function,
we evaluate  with input  and give the result to  to compute the final output.

Let  and . The composition of  and  is denoted  (read "  follows ") and is defined as 
. Note: for  to be defined, the range of  must be a subset of the domain of .

Graphically, we have:

Here are some examples:

Define  and  in the following way:

Then  is defined as:

However,  is not defined since , which is not defined.
Define  and  by  and . Then:

f b (b)f +1 f +1

f b (b)f +1 f +1

f : A → B : B → Af +1

(1) = c, (2) = a, (3) = bf +1 f +1 f +1

f : ℤ → ℤ f (x) = 3x + 2
3x + 2 = y ↔ 3x = y + 2 ↔ x = y+2

3 (x) =f +1 x+1
3

f : ℤ → ℤ f (x) = x2

f g f (g(x))
g x f

f : B → C g : A → B f g f 1 g f g
(f 1 g)(x) = f (g(x)) f 1 g g f

g : {a, b, c} → {a, b, c} f : {a, b, c} → {1, 2, 3}
g(a) = b, g(b) = c, g(c) = a
f (a) = 3, f (b) = 2, f (c) = 1
f 1 g
(f 1 g)(a) = f (g(a)) = f (b) = 2
(f 1 g)(b) = f (g(b)) = f (c) = 1
(f 1 g)(c) = f (g(c)) = f (a) = 3

g 1 f (g 1 f )(a) = g(f (a)) = g(3)
f : ℤ → ℤ g : ℤ → ℤ f (x) = 2x + 3 g(x) = 3x + 2



and

In general, !

One important case is composing a function with its inverse: Suppose . Then , and:

Countable and Uncountable Sets

Notice that a bijection exists between two sets if and only if they have the same size. This allows us to reason about the sizes of infinite
sets.

Consider . We call a set countable if:

it is finite, or
it has the same cardinality as 

i.e., there is a bijection between it and 
i.e., the elements of the set can be listed in order (first, second, third, ...)

Otherwise, the set is uncountable.

Here are some examples.

Are there more positive integers or positive odd integers?

This is the same as asking if the positive odd integers are countable, which is the same thing as asking if there is a bijection from 
 to .

We claim  is such a bijection. To see that  is injective, suppose ; then , so 
, so . To see that  is surjective, suppose ; then , so .

Since  is injective and surjective, it is bijective. Therefore, there are equally many positive integers as positive odd integers!

Are there more positive integers or positive rational numbers?

We need . Note that we just need to list the positive rational numbers in some way, since the first element can be 
, the second can be , and so on. How do we achieve such a listing?

A rational number has the form . Since we are dealing with positive rational numbers, we have . The list consists
of all positive rationals with , then all positive rationals with , then all positive rationals with ,
and so on. We do not repeat a number if we encounter it again. Note that there are only a finite number of rationals with 

 for a fixed ! The list looks like this:

(f 1 g)(x) =
=
=
=
=

f (g(x))
f (3x + 2)
2(3x + 2) + 3
6x + 4 + 3
6x + 7

(g 1 f )(x) =
=
=
=
=

g(f (x))
g(2x + 3)
3(2x + 3) + 2
6x + 9 + 2
6x + 11

f 1 g y g 1 f

f (a) = b (b) = af +1

( 1 f )(a) = (f (a)) = (b) = af +1 f +1 f +1

(f 1 )(b) = f ( (b)) = f (a) = bf +1 f +1

= {1, 2,…}ℤ+

ℤ+

ℤ+

ℤ+ {1, 3, 5, 7, 9,…}

f (n) = 2n + 1 f f (n) = f (m) 2n + 1 = 2m + 1
2n = 2m n = m f t ! {1, 3, 5, 7, 9,…} t = 2k + 1 t = 2k + 1 = f (k)

f

f : →ℤ+ ℚ+

f (1) f (2)

p/q p, q ! ℤ+

p + q = 2 p + q = 3 p + q = 4

p + q = k k



Therefore, there are equally many positive integers as positive rationals!

Are there more positive integers or real numbers?

This is the same as asking if  is countable. We will focus on an even "easier" problem: is the set 
(the set of real numbers strictly between  and ) countable?

We will show that it is not countable. We prove this by contradiction, so suppose that it is countable. We can therefore list the
elements:

1. 
2. 
3. 
4. 
5. ...

Where .

Now, we come up with a real number  that is not on this list. This will contradict the countability assumption!
Consider , where

Notice that:

, since they differ in  and 
, since they differ in  and 
, since they differ in  and 

Therefore,  is not on the list, and we have a contradiction! Therefore, the real numbers are uncountable: they are bigger than 
. (Why doesn't this argument work for the previous examples which were countable?)

Sequences and Sums

A sequence is a function from a subset of  (usually  or ) to a set . We use  to refer to the image of the
integer . We call  a term of the sequence. The sequence itself is denoted .

For example, if , then the sequence  (beginning with ) is , or .

A geometric sequence has the form  where  is the initial term (a real number) and  is the common ratio (also
a real number). Typically, we think of such a sequence as starting with  (since ). Here are some examples of geometric
sequences:

ℝ {x | (x ! ℝ) @ (0 < x < 1)}
0 1

0. ⋯d11d12d13d14
0. ⋯d21d22d23d24
0. ⋯d31d32d33d34
0. ⋯d41d42d43d44

! {0, 1,… , 9}dij

0 < x < 1
r = 0. ⋯d1d2d3

= {di
4
5

if  y 4dii
if  = 4dii

r y r1 d1 d11
r y r2 d2 d22
r y r3 d3 d33
⋯

r
ℤ+

ℤ {0, 1, 2, 3,…} {1, 2, 3,…} S an
n an { }an

= 1/nan { }an a1 , , ,…a1 a2 a3 1, 1/2, 1/3, 1/4,…

a, ar, a , a ,… , ar2 r3 rn a r
n = 0 a = ar0



 has  and looks like 
 has  and looks like 

 has  and looks like 

An arithmetic sequence has the form  where  is the initial term and  is the common difference.
Typically, we think of such a sequence as starting with  (since ). Here are some examples of arithmetic sequences:

 has  and looks like 
 has  and looks like 

One common operation on sequences is to compute a sum of certain portions of the sequence. Suppose we have 
 and we want to consider the sum from  to : . We can

write this using sigma notation:

where:

 is the upper limit
 is the lower limit

 is the index of summation

There is nothing special about using ; any (unused) variable would work!

Here are some examples of summations and sigma notation:

The sum of the first  terms of  where  is 

To compute the sum of the first  squares, we have

Sometimes we might want to change the lower/upper limits without changing the sum. For example, suppose we want to change the

sum  to be written with lower limit  and upper limit . Then let  to get 

We can also split a sum up:

This means that to exclude the first few terms of a sum, we can say:

Summations can also be nested:

As an example, we compute :
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When every term is multiplied by the same thing, we can factor it out:

Here is another example of factoring, this time with a nested summation:

You can also split over addition:

This does not work for multiplication!

One useful tool is the sum of a geometric sequence, where  and :

Why does this work? Let . Then:

Therefore, , so  as long as  (the case when  is easy).

Here are some more useful summation formulas:

 when 
 when 

Try to derive some of these yourself. For example,  can be derived by letting  and observing that:

Since there are  terms, we have , so .

Algorithms

An algorithm is a finite set of precise instructions for solving a problem.
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Here is an algorithm for outputting the largest number from a list of  numbers. Such a number is called a maximum.

1. set a temporary variable to the first number
2. compare the next number to the temporary variable

if it is larger, set the temporary variable to this number
3. repeat step 2 until there are no more numbers left
4. return the value of the temporary variable

Here is an algorithm for outputting the index of the number  from an array of  numbers. This is called a linear search.

1. look at the first element
if it is equal to , then return that index

2. look at the next element
if it is equal to , then return that index

3. repeat step 2 until the end of the array is reached
4. return not found

Sorting

For the sorting problem, we are given a list of elements that can be ordered (typically numbers) and wish to rearrange the list so that
the elements are in non-decreasing order.

One algorithm that solves this problem is BubbleSort. It works by looking at pairs of elements in the list and "swapping" them
whenever they are out of order. If this is done enough times, then the list will be in order! In pseudocode:

   BubbleSort
    for  to 
     for  to 
      if 
       swap  and 
      end if
     end for
    end for
   

Here is how the BubbleSort algorithm works on the array :

A natural question to ask is, "How long does this take?" The answer is: it depends! (On operating system, hardware, implementation,
and many other things)

Another algorithm for sorting is InsertionSort.

it works by scanning the array left to right, looking for an element that is out of order
when such an element is found, it looks for where the element should go and places it there

first, it must make room for the element, so it pushes the elements between where it was and where it should go back one

In pseudocode:

   InsertionSort
    for  to 
     
     
     while  and 
      
      
     end while
     

n

x n

x

x

( , ,… , )a1 a2 an
i ← 1 n+ 1

j ← 1 n+ i
>aj aj+1

aj aj+1

3, 2, 4, 1, 5

i = 1
, 4, 1, 53, 2⏟swap

2, , 1, 53, 4⏟good

2, 3, , 54, 1⏟swap

2, 3, 1, 4, 5⏟good

i = 2
, 1, 4, |52, 3⏟good

2, , 4, |53, 1⏟swap

2, 1, , |53, 4⏟good

i = 3
, 3, |4, 52, 1⏟swap

1, , |4, 52, 3⏟good

i = 4
, |3, 4, 51, 2⏟good

( , ,… , )a1 a2 an
j ← 2 n

k ← aj
i ← j+ 1

i > 0 > kai←ai+1 ai
i ← i+ 1

← kai



    end for
   

Here is how the InsertionSort algorithm works on the array :

How long does this take? Again, it depends. But how does it compare to BubbleSort? (Assuming same hardware, operating system,
etc.)

Analysis of Algorithms

To determine how "long" an algorithm takes, we need to know how long operations (such as additions, comparisons, etc.) take. To do
this, we define a model of computation.

There are many such models. For now, let's say that comparisons (\ie, ) take one time unit ("unit time"). The actual
amount of time varies (with hardware, etc.), but we assume they all take the same time. This is generally a fair assumption.

The number of such operations is the time complexity of an algorithm. Typically, we will be interested in worst-case time complexity:
the maximum number of operations performed.

Here are some examples of deriving time complexity:

Recall the algorithm to find the maximum number among a list of numbers. Here is the associated pseudocode:

      Maximum
       max 
       for  to 
        if  max
         max 
        end if
       end for
       return max
     

We use one comparison in each iteration of the for-loop (to ensure ) and one comparison inside the for-loop to check if 
max. Since there are  iterations, we do  comparisons. Note that one additional comparison is needed to exit

the loop (the comparison for which  is false), so the total is therefore  comparisons.

In this case, the worst case is the same as any case, since we always perform each of these comparisons regardless of the input.

What about linear search? Here is the associated pseudocode:

      LinearSearch
       for  to 
        if 
         return 
        end if
       end for
       return not found
     

As before, there is one comparison in each iteration of the loop, and then one comparison inside the loop. In the worst case, we
have to perform every iteration of the loop (we do not find the element and return "early"), for a total of 
comparisons, just as in the last example.

Nevertheless, we could be "lucky" and find that  after performing just  comparisons. Generally, we are more interested
in the worst case than the best case.

3, 2, 4, 1, 5

<,}, >,~, =,y
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i } n
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What about BubbleSort?

      BubbleSort
       for  to 
        for  to 
         if 
          swap  and 
         end if
        end for
       end for
     

The outer loop goes through  iterations and the inner loop goes through  iterations. Each inner iteration does
one comparison to check the loop condition and one comparison to check if . One additional comparison is needed to
leave the inner loop, and one additional comparison is needed to leave the outer loop. The total is therefore:

Notice that this is always the same because there is no opportunity to be "lucky" and return early.

What about InsertionSort?

     InsertionSort
      for  to 
       
       
       while  and 
        
        
       end while
       
      end for
     

We use one comparison per iteration of the outer loop (plus one to exit). The worst-case for the inner loop is that  gets
decremented from  all the way to , for a total of  iterations with two comparisons each, plus two to exit. The total
number of comparisons is therefore:
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Notice that this could be less if we are "lucky" and fewer iterations of the while-loop are required!

Notice that BubbleSort uses  comparisons while InsertionSort uses  comparisons. Therefore, BubbleSort
uses fewer comparisons in the worst case.

But are these two functions really that different? Both have a  term, which is much bigger than any (constant) fraction that they are
multiplied by, and much bigger than any linear function of  they are added to. As  grows bigger and bigger, the  part makes the
biggest difference. In the worst case, these functions behave approximately the same.

Contrast this with finding the maximum and linear search: both use  comparisons. This is much faster than the two sorting
algorithms, even though the leading term has coefficient . This is because  grows much more slowly than . We care about large .

Therefore, for the analysis of algorithms, we don't care too much about the exact function (since it is often too much work to find!)
What matters is how fast the function grows.

Growth of Functions

The growth of a function is determined by the highest order term: if you add a bunch of terms, the function grows about as fast as the
largest term (for large enough input values).

For example,  grows as fast as  and , because for large ,  is much bigger than , ,
or .

Similarly, constant multiples don't matter that much:  grows as fast as  and , because for large ,
multiplying  by a constant does not change it "too much" (at least not as much as increasing ).

Essentially, we are concerned with the shape of the curve:

All three of these functions are lines; their exact slope/y-intercept does not matter.
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Only caring about the highest order term (without constant multiples) corresponds to ignoring differences in hardware/operating
system/etc. If the CPU is twice as fast, for example, the algorithm still behaves the same way, even if it executes faster.

Big-Oh Notation

Let  and  be functions from  or . We say  is  if there are constants  and  such that 
 for all . The constants  and  are called witnesses. We read  is  as "  is big-Oh of ". We

write  or  (though the former is more technically correct).

Basically,  is  means that, after a certain value of ,  is always smaller than some constant multiple of :

Here are some examples that use big-Oh notation:

To show that  is :

Each of the above steps is true for all , so take ,  as witnesses.
To show that  is :

The first step is true as long as  (which is the same as ) and the second step is true as long as , so take 
,  as witnesses.

Is it true that  is ?

Suppose it is true. Then  for . Dividing through by , we get that . This says that "  is always less than a
constant", but this is not true: a line with positive slope is not bounded from above by any constant! Therefore,  is not .

Typically, we want the function inside the Oh to be as small and simple as possible. Even though it is true, for example, that 
 is , this is not terribly informative. Similarly,  is , but this is not particularly

useful.

Here are some important big-Oh results:

If  where , then  is .

Proof: If , then:

Therefore, take  and .

What is the sum of the first  integers?

Take  to see that sum is . Notice that this agrees with the formula we derived earlier: ,
which is .
What is the growth of ?
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10x > 0 x > 0 x ~ 1
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x3 O( )x2

} cx3 x2 x > k x2 x } c x
x3 O( )x2
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Therefore,  is  with 
What is the growth of ?

Take the logarithm of both sides of the previous equation to get , so . Therefore,  is 
 with .

How does  compare to ?

We know that  (we will prove this later). Taking the logarithm of both sides, we have that . So 
 is  with .

When using logarithms inside big-Oh notation, the base does not matter. Recall the change-of-base formula: .

Therefore, as long as the base  is a constant, it differs from  by a constant factor.

Here are some common functions, listed from slowest to fastest growth:

Caution: there are infinitely many functions between each element of this list!

Big-Omega Notation

As we saw above, big-Oh provides an upper bound for a function. To specify a lower bound, we use big-Omega notation.

Let  and  be functions from  or . We say  is  if there are constants  and  such that 
 for all . The constants  and  are called witnesses. We read  is  as "  is big-Oh of ". We

write  or  (though the former is more technically correct).

Basically,  is  means that, after a certain value of ,  is always bigger than some constant multiple of :

Here are some examples that use big-Omega notation:

To show that  is :

Therefore, take .
To show that  is :

The last step is true as long as , which is true when . Therefore, take .
Is it true that  is ?

Suppose it is true. Then  for . Dividing through by , we get that . Notice that as  gets
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bigger, the left hand side gets smaller, so this cannot be true. Therefore,  is not .

What is the sum of the first  integers?

Therefore, take  to show that the sum is  (which matches with our formula for this sum).

Big-Theta Notation

In the previous example, we showed that . Earlier, we also showed that this sum is . We have special notation
for such situations:

Let  and  be functions from  or . We say  is  if  is  and  is . We read  is 
 as "  is big-Theta of ". We write  or  (though the former is more technically correct).

It might be helpful to think of big-Oh/Omega/Theta as follows:

 is to numbers as big-Oh is to functions
 is to numbers as big-Omega is to functions
 is to numbers as big-Theta is to functions

Induction

What is the sum of the first  positive odd integers?

So far, it seems like the pattern seems to be that the sum is . But recognizing a pattern is not the same as a proof! How do we prove
something is true for every  (of which there are infinitely many)?

Imagine a long line of people, numbered . Suppose that whenever person  is told something, thye tell person . If I tell
a secret to person , what happens?  tells ,  tells ,  tells , and so on. So, after everyone is finished talking, everyone in the line
knows what I said.

Let  denote the proposition "person  knows the secret". The argument has premises  and , with
conclusion . Indeed, this is a valid argument:
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This gives us a proof technique to prove  when the universe of discourse is the natural numbers (starting at either  or ). To
summarize:

Why do we need (and like) this?

before, we knew how to prove , since we could pick an arbitrary  and attempt a direct proof, but this doesn't
always work (easily).
now, we've converted the proof of  into an implication, so we can use a direct proof. By assuming something, we get
more leverage.

Proving  is the basis step.

Proving  is the inductive step.

we will do this for some arbitrary  (as in universal generalization). We do a direct proof, and so we call  the inductive
hypothesis and assume that it is true in order to prove .
we are not assuming  is true for all positive integers (this is circular reasoning); we are only assuming that  is true for
some arbitrary  in the same way we do for a regular direct proof of an implication

Let's show that our guess that the sum of the first  positive odd integers is  is correct. Let  denote "the sum of the first 
positive itnegers is ". We want to show  where the universe of discourse is the set of positive integers.

Basis step: We must show .  says that the sum of the first  positive odd integers is . This is true.
Inductive hypothesis: Assume  is true for an arbitrary . This means that we assume that the sum of the first  positive odd
integers is :

\item Inductive step: We must show that  is true using the inductive hypothesis.  says that the sum of the first 
 positive odd integers is , so let's look at the first  positive odd integers:

By our inductive hypothesis, , so the above expression can be rewritten as

Factoring this, we obtain . Therefore, the sum of the first  positive odd integers is , and so  is true
under the assumption that  is true. Therefore, . Since  was arbitrary,  is true.
By the basis step, we know that  is true. By the inductive step, we know that  is true. Therefore, 

 is true, and so by the principle of mathematical induction,  is true, as desired!

A few notes about doing proofs by mathematical induction:

remember the structure: basis step, inductive hypothesis, inductive step
label each part of the proof to help keep things in order
it isn't necessary to define a propositional function, but you can (do not use one unless you state explicitly what it means!)

Induction works with inequalities, too. For example, here is a proof that  for all positive integers .

Basis step: If , then we must show that , which is true.
Inductive hypothesis: Assume that  for some positive integer .
Inductive step: We must show that . We have:

Some more notes about doing proofs by mathematical induction:

write out what you must do in the basis and inductive steps
in the inductive step, you must prove : thus, you cannot assume it anywhere. Notice that in the last proof, we started
with one side of the inequality and derived the other; we did not take  and simplify/change it to : that would be the
wrong direction!
how do you know when to use mathematical induction?

look for statements like "for all positive integers" and other signs of universal quantification (where you don't get
anywhere by just picking an arbitrary element and attempting universal generalization)
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Induction can be used to show things other than equalities/inequalities. For example, here is a proof that  is divisble by  for all
positive integers :

Basis step: If , then we must show that  is divisible by , which is true.
Inductive hypothesis: Assume that  is divisible by  for some positive integer .
Inductive step: We must show that  is divisible by . We have:

Notice that the  is divisible by  by the inductive hypothesis, and  is divisble by  because there is a factor of 
. Since the sum of two numbers that are both divisible by  is divisible by , it must be true that  is divisible

by .

There is nothing special about starting at . We can start at any integer  (by using  in our basis step). This will prove the proposition
in question true over the universe of discourse .

Here is an example with a different basis step. We will prove that  for all non-negative
integers.

Basis step: The smallest non-negative integer is . The left-hand side of the expression is  and the right hand side is 
, so the basis step has been proven.

Inductive hypothesis: Assume  for some non-negative integer .
Inductive step: We must show that . We have:

Recall the sum of a geometric sequence . We will prove that  when 
and .

Basis step: The statement says that , so our basis step occurs when . The left-hand side is ,
and the right hand side is

Inductive hypothesis: Assume that  for some non-negative integer .

Inductive step: We must show that . We have:

The -th Harmonic number  is defined as  when . We will prove that  for non-
negative integers .

Basis step: The statement says that , so our basis step occurs when . The left-hand side is , and the right
hand side is , so the statement is true.
Inductive hypothesis: Assume that  for some non-negative integer .
Inductive step: We must show that . We have:

+ nn3 3
n

n = 1 + 1 = 1 + 1 = 013 3
+ kk3 3 k

(k + 1 + (k + 1))3 3

(k + 1 + (k + 1))3 =
=
=

( + 3 + 3k + 1) + (k + 1)k3 k2

( + k) + (3 + 3k + 1 + 1)k3 k2

( + k) + 3( + k)k3 k2

( + k)k3 3 3( + k)k2 3
3 3 3 (k + 1 + (k + 1))3

3

1 b b
{b, b + 1, b + 2,…}

+ + + + ⋯ + = + 120 21 22 23 2n 2n+1

0 = 120

+ 1 = 1 + 1 = 021

+ + + + ⋯ + = + 120 21 22 23 2k 2k+1 k
+ + + + ⋯ + = + 120 21 22 23 2k+1 2k+2

=

=
=
=

+ + + + ⋯ +20 21 22 23 2k+1

( + + + + ⋯ + ) +20 21 22 23 2k 2k+1

( + 1) +2k+1 2k+1

2 × + 12k+1

+ 12k+2

a = a + ar + a + ⋯ + a*n
j=0 r j r2 rn a =*n

j=0 r j a +arn+1

r+1 r y 1
n ~ 0

n ~ 0 n = 0 a = a = a*0
j=0 r j r0

= = = a
a + ar1

r + 1
ar + a
r + 1

a(r + 1)
r + 1

a =*k
j=0 r j a +ark+1

r+1 k
a =*k+1

j=0 r j a +ark+2

r+1

a∑
j=0

k+1

r j =

=

=

=

=

a + ark+1 ∑
j=0

k

r j

a +rk+1 a +ark+1

r+1

+(r+1)ark+1

r+1
a +ark+1

r+1
a +a+a +ark+1 rk+2 rk+1

r+1
a +ark+2

r+1

j Hj = 1 + + + ⋯ +Hj
1
2

1
3

1
j j ~ 1 ~ 1 +H2n n

2
n

n ~ 0 n = 0 = 1H20

1 + 0
2

~ 1 +H2k
k
2 k

~ 1 +H2k+1
k+1

2



Recall that the size of the powerset of a set of size  is . We will now prove that this is true.

Basis step: If , then the set is empty and the only subset is . Since , the basis step is true.
Inductive hypothesis: Assume that the size of the powerset of a set of size  is .
Inductive step: We must show that the size of the powerset of a set of size  is .

Let  be a set of  elements. Write  where  and .

for each subset  of , there are two subsets of :  and 
since each  is distinct, each  is distinct (since )
since , we know that . So there are  subsets of  and each produces two subsets of 
therefore, there are  subsets of 

Recall the sum of the first  positive integers: . We will now prove that this is true.

Basis step: When , we have .

Inductive hypothesis: Assume that 

Inductive step: We must show that . We have:

Here is a proof that  for all positive integers :

Basis step: When , we have 
Inductive hypothesis: Assume that 
Inductive step: We must show that . We have:

Here is a proof of an extension of De Morgan's Law for sets: , where  are sets and :

Basis step: When , we have  on the left-hand side and  on the right-hand side. This is precisely De
Morgan's Law.

Inductive hypothesis: Assume that 

Inductive step: We must show that . We have:
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Induction can also be used on other types of problems. Let  be a positive integer. We will prove that any  chessboard with one
square removed can be tiled with L-shaped pieces that cover three squares:

Basis step: When , we consider  chessboards with one square removed. Here are the four possibilities, along with
how they can be covered:

Inductive hypothesis: Assume that any  chessboard with one square removed can be tiled with L-shaped pieces.
Inductive step: We must show that any  chessboard with one square removed can be tiled with L-shaped pieces.

Consider a  chessboard with one square removed. Divide it in half in both directions to produce four 
chessboards. The missing square must be in one of these  sub-boards. (Let's suppose it is the lower-right, but it does not
matter which it is.)

By the inductive hypothesis, the lower-right can be tiled with one square removed. Now, pretend we remove the center squares
as illustrated below. The other three sub-boards can be tiled by the inductive hypothesis, and the  can be tiled by
adding in one L-shaped piece in the center.

We will now prove that given  lines in the plane (no two of which are parallel), the total number of intersections is at most 
. (Recall that non-parallel lines intersect in exactly one point.)

Basis step: If we have  non-parallel lines, they intersect in exactly  point.

Inductive hypothesis: Assume that the total number of intersects among  non-parallel lines is at most .

Inductive step: We must show that the total number of intersects among  non-parallel lines is at most . Consider

any collection of  lines. Remove one line. By the inductive hypothesis, there are at most  intersections. Now add the
removed line back. It can intersect each of the  lines at most once, giving at most

intersections in total.

Strong Induction
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Recall that our argument when doing a proof by induction is the following:

Notice that when we are proving , we know more than just ; we actually know  is true! Therefore,
it is valid to use  as our inductive hypothesis instead of simply . Using this inductive hypothesis is called
strong induction and can (sometimes) make proofs simpler.

We will now look at some examples of proofs that use strong induction.

Consider a game: two players remove any number of matches they want from  of  piles. The player who removes the last match
wins the game. The piles initially contain  matches each. We will prove that the player who goes second can always win.

Basis step: If , then the first player only take one match from one pile, leaving one match in the other. The second player
then takes this match and wins.
Inductive hypothesis: If there are  matches in each pile for some arbitrary , the second player can always win.
Inductive step: Suppose there are  matches in each pile. The first player removes  matches from one pile, leaving 

. The second player then removes the same number of matches from the other pile. At this point, both piles have
at most  matches. Thus, by the inductive hypothesis, the second player can win. (Note: it could be that , but then the
second player can remove all matches in the other pile and win.)

Here is a proof that if , then  can be written as a product of prime numbers.

Basis step: If , then  is simply the product of itself, which is prime.
Inductive hypothesis: Assume  can be written as a product of prime numbers for some arbitrary .
Inductive step: We must show that  can be written as a product of prime numbers. We consider two cases:

1. If  is prime, then it is simply the product of itself, which is prime.
2. If  is not prime, then  with . By the inductive hypothesis,  and  are both products of

primes, say  and . We have

Notice that in the previous proof, it is not straightforward to apply the original formulation of induction! For some proofs, both
techniques apply equally well.

For example, we will prove that every amount of postage greater than or equal to 12¢ can be formed using 4¢ and 5¢ stamps.

Induction:
Basis step: 12¢ = 3  4¢
Inductive hypothesis: Assume that a postage of ¢ can be formed using 4¢ and 5¢ stamps for some arbitrary 
Inductive step: We must show that a postage of ¢ can be formed. Consider postage for ¢ from inductive
hypothesis. If one 4¢ stamp was used, replace it with a 5¢ stamp to get ¢. Otherwise, the postage for ¢ used only
5¢stamps. Since , at least 3  5¢ stamps were used. Therefore, if we replace 3  5¢ stamps with 4  4¢ stamps, we
get ¢.

Strong Induction
Basis step: 12¢ = 3  4¢, 13¢ = 2  4¢  1  5¢, 14¢ = 1  4¢  2  5¢, 15¢ = 3  5¢
Inductive hypothesis: Assume that a postage of ¢ can be formed for  for some arbitrary 
Inductive step: Use stamps for ¢ and add a  stamp.

Note that the inductive step in the strong induction proof is only valid because we included the extra cases in the basis step.

Observe that using the usual method of induction resulted in a longer inductive step but shorter basis step, while strong induction
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resulted in a longer basis step but shorter inductive step.

Relations

Relations between elements of sets are very common. For example:

sets of people related by the "father" relation
employees related to companies by the "employed by" relation
integers related to other integers by the "divisible by" relation
(...and many other examples)

More formally: let  and  be sets. A binary relation from  to  is a subset of .

Therefore, a binary relation  is just a set of ordered pairs. We write  to mean  and  to mean . When 
, we say that "  is related to  by ".

Such relations are binary relations because  consists of pairs. In general, we can have relations that are subsets of 
 to give us an -ary relation. We concentrate on the binary case.

For example, let  be the set of students at Carleton and  be the set of courses at Carleton. Let  be the "enrolled in" relation, so that
 (that is, ) if student  is enrolled in course .

Note that you can think of all functions as relations (where the input is related to the output), but not vice versa (since a single
element can be related to many others).

Sometimes, relations are between a set  and itself: a subset of . In this case, we say the relation is on the set .

Here are some more examples of relations:

Let . What ordered pairs are in the relation ?

This can be represented several ways:

The following are relations on :

We have:

Properties of Relations

Relations can have several properties which help to classify them.

Reflexivity: a relation  on a set  is reflexive if  for all .

For example, if , then:

 is reflexive
 is not reflexive since 

A B A B A × B

R aRb (a, b) ! R a bR (a, b) " R
(a, b) ! R a b R

A × B
A × B × C × ⋯ n

A B R
(a, b) ! R aRb a b

A A × A A

A = {1, 2, 3, 4} R = {(a, b) | a divides b}

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (3, 4)}

ℤ
= {(a, b) | a } b}R1
= {(a, b) | a > b}R2
= {(a, b) | a = b or a = +b}R3
= {(a, b) | a = b}R4
= {(a, b) | a = b + 1}R5
= {(a, b) | a + b } 3}R6

(1, 1) ! , , ,R1 R3 R4 R6
(1, 2) ! ,R1 R6
(2, 1) ! , ,R2 R5 R6
(1,+1) ! , ,R2 R3 R6
(2, 2) ! , ,R1 R3 R4

R A (a, a) ! R a ! A

A = {1, 2, 3, 4}

= {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 1), (4, 4)}R1
= {(1, 2), (2, 3), (3, 4)}R2 (1, 1) " R2



 is not reflexive since 

As another example, the "divides" relation is reflexive since  for any integer 

Symmetry: a relation  on a set  is called symmetric if  for all 
Antisymmetry: a relation  on a set  is called antisymmetric if  for all .

Note: symmetry and antisymmetry are not mutually exclusive: a relation can have one, both, or neither. Consider the following
relations on :

not symmetric:  but 
not antisymmetric:  but 

symmetric
not antisymmetric:  but $1 \neq 2

not symmetric:  but 
antisymmetric

symmetric
antisymmetric

Transitivity: a relation  on a set  is called transitive if, for all ,

For example, the following relations on  are all transitive:

whereas the following are not:

The "divides" relation is also transitive. Suppose  and . Then  and  for integers  and . Therefore, 
, so .

Combining Relations

Relations are sets, so they can be combined the same way sets can be combined.

Let  and define the relations  and 
from  to  can be combined as follows:

Let  and  be relations defined on .

Remember the relations are like functions, so it makes sense to talk about their composition, too.

Let  be a relation from set  to set . Let  be a relation from set  to set . The composition of  and  is the relation consisting of
ordered pairs  where ,  and there exists an element  such that  and . We write  to
denote this relation.

For example, if we have a relation  from the set  to the set  and a relation  from the set  to the set 
 defined as follows:

= {(1, 2), (2, 3), (3, 4)}2 (1, 1) " 2
= {(1, 1), (2, 2)(3, 3), (1, 4)}R3 (4, 4) " R3

a = 1a a

R A (a, b) ! R → (b, a) ! R a, b ! A
R A ((a, b) ! R @ (b, a) ! R) → (a = b) a, b ! A

{1, 2, 3, 4}

= {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}R1
(3, 4) ! R1 (4, 3) " R1

(2, 1), (1, 2) ! R1 1 y 2
= {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1)}R2

(2, 1), (1, 2) ! R2
= {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}R3

(2, 1) ! R3 (1, 2) " R3

= {(1, 1), (2, 2)}R4

R A a, b, c ! A

((a, b) ! R @ (b, c) ! R) → (a, c) ! R

ℤ

{(a, b) | a } b}
{(a, b) | a > b}
{(a, b) | a = b or a = +b}
{(a, b) | a = b}

{(a, b) | a = b + 1}
{(a, b) | a + b } 3}

a|b b|c b = ka c = lb k l
c = lb = (lk)a a|c

A = {1, 2, 3}, B = {1, 2, 3, 4} = {(1, 1), (2, 2), (3, 3)}R1 = {(1, 1), (1, 2), (1, 3), (1, 4)}R2
A B

C = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3)}R1 R2
B = {(1, 1)}R1 R2
∖ = {(2, 2), (3, 3)}R1 R2
∖ = {(1, 2), (1, 3), (1, 4)}R2 R1

= {(a, b) | a < b}R1 = {(a, b) | a > b}R2 ℝ
C = {(a, b) | a < b or a > b} = {(a, b) | a y b}R1 R2
B = {(a, b) | a < b and a > b} = ∅R1 R2
∖ =R1 R2 R1
∖ =R2 R1 R2

R A B S B C R S
(a, c) a ! A c ! C b ! B (a, b) ! R (b, c) ! S S 1 R

R {1, 2, 3} {1, 2, 3, 4} S {1, 2, 3, 4}
{0, 1, 2}



then .

One special case of composition occurs when you compose a relation with itself. For example, let  be
defined on the set of all people. Then  is the set of ordered pairs  such that there exists a person  so that  is a parent of 
and  is a parent of , \ie,  is a grandparent of .

Of course, this produces a new relation which can be composed with  again to produce the "is a great-grandparent of" relation.

As a shortcut, we write , , and so on.

Let . Then:

 for 

Interestingly, we can understand transitivity in terms of composition: a relation  on a set  is transitive if and only if  for 
.

: Suppose  for . therefore, . Now, if  and , then . Since 
, we must have . Therefore,  is transitive.

: We will use induction to prove this direction.
Basis step: ( ) If  is transitive, then  is transitive.
Inductive hypothesis: Assume  for an arbitrary .
Inductive step: We want to show that . Suppose that . Since , there must exist an 

 such that  and . By the inductive hypothesis, . Since  is transitive and 
, we have that . Since  was arbitrary, we have that .

Reflexive Closure

Sometimes a relation does not have some property that we would like it to have: for example, reflexivity, symmetry, or transitivity.

How do we add elements to our relation to guarantee the property? Ideally, we'd like to add as few new elements as possible to
preserve the "meaning" of the original relation.

We first consider making a relation reflexive. This is called the reflexive closure. Suppose we have a relation  on a set  and want to
make it reflexive. We need to ensure that  is in the relation for all . We also do not wish to add anything extra.

Define . The reflexive closure of  is .

For example, the reflexive closure of  on the set of integers is the relation

Symmetric Closure

For the symmetric closure, we want to ensure that  is in the closure relation whenever  is in the original relation.

Define . The symmetric closure of  is .

For example, the symmetric closure of  on the set of integers is the relation

Transitive Closure

Consider  on . This is not a transitive relation: it is missing 
. Let's try adding them and calling the new relation :

R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)}
S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}

S 1 R = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}

R = {(a, b) | a is a parent of b}
R 1 R (a, c) b a b

b c a c

R

= R 1 RR2 = (R 1 R) 1 R)R3

R = {(1, 1), (2, 1), (3, 2), (4, 3)}

= RR1

= {(1, 1), (2, 1), (3, 1), (4, 2)}R2

= {(1, 1), (2, 1), (3, 1), (4, 1)}R3

=R4 R3

⋮
=Rn R3 n ~ 3

R A � RRn

n ~ 1

(←) � RRn n = 1, 2, 3,… � RR2 (a, b) ! R (b, c) ! R (a, c) ! R2

� RR2 (a, c) ! R R
(→)

n = 1 R = RR1

� RRk k
� RRk+1 (a, b) ! Rk+1 = 1 RRk+1 Rk

x ! A (a, x) ! R (x, b) ! Rk (x, b) ! R R
(a, x), (x, b) ! R (a, b) ! R (a, b) � RRk+1

R A
(a, a) a ! A

Δ = {(a, a) | a ! A} R R C Δ

R = {(a, b) | a < b}

R C Δ = {(a, b) | a < b} C {(a, a) | a ! ℤ} = {(a, b) | a } b}

(b, a) (a, b)

= {(b, a) | (a, b) ! R}R+1 R R C R+1

R = {(a, b) | a < b}

R C = {(a, b) | a < b} C {(b, a) | a > b} = {(a, b) | a y b}R+1

R = {(1, 3), (1, 4), (2, 1), (3, 2)} A = {1, 2, 3, 4}
{(1, 2), (2, 3), (2, 4), (3, 1)} R′

= {(1, 3), (1, 4), (2, 1), (3, 2), (1, 2), (2, 3), (2, 4), (3, 1)}′



Unfortunately, this relation is still not transitive:  and , but . It seems we will need to do a bit more
work.

Recall that if we compose  with itself, then we get the elements  where  and  for some . We need these
elements for transitivity, so add them to . As we saw above, this might not be enough, so we repeat this.

How any times do we repeat? This is the same as asking how many intermediate elements we could find. Since there are  possible
intermediate elements, we might need to do as many as  compositions.

Therefore, the transitive closure of  over a set  is

Here is an example of computing the transitive closure:

Let  over the set . Then:

The transitive closure of  is  (since ): 

It turns out we can view this another way if we look at the matrix representation. Given a matrix representations  and  for the
relations  and , the matrix representation of  is , where  denotes the join operation. This operation is identical to
matrix multiplication, but any non-zero entries are simply written as ones.

The matrix representation of  in the previous example is

Therefore, we have:

and

We now take the union of these matrices by taking the logical-or of each entry:

As we would expect, this is the matrix representation of ; the same answer we
computed previously.

Equivalence Relations

We intuitively know what it means to be "equivalent", and some relations satisfy these intuitions, while others do not.

Consider the usual " " relation. This is a perfectly good relation: we usually write , for example, but can define 
 on , and write  or .

Why do we say the " " relation expresses equivalence?

anything is equivalent to itself (reflexive)
if  then  (symmetric)

= {(1, 3), (1, 4), (2, 1), (3, 2), (1, 2), (2, 3), (2, 4), (3, 1)}R′

(3, 1) ! R′ (1, 4) ! R′ (3, 4) " R′

R (a, c) (a, b) ! R (b, c) ! R b
R

|A|
|A|

R A

R C C C⋯ CR2 R3 R|A|

R = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 2)} A = {1, 2, 3}
= RR1

= {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3)}R2

= {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3)}R3

R C CR1 R2 R3 |A| = 3 {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3)}

MR MS
R S S 1 R ²MR MS ²

R

=MR

⎡

⎣
⎢⎢

1
0
1

0
1
1

1
0
0

⎤

⎦
⎥⎥

= ² =MR2 MR MR

⎡

⎣
⎢⎢

1
0
1

1
1
1

1
0
1

⎤

⎦
⎥⎥

= ² =MR3 MR2 MR

⎡

⎣
⎢⎢

1
0
1

1
1
1

1
0
1

⎤

⎦
⎥⎥

A A =
⎡

⎣
⎢⎢

1
0
1

0
1
1

1
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
1

1
1
1

1
0
1

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
1

1
1
1

1
0
1

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
1

1
1
1

1
0
1

⎤

⎦
⎥⎥

{(1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (3, 3)}

= 1 = 1
R = {(a, b) | a = b} ℤ (1, 1) ! R 1R1

=

a = b b = a



if  and , then  (transitive)

Other examples include logical equivalence, set equivalence, and many others.

A relation is an equivalence relation if it is reflexive, symmetric and transitive.

To show something is an equivalence relation, just show that it has all of these properties. To show a relation is not an equivalence
relation, show it does not satisfy at least one of these properties.

Here are some examples of determining if relations are equivalence relations:

 over 
reflexive: , so 
symmetric: assume . Then  or . If , then  so . If , then , so 

.
transitive: assume  and . Then  or  and  or .

if  and , then  so 
if  and , then  so 
if  and  then , so , so 
if  and  then , so , so 

 (for some ) over 
reflexive:  divides  since 
symmetric: assume . Then  divides . So  for some integer . Therefore, , so

 and  divides , so .
transitive: assume  and . Then  and . Adding these two equations together
gives , or , so  divides  and 

 is a relation on sets of strings of English letters such that  iff  and  have the same length
reflexive: any string has the same length as itself
symmetric: if  then the length of  is the same as the length of ,  as well
transitive: assume  and . Then the lengths of , , and  are all the same. In particular, the lengths of 

 and  are the same, so 
Is the divides relation on the integers an equivalence relation?

reflexive:  since 
transitive: if  and , we know that  and , so , so 
symmetric: the relation is not symmetric since  but  does not divide 

Since the divides relation is not symmetric, it is not an equivalence relation!
 over 

reflexive: 
symmetric: if  then . Since , we have that 
transitive: if , , , then

, so 
, so 
, so 

Therefore, the relation is not transitive and thus it is not an equivalence relation.

Equivalence Classes

Equivalence relations naturally partition the elements of the set they are defined on into several classes.

For example, let  over the set of students in this course. It is clear that  is an
equivalence relation. Observe that it also partitions the students in this course into classes: A+, A, A-, B+, and so on.

Let  be an equivalence relation on a set . The set of all elements related by  to  is called the equivalence class of  and is denoted
 (or  when  is clear from context):

If , then  is called a representative of the equivalence class. Any member of the class can be chosen to be a representative.

Here are some examples of working with equivalence classes:

Recall  is an equivalence relation over . An integer is equivalent to itself and its negative, so
we have . In particular, , and so on. Note that 
Let  over the set of English words. This is an equivalence relation, and they
equivalene classes are all words starting with "a", all words starting with the letter "b", and so on.

a = b b = c a = c

R = {(a, b) | a = b or a = +b} ℤ
a = a (a, a) ! R

(a, b) ! R a = b a = +b a = b b = a (b, a) ! R a = +b b = +a
(b, a) ! R

(a, b) ! R (b, c) ! R a = b a = +b b = c b = +c
a = b b = c a = c (a, c) ! R
a = b b = +c a = +c (a, c) ! R
a = +b b = c +b = +c a = +b = +c (a, c) ! R
a = +b b = +c +b = c a = +b = c (a, c) ! R

R = {(a, b) | m divides a + b} m ! ℤ+ ℤ
m a + a = 0 0 = 0 × m

(a, b) ! R m a + b a + b = km k +(a + b) = +km
b + a = (+k)m m b + a (b, a) ! R

(a, b) ! R (b, c) ! R a + b = mk1 b + c = mk2
(a + b) + (b + c) = m + mk1 k2 a + c = ( + )mk1 k2 m a + c (a, c) ! R

R (a, b) ! R a b

(a, b) ! R a b (b, a) ! R
(a, b) ! R (b, c) ! R a b c

a c (a, c) ! R

a|a a = 1 × a
a|b b|c b = ak1 c = bk2 c = b = k1( )a = ( )ak1 k2 k1k2 a|c

2|4 4 2

R = {(a, b) | |a + b| < 1} ℝ
a + a = 0 < 1

(a, b) ! R |a + b| < 1 |a + b| = |b + a| |b + a| < 1
x = 2.8 y = 1.9 z = 1.1

|x + y| = |2.8 + 1.9| = 0.9 < 1 (x, y) ! R
|y + z| = |1.9 + 1.1| = 0.8 < 1 (y, z) ! R
|x + z| = |2.8 + 1.1| = 1.7 ~ 1 (x, z) " R

R = {(a, b) | a got the same grade as b in this course} R

R A R a a
[a]R [a] R

[a = {b | (a, b) ! R}]R

b ! [a]R b

R = {(a, b) | a = b or a = +b} ℤ
[a] = {a,+a} [1] = {1,+1}, [2] = {2,+2} [0] = {0}

R = {(a, b) | a and b have the same first letter}



In the grades example we saw before, the equivalence classes were the students who achieved the same grade. Notice that this is a
partition: two equivalence classes are either equal or disjoint, and the union of all equivalence classes is the set over which the
relation is defined.

This works the other way, too: given a partition of a set , we can always construct an equivalence relation  on  with those
equivalence classes.

Suppose we partition  into . Define an equivalence relation on 
with equivalence classes .

To do this, we simply define the relation to ensure that each element in subset is related to every other element in the subset:

Taking the union  gives the desired relation .

Partial Orders

A relation  on a set  is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set  together with a
partial order  on that set is called a partially ordered set or poset and is denoted . Members of  are called elements of the
poset.

Here are some examples:

The  relation on  is a partial order:
reflexive:  for all 
antisymmetric: if  and , then 
transitive: if  and , then 

Therefore,  is a partial order. Notice that  would not be a partial order because it is not reflexive.
We saw in the last section that the "divides" relation on  is reflexive and transitive. Is it antisymmetric?

Yes. If  and , then  and , so , so . Since , , and so 
.

In a partial order, we cannot always compare two elements. The elements  of a poset  are comparable if either  or 
. When neither is true, they are incomparable.

In the "divides" relation,  does not divide  and  does not divide , so they are incomparable. However,  divides  so  and 
are comparable.
In the  relation, we always have  or , so every pair of elements is comparable.

The fact that we can have incomparable elements is why the relations are called partial orderings.

If  is a poset and every two elements of  are comparable,  is called a totally ordered set or a linearly ordered set and  is
called a total order or linear order. A totally ordered set is also called a chain.

Hasse Diagrams

We can represent a partial order graphically using a tool called a Hasse diagram. The idea is to draw the relation as a graph consisting
of a vertex for every element in the set and edges denote which elements of the set are related by the partial order. For the sake of
conciseness, edges which must appear (because of reflexivity and transitivity) are omitted.

For example, consider the poset . We start with all information.

We now remove all self-loops:

A R A

A = {1, 2, 3, 4, 5, 6} = {1}, = {2, 3}, = {4, 5, 6}A1 A2 A3 A
, ,A1 A2 A3

= {(a, b) | a, b ! } = {(1, 1)}R1 A1
= {(a, b) | a, b ! } = {(2, 2), (2, 3), (3, 2), (3, 3)}R2 A2
= {(a, b) | a, b ! } = {(4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}R3 A3

C CR1 R2 R3 R

R A A
R (A, R) A

~ ℤ
a ~ a a ! ℤ

a ~ b b ~ a a = b
a ~ b b ~ c a ~ c

~ >
ℤ+

a|b b|a b = ak1 a = bk2 b = bk1k2 = 1k1k2 , !k1 k2 \integers+ = = 1k1 k2
b = a = ak1

a, b (S,⪯) a ⪯ b
b ⪯ a

5 7 7 5 2 4 2 4

} a } b b } a

(S,⪯) S S ⪯

({1, 2, 3, 4},})



We then remove the edges required for transitivity:

We now remove the arrows by placing all of the initial elements below the terminal elements:

This is the Hasse diagram.

Here are some more examples of Hasse diagrams:

({1, 2, 3, 4, 6, 8, 12}, |)

({a, b, c},�)



The other benefit of Hasse diagrams is that it is easier to pick out certain special elements.

An element  is maximal in a poset  if there is no  with  (that is,  but ).

An element  is minimal in a poset  if there is no  with .

In a Hasse diagram, the maximal element(s) are at the top and the minimal element(s) are at the bottom, but only in the sense of
where the edges enter and leave, not their location on the diagram!

:  are maximal,  is minimal
:  is maximal,  is minimal

Sometimes, there is an element greater than every other element. If  for all , then  is the greatest element of . If 
 for all , then  is the least element of . Both the greatest and least elements are unique when they exist.

:  is the least element, but there is no greatest element
:  is the greatest element,  is the least element

You might want to bound some subset of the poset. Given a poset  and a subset :

if  and  for all , then  is a upper bound of 
if  and  for all , then  is a lower bound of 

For example:

upper bounds of : 
lower bounds of : 
upper bounds of : none
lower bounds of : 
upper bounds of : 
lower bounds of : 

If  for any  and  for any upper bound  of  then  is the least upper bound of .

If  is a lower bound of  and  whenever  is a lower bound of  then  is the greatest lower bound of .

a (S,⪯) b ! S a � b a ⪯ b a y b

a (S,⪯) b ! S b � a

({1, 2, 3, 4, 6, 8, 12}, |) 8, 12 1
({a, b, c},�) {a, b, c} ∅

b ⪯ a b ! S a (S,⪯)
a ⪯ b b ! S a (S,⪯)

({1, 2, 3, 4, 6, 8, 12}, |) 1
({a, b, c},�) {a, b, c} ∅

(S,⪯) A � S

u ! S a ⪯ u a ! A u A
l ! S l ⪯ a a ! A l A

{a, b, c} e, f , j, h
{a, b, c} a
{j, h}
{j, h} a, b, c, d, e, f
{a, c, d, f } f , h, j
{a, c, d, f } a

a ⪯ x a ! A x ⪯ z z A a A

y A z ⪯ y z A y A



If the least upper bound or greatest lower bound exist, then they are unique.

In the previous example:

the upper bounds of  are  and the least upper bound is 
the lower bounds of  are  and the greatest lower bound is 

Topological Sorting

Suppose you are building a house. We can define a partial order on the "must be done before" relation:

This is a partial order and must be respected when constructing a house. But this does not specify a valid ordering. There could be
many! For example, we don't care if we do exterior painting or plumbing first (since they are incomparable elements).

We need a total order that respects the partial order. A total ordering  is compatible with a partial ordering  if  whenever 
.

Observe that every finite, non-empty poset has at least one minimal element.

Therefore, to find a compatible ordering, remove a minimal element and place it at the front of the total order. Now the initial partial
order is a partial order with one fewer element. Keep doing this until all elements are gone. This is called topological sorting.

Here is how to topologically sort the poset . Here is the initial Hasse diagram:

{b, d, g} g, h g
{b, d, g} a, b b

⪯ R a ⪯ b
aRb

({1, 2, 3, 4, 6, 8, 12}, |)



The minimal element is , which is the first element of our total order. This leaves us with the following Hasse diagram:

Both  and  are minimal elements, so we can select either. Let's pick , which will be the second element in our total order. This
leaves us with the following Hasse diagram:

 is now the minimal element, which will be the third element in our total order. This leaves us with the following Hasse diagram:

Both  and  are minimal elements, so we can select either. Let's pick , which will be the fourth element in our total order. This
leaves us with the following Hasse diagram:

Both  and  are minimal elements, so we can select either. Let's pick , which will be the fifth element in our total order. This leaves
us with the following Hasse diagram:

 is now the minimal element, which will be the sixth element in our total order. This leaves us with the following Hasse diagram:

This means that the final element in the total order is , giving us a total order of . Other answers are possible!

A total order for house construction would be (for example) foundation, framing, roofing, exterior siding, plumbing, wiring, exterior
painting, exterior fixtures, wallboard, flooring, interior painting, carpeting, interior fixtures, completion.

Graphs

Graphs can be used to model problems from virtually any field.

A graph is a pair  where  is a set called the vertex set and  is a set called the edge set. Each edge in  describes how vertices
in  are connected.

Here is an example of a graph:

1

2 3 3

2

4 6 4

6 8 8

6

12 1, 3, 2, 4, 8, 6, 12

(V, E) V E E
V



This particular graph is a simple graph:

no edge connects a vertex to itself
only one edge between two vertices

In this graph, edges don't have a direction. We say that the graph is undirected. Therefore, edges can be represented as sets consisting
of two vertices. For the above graph,

Sometimes, we might want to allow multiple edges between vertices. Such graphs are called multigraphs:

Edges are still undirected; we can represent them as sets of two vertices. However, now these sets can appear more than once. We say
that if there are  distinct edges between  and , the edge  has multiplicity . Multigraphs are used, for example, to model
redundant connections in a network.

We might also want to relax the restriction that there are no edges between a vertex and itself. Such edges are called self-loops and a
graph that contains self-loops is called a pseudograph. Self-loops model such things as loopbacks in networks.

We can also have directed versions of these graphs, where edges only go in one direction. Here is an example of a directed multigraph:

V = {San Francisco, Los Angeles, Denver, Chicago, Detroit, New York, Washington}
E = {

{San Francisco, Denver},
{San Francisco, Los Angeles},
{Los Angeles, Denver},
{Denver, Chicago},
{Chicago, Detroit},
{Detroit, New York},
{New York, Washington},
{Washington, Chicago},
{Chicago, New York}

}

m u v {u, v} m



Directed edges can be represented as an ordered pair  instead of a set . Directed edges model such things as single duplex
lines or one-way streets in road networks.

There are many uses of graphs:

social networks (Facebook, etc.)
Hollywood graph (Six Degrees of Kevin Bacon)
Web graph

Representing Graphs

We need a way of representing graphs if we want to perform operations on them. We could simply list the vertices and edges, but that
is a lot of work and it is hard to extract much information from that representation.

Here are two alternatives:

adjacency list: For each vertex, list the vertices that are connected to that vertex by an edge. Such vertices are said to be
adjacent. (This works for both directed and undirected graphs, even if they contain loops.)

adjacency matrix: one row and one column for each vertex , row  column  is  if the edge is in ,  otherwise. (For
this to work, you have to fix some ordering on the vertices.)

(u, v) {u, v}

, ,… ,v1 v2 vn i j 1 E 0



For simple undirected graphs, the adjacency matrix is symmetric (  and the main diagonal is all s ( ) since no
self-loops are allowed.

In general, we can allow for multigraphs by using the multiplicities as entries instead of just  or .

Adjacency and Degree

Let  be a graph.

two vertices are adjacent (are neighbours) in  if  and  are endpoints of some edge in 
if edge  connects  and , we say  is incident on  (and ) or incident with  and 
the degree of a vertex in an undirected graph is the number of edges incident with it, denoted by . If a self-loop is present,
it is counted twice!

For example:

The Handshaking Theorem says that, for a graph , we always have

For a directed edge  in a directed graph,  is the initial vertex and  is the terminal vertex or end vertex.

the number of incoming edges to  (that is, the number of edges with  as terminal) is denoted  and called the in-degree
of 
the number of outgoing edges from  (that is, the number of edges with  as initial) is denoted  and called the out-
degree of 

Note that .

Some Special Graphs

=aij aji 0 = 0aii

0 1

G = (V, E)

G u v G
e u v e u v u v

deg v

G = (V, E)

deg(v) = 2|E|∑
v!V

(u, v) u v

v v (v)deg+
v

u u (udeg+

u

(v) = (v) = |E|*v!V deg+ *v!V deg+



There are a few (types of) graphs with special names:

the complete graph on  vertices, , has  vertices, each of which is connected to all other vertices. From left to right, we have 
:

the cycle on  vertices, , has vertices  and edges . From left to
right, we have :

the wheel on  vertices, , takes  and adds one vertex connected to all the other vertices. From left to right, we have 
:

a bipartite graph  partitions  into  and  such that  and , and every edge in  has
one endpoint in  and one endpoint in . This is the same as assigning one of two colours to every vertex such that no
adjacent vertices have the same colour. The complete bipartite graph  has partitions of size  and  and every element in
one partition is connected to every element of the other partition. Here are  and :

Subgraphs

A subgraph of a graph  is a graph  such that  and . A subgraph  of  is a proper subgraph of 
 if .

For example, on the left we have  and on the right is a subgraph of .

A subgraph is spanning if it contains all vertices of the original graph.

Connectivity

Sometimes, we want to know if two vertices in a graph are connected by a sequence of edges that might visit other vertices on the
way (for example, can two computers on a network communicate?)

A path is a sequence of edges that begins at a vertex and travels from vertex to vertex along edges of the graph.

More formally, a path of length  from vertex  to vertex  in  is a sequence of  edges  of  such that 
.

if the graph is simple, we can just use the vertex sequence to label the path
the path is a circuit if 
the path passes through vertices  and traverses edges 
a path is simple if it does not traverse an edge more than once

For example:

n Kn n
, , , ,K1 K2 K3 K4 K5

n ~ 3 Cn , ,… ,v1 v2 vn { , }, { , },… , { , }, { , }v1 v2 v2 v3 vn+1 vn vn v1
, ,C3 C4 C5

n ~ 3 Wn Cn
, ,W3 W4 W5

G = (V, E) V V1 V2 C = VV1 V2 B = ∅V1 V2 E
V1 V2

Km,n m n
K2,3 K3,3

G = (V, E) H = (W, F) W � V F � E H G
G H y G

K5 K5

n ~ 0 u v G n , ,… ,e1 e2 en G
= { = u, }, = { , },… , = { , }e1 x0 x1 e2 x1 x2 en xn+1 xn

u = v
, ,… ,x1 x2 xn+1 , ,… ,e1 e2 en



An undirected graph is connected if there is a path between every two distinct vertices in the graph. For example, the graph on the left
is connected but the graph on the right is disconnected.

The different parts that are maximally connected are called connected components.

One special type of connected (sub)graph is a tree, which is a connected undirected graph with no simple circuits. For example, the
graph on the left is a tree; the graph in the center is not a tree because it contains a circuit; and the graph on the right is not a tree
because it is not connected.

Because trees are "simple" in structure, we often want to find a spanning subgraph that is a tree:

In the graph above, the red edges form a spanning subgraph because every vertex appears exactly once. It is a tree because it is
connected and contains no circuits.

Returning to subgraphs in general, we note that sometimes removing a single vertex or edge would cause a graph to become
disconnected:

a cut vertex is a vertex whose removal disconnects the remaining graph (note that any edges incident on the removed vertex are
removed too)
a cut edge is an edge whose removal disconnects the remaining graph

For example, consider the following graph:

The cut vertices are , and the cut edges are .b, c, e {a, b}, {c, e}



We can also talk about connectivity in directed graphs:

a directed graph is strongly connected if there is a path from  to  and from  to  for every pair of vertices  and 
a directed graph is weakly connected if the graph is connected when you ignore the directions of the edges (that is, the
"underlying undirected graph")

For example, the graph on the left is both strongly and weakly connected, while the graph on the right is only weakly connected since
there is no path from  to .

Depth First Search

Suppose you are trying to explore a graph:

see what computers are connected to a network
visit cities connected by flights

How do you do this in an orderly way, so that you don't end up getting lost (looping forever)? Idea:

1. mark all vertices as unvisited
2. start at an arbitrary vertex
3. go to an unvisited neighbour
4. repeat until you have seen all unvisited neighbours
5. go back

This approach is called a depth first search. Consider the following graph:

A depth first search proceeds as follows:

1. start at (for example) 
2. visit 
3. backtrack to 
4. backtrack to 
5. visit 
6. backtrack to 
7. backtrack to 
8. visit 
9. backtrack to 

10. visit 

Notice that this produces a spanning tree, since all nodes are visited and there are no cycles (since having a cycle would mean visiting
an already-visited node).

Depth first search has many applications. For example:
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find paths, circuits
find connected components
find cut vertices
many AI applications

Breadth First Search

Instead of always going as deep as possible (as in depth first search), we can try to explore gradually at specific distances from the
starting vertex. Such a search is called a breadth first search and proceeds as follows:

1. keep a list of vertices seen so far, initially containing an arbitrary vertex
2. add all adjacent vertices to the end of the list
3. take the first vertex off the list and visit it
4. add its unvisited neighbours to the end of the list
5. repeat previous two steps until list is empty

Consider the following graph:

A breadth first search proceeds as follows:

1. start at (for example) 
2. visit  (the vertices at distance  from )
3. visit  (the vertices at distance  from )
4. visit  (the vertices at distance  from )

The process also produces a spanning tree. In fact, this also gives the path with the fewest edges from the start node to any other
node. This is the same as the shortest path if all edges are the same length or have the same cost.

Planarity

Sometimes, it is easy to get confused about a graph when looking at a picture of it because many of the edges cross and it is difficult
to determine what edge is going where. It is often nicer to look at graphs whose edges do not cross.

Notice that there are often many ways to draw the same graph. For example, here are two ways of visualizing the complete graph :

Even though they are drawn differently, they are essentially the same graph: four vertices where each vertex is connected to every
other vertex. However, the drawing on the right is "nicer" because none of its edges cross.

We call a graph planar if it is possible to draw it in the plane without any edges crossing. Such a drawing is called a planar
representation of the graph.

The above example shows that  is planar.
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Not all graphs are planar, however! For example,  cannot be drawn without crossing edges. To see this, recall what  looks
like:

Observe that the vertices  and  must be connected to both  and . These four edges form a closed curve that splits the plane
into two regions  and . The vertex  is either inside the region  or . Let's suppose that  is in  for the time being. Since 

 is connected to  and , it divides  into two subregions,  and . The situation is as follows:

Now, consider where to place the final vertex . If it is placed in , then the edge between  and  must have a crossing. If it is
placed in , then the edge between  and  must have a crossing. If it is placed in , then the edge between  and  must
have a crossing. A similar argument works for the case when  is in .

We have shown that  is not planar: it cannot be drawn without crossings.

Properties of Planar Graphs

Planar graphs have some nice properties.

Let  be a planar graph, and let  denote the number of vertices,  denote the number of edges, and  denote the number
of faces (including the "outer face"). Then . This is known as Euler's formula.

To prove this, consider two cases. If  is a tree, then it must be the case that  and  (since otherwise there would be a
cycle). Therefore, . Otherwise, if  is not a tree, then  must have a cycle with at
least  edges. If we delete an edge on that cycle,  stays the same, while  and  both decrease by  and so the equality is still true.
(This is a proof by induction in diguise!)

Another nice property is that if  is a connected planar simple graph and , then . This is a
consequence of Euler's formula. This property can be used to prove that  is not planar. To see this, observe that  has five vertices
and ten edges; this does not satisfy  and therefore the  cannot be planar.

If  is a connected planar simple graph, then  has a vertex of degree at most . To see this, observe that if  has one or
two vertices, the result is true. If  has at least three vertices, we know that , so . The Handshaking
Theorem says that . If the degree of every vertex were at least , then we would have , which
contradicts the inequality .

Planar graphs also have small average degree. The average degree of a graph  is . Using the fact that 
 (when ), we get that

as long as , this is strictly less than . This means that, on average, the degrees of vertices in a planar graph are small.

Graph Colouring

As mentioned earlier, many applications in the real world can be modelled as graphs. One recurring application is to colour a graph:
assign a colour to every vertex so that no two adjacent vertices share the same colour.
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Consider the graph of courses at Carleton where two courses are connected by an edge if there is at least one student in both courses.
To schedule exams, each vertex will be assigned a colour to represent its time slot. To avoid conflicts, courses with common students
must have their exams scheduled at different times: they must be assigned different colours.

A colouring of a simple graph is the assignment of a colour to each vertex of the graph such that no two adjacent vertices are assigned
the same colour. The chromatic number of a graph is the smallest number of colours required to colour the graph, and is usually
denoted  for a graph . For example:

the chromatic number of  is , since all pairs of vertices are adjacent
the chromatic number of  is : colour one part of the partition one colour, and the other part of the partition the other
colour. Since there are no edges within one part of the partition, there are no adjacent vertices with the same colour
the chromatic number of  is  when  is even and  when  is odd

One particularly interesting case is computing the chromatic number for simple planar graphs. Here is a proof that the chromatic
number of a planar graph is at most :

We will prove the statement by induction on the number of vertices.

Basis step: Suppose we have a graph with . Simply give each vertex a different colour.
Inductive hypothesis: Assume that any simple planar graph on  vertices can be coloured with at most  colours for some
arbitrary .
Inductive step: Let  be any simple planar graph on  vertices. We know that  must have at least one vertex  with degree
at most . Remove  from  to form a simple planar graph with  vertices. By our inductive hypothesis, this graph can be
coloured with at most  colours. Now, add back in the vertex . Since it had degree at most , it has at most  neighbours and
therefore at most  colours adjacent to it. This leaves at least one more colour for it.

Computing the chromatic number of a general graph is tricky! There are no efficient algorithms to determine  for a general graph 
 if nothing else is known about it.

At least one colour and at most  colours are required, so  for any graph . The only graphs that require only one
colour are those without edges. The graphs that require two colours are bipartite graphs (including trees, for example).

What if we just want some colouring of , perhaps using more than  colours? One possible algorithm is to use a greedy
colouring. To do this, order the vertices in some specific way, and assign each vertex in sequence the smallest available colour not
used by that vertex's neighbours. The trick is using a good order!

There is always an order that results in  colours, but we don't know how to find it efficiently.
There are really bad orders that use many more colours than necessary. For example,  can be ordered by going through one
partition and then the other and therefore use  colours, or ordered by alternating one element from each partition and
therefore use  colours.
One reasonable ordering of the vertices is by non-increasing degree. If the largest degree in the graph is , then at most 
colours will be used.

Consider the graph above. If the ordering alternates from left to right, a -colouring is produced. If the ordering goes all the way up
the left and then all the way up the right, a -colouring is produced. This graph can be generalized to have  vertices on the left and 
vertices on the right. The orderings would then produce a -colouring and a -colouring, respectively. This is a huge difference!
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