
COMP 2804 — Solutions Assignment 2

Question 1: On the first page of your assignment, write your name and student number.

Solution:

• Name: Sidney Crosby

• Student number: 87

Question 2: The function f : N→ Z is defined by

f(0) = −18,
f(n) = 9(n− 2)(n− 3) + f(n− 1) if n ≥ 1.

Prove that
f(n) = 3(n− 1)(n− 2)(n− 3)

for all n ≥ 0.

Solution: The proof is by induction on n. The base case is when n = 0. Since f(0) = −18
and

3(n− 1)(n− 2)(n− 3) = 3(−1)(−2)(−3) = −18,

the base case holds.
Let n ≥ 1 and assume that the claim is true for n− 1. Thus, the induction hypothesis is

that
f(n− 1) = 3(n− 2)(n− 3)(n− 4).

We have to show that
f(n) = 3(n− 1)(n− 2)(n− 3).

Using the recurrence, the induction hypothesis, and some basic algebra, we get

f(n) = 9(n− 2)(n− 3) + f(n− 1)

= 9(n− 2)(n− 3) + 3(n− 2)(n− 3)(n− 4)

= 3(n− 2)(n− 3) (3 + (n− 4))

= 3(n− 2)(n− 3)(n− 1)

= 3(n− 1)(n− 2)(n− 3).

Question 3: The functions f : N→ N and g : N2 → N are recursively defined as follows:

f(0) = 1,
f(1) = 2,
f(n) = g(f(n− 2), f(n− 1)) if n ≥ 2,
g(m, 0) = 2m if m ≥ 0,
g(m,n) = g(m,n− 1) + 1 if m ≥ 0 and n ≥ 1.
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Solve these recurrences for f , i.e., express f(n) in terms of n. Justify your answer.

Solution: If you stare long enough at the recurrence for g, it makes sense that

g(m,n) = 2m + n

for all m ≥ 0 and n ≥ 0. We prove by induction on n that this is indeed the case.
The base case is when n = 0. Since g(m, 0) = 2m and 2m+n = 2m, the base case holds.
Let n ≥ 1 and assume that

g(m,n− 1) = 2m + n− 1.

Then
g(m,n) = g(m,n− 1) + 1 = (2m + n− 1) + 1 = 2m + n.

Now that we have solved the recurrence for g, we can rewrite the recurrence for f :

f(0) = 1,
f(1) = 2,
f(n) = 2 · f(n− 2) + f(n− 1) if n ≥ 2.

After determining some function values for small values of n, it looks like

f(n) = 2n

for all n ≥ 0. We prove by induction on n that this is indeed the case. The base cases are
n = 0 and n = 1:

• If n = 0: We have f(0) = 1 and 2n = 20 = 1. Thus, the claim is true for n = 0.

• If n = 1: We have f(1) = 2 and 2n = 21 = 2. Thus, the claim is true for n = 1.

Let n ≥ 2 and assume that the claim is true for n− 1 and n− 2. Thus, we assume that

f(n− 1) = 2n−1

and
f(n− 2) = 2n−2.

Then we get

f(n) = 2 · f(n− 2) + f(n− 1) = 2 · 2n−2 + 2n−1 = 2n−1 + 2n−1 = 2n.

Question 4: The set S of binary strings is recursively defined in the following way:

• The string 00 is an element of the set S.

• The string 01 is an element of the set S.
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• The string 10 is an element of the set S.

• If the string s is an element of the set S, then the string 0s (i.e., the string obtained
by adding the bit 0 at the front of s) is also an element of the set S.

• If the string s is an element of the set S, then the string 10s (i.e., the string obtained
by adding the bits 10 at the front of s) is also an element of the set S.

Let s be an arbitrary string in the set S. Prove that s does not contain the substring 11.

Solution: The strings in S are defined in a recursive way: There are three base strings that
are in S. These are 00, 01, and 10. Obviously, none of these three strings contains 11.

Then there is a recursive rule, telling us how to obtain more strings in S: You take a
string s for which you already know that it belongs to S. Then you produce two new strings,
namely 0s and 10s, which are also in S.

In the induction step, we take a string s in S and assume that it does not contain 11.
Now we argue that the two new strings also do not contain 11:

• For the new string 0s: Since s does not contain 11, it is obvious that 0s does not
contain 11.

• For the new string 10s: Since s does not contain 11, it is obvious that 10s does not
contain 11.

Question 5: Let n ≥ 1 be an integer and consider the set Sn = {1, 2, . . . , n}. A non-
neighbor subset of Sn is any subset T of S having the following property: If k is any element
of T , then k+1 is not an element of T . (Observe that the empty set is a non-neighbor subset
of Sn.)

For example, if n = 3, then {1, 3} is a non-neighbor subset, whereas {2, 3} is not a
non-neighbor subset.

Let Nn denote the number of non-neighbor subsets of the set Sn.

• Determine N1, N2, and N3.

• Determine the value of Nn, i.e., express Nn in terms of numbers that we have seen in
class. Justify your answer. Hint: Derive a recurrence.

First Solution: In class, we have seen the following:

• The number of bitstrings of length n that do not contain 00 is equal to fn+2, the
(n + 2)-nd Fibonacci number.

• By changing the roles of 0 and 1, we see that the number of bitstrings of length n that
do not contain 11 is also equal to fn+2.
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• Each subset T of Sn can be encoded as a binary string of length n: The i-th bit of the
string is 1 if i ∈ T , and it is 0 if i 6∈ T .

• If T is a non-neighbor subset of Sn, then the corresponding bitstring does not contain
11. Conversely, any bitstring of length n that does not contain 11 corresponds to a
unique non-neighbor subset of Sn.

• We conclude that Nn is equal to the number of bitstrings of length n that do not contain
11. Thus, Nn = fn+2. In particular, N1 = f3 = 2, N2 = f4 = 3, and N3 = f5 = 5.

Second Solution:

• To determine N1, we list all non-neighbor subsets of S1 = {1}: These are ∅ and {1}.
Thus, N1 = 2.

• To determine N2, we list all non-neighbor subsets of S2 = {1, 2}: These are ∅, {1},
and {2}. Thus, N2 = 3.

• To determine N3, we list all non-neighbor subsets of S3 = {1, 2, 3}: These are ∅, {1},
{2}, {3}, and {1, 3}. Thus, N3 = 5.

Let n ≥ 3. Let us see how we can determine Nn. Each non-neighbor subset T of Sn is of
exactly one of the following two types:

• T does not contain n. Then T is a non-neighbor subset of Sn−1. There are Nn−1 of
these.

• T contains n. Then T does not contain n− 1 and T \ {n} is a non-neighbor subset of
Sn−2. There are Nn−2 of these.

Thus, the number of non-neighbor subsets of Sn is equal to Nn−1+Nn−2. On the other hand,
this number is also equal to Nn, because this is how we defined Nn. We conclude that

N1 = 2, N2 = 3, and for n ≥ 3, Nn = Nn−1 + Nn−2.

This is a shifted Fibonacci sequence and it follows that Nn = fn+2.

Question 6: Let n be a positive integer and consider a 1×n board Bn consisting of n cells,
each one having sides of length one. The top part of the figure below shows B9.

R B W Y G

You have an unlimited supply of bricks, which are of the following types (see the bottom
part of the figure above):
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• There are red (R) and blue (B) bricks, both of which are 1× 1 cells.

• There are white (W ), yellow (Y ), and green (G) bricks, all of which are 1× 2 cells.

A tiling of the board Bn is a placement of bricks on the board such that

• the bricks exactly cover Bn and

• no two bricks overlap.

In a tiling, a color can be used more than once and some colors may not be used at all. The
figure below shows a tiling of B9, in which each color is used and the color red is used twice.

B W R G R Y

Let Tn be the number of different tilings of the board Bn.

• Determine T1 and T2.

• Let n ≥ 3 be an integer. Prove that

Tn = 2 · Tn−1 + 3 · Tn−2.

• Prove that for any integer n,

2(−1)n−1 + 3(−1)n−2 = (−1)n.

• Prove that for any integer n ≥ 1,

Tn =
3n+1 + (−1)n

4
.

Solution:

• To determine T1: There are two ways to tile the board B1: R and B. Thus, T1 = 2.

• To determine T2: There are seven ways to tile the board B2: RR, RB, BR, BB, W ,
Y , and G. Thus, T2 = 7.

Next, we derive the recurrence: Let n ≥ 3. Each of the Tn many tilings of the board Bn

is of exactly one of the following five types:

• It starts with R and is followed by a tiling of the board Bn−1. The number of such
tilings is equal to Tn−1.
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• It starts with B and is followed by a tiling of the board Bn−1. The number of such
tilings is equal to Tn−1.

• It starts with W and is followed by a tiling of the board Bn−2. The number of such
tilings is equal to Tn−2.

• It starts with Y and is followed by a tiling of the board Bn−2. The number of such
tilings is equal to Tn−2.

• It starts with G and is followed by a tiling of the board Bn−2. The number of such
tilings is equal to Tn−2.

By taking the sum of all these cases, it follows that

Tn = 2 · Tn−1 + 3 · Tn−2.

Next we show that
2(−1)n−1 + 3(−1)n−2 = (−1)n.

A fancy solution is as follows:

2(−1)n−1 + 3(−1)n−2 = −2(−1)n + 3(−1)n

= (−2 + 3) (−1)n

= (−1)n.

In a less fancy solution, we consider two cases:

• If n is even, then (−1)n−1 = −1 and (−1)n−2 = 1, and we get

2(−1)n−1 + 3(−1)n−2 = −2 + 3 = 1 = (−1)n.

• If n is odd, then (−1)n−1 = 1 and (−1)n−2 = −1, and we get

2(−1)n−1 + 3(−1)n−2 = 2− 3 = −1 = (−1)n.

The final step is to prove by induction that

Tn =
3n+1 + (−1)n

4
.

There are two base cases:

• If n = 1: We have seen above that T1 = 2. Since

3n+1 + (−1)n

4
=

31+1 + (−1)1

4
=

9− 1

4
=

8

4
= 2,

the claim is true for n = 1.

6



• If n = 2: We have seen above that T2 = 7. Since

3n+1 + (−1)n

4
=

32+1 + (−1)2

4
=

27 + 1

4
=

28

4
= 7,

the claim is true for n = 2.

Now let n ≥ 3 and assume the claim is true for n− 1 and n− 2, i.e., assume that

Tn−1 =
3n + (−1)n−1

4

and

Tn−2 =
3n−1 + (−1)n−2

4
.

Using the recurrence, basic algebra, and the equation in the third part, we get

Tn = 2 · Tn−1 + 3 · Tn−2

= 2 · 3n + (−1)n−1

4
+ 3 · 3n−1 + (−1)n−2

4

=
2 · 3n + 3 · 3n−1 + 2(−1)n−1 + 3(−1)n−2

4

=
2 · 3n + 3n + (−1)n

4

=
(2 + 1) · 3n + (−1)n

4

=
3n+1 + (−1)n

4
.

Question 7: Those of you who come to class will remember that Jennifer loves to drink
India Pale Ale (IPA). After a week of hard work, Jennifer goes to the pub and runs the
following recursive algorithm, which takes as input an integer n ≥ 1, which is a power of 4:

Algorithm JenniferDrinksIPA(n):

if n = 1
then place one order of chicken wings
else for k = 1 to 4

do JenniferDrinksIPA(n/4);
drink n pints of IPA

endfor
endif

For n a power of 4, let

• P (n) be the number of pints of IPA that Jennifer drinks when running algorithm
JenniferDrinksIPA(n),
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• C(n) be the number of orders of chicken wings that Jennifer places when running
algorithm JenniferDrinksIPA(n).

Determine the values of P (n) and C(n). Show your work.

Solution: We start with C(n). It follows from the algorithm that

C(1) = 1.

Let n ≥ 4. Algorithm JenniferDrinksIPA(n) makes 4 recursive calls to JenniferDrinksIPA(n/4).
In each of these recursive calls, Jennifer places C(n/4) orders of chicken wings. Thus,

C(n) = 4 · C(n/4).

By determining some vales of C(n) for small values of n, you will guess that

C(n) = n

for each n ≥ 1 that is a power of 4. We prove by induction that this is indeed the case:
The base case is when n = 1. Since C(1) = 1 and n = 1, the base case holds.
Let n ≥ 4 be a power of 4 and assume that

C(n/4) = n/4.

Then
C(n) = 4 · C(n/4) = 4 · n/4 = n.

Next we determine P (n). It follows from the algorithm that

P (1) = 0.

Let n ≥ 4. Algorithm JenniferDrinksIPA(n) makes 4 recursive calls to JenniferDrinksIPA(n/4).
In each of these recursive calls, Jennifer drinks n + P (n/4) pints of IPA. Thus,

P (n) = 4n + 4 · P (n/4).

One way to solve this recurrence is to guess that

P (n) = 2n log n

for each n ≥ 1 that is a power of 4. We prove by induction that this guess is correct:
If n = 1, then P (1) = 0 and 2n log n = 2 · 1 log 1 = 0. Thus the base case holds.
Let n ≥ 4 be a power of 4 and assume that

P (n/4) = 2 · (n/4) log(n/4).
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Then

P (n) = 4n + 4 · P (n/4)

= 4n + 4 (2 · (n/4) log(n/4))

= 4n + 2n log(n/4)

= 4n + 2n (log n− log 4)

= 4n + 2n (log n− 2)

= 2n log n.

Note that this is a correct solution to the question: We guessed the answer and then verified
it. In order to get full marks, you do not have to explain how you got the answer, as long as
you prove that your answer is correct.

In case you want to know how to get the answer, we use unfolding, just as we did in class
for MergeSort. This gives the second way to get full marks:

P (n) = 4n + 4 · P (n/4)

= 4n + 4
(
4 · n/4 + 4 · P (n/42)

)
= 2 · 4n + 42 · P (n/42)

= 2 · 4n + 42 ·
(
4 · n/42 + 4 · P (n/43)

)
= 3 · 4n + 43 · P (n/43)

= 3 · 4n + 43 ·
(
4 · n/43 + 4 · P (n/44)

)
= 4 · 4n + 44 · P (n/44).

At this moment, you will see the pattern. After k unfolding steps, we get

P (n) = k · 4n + 4k · P (n/4k).

Let k be such that n = 4k. Then n = 22k and log n = 2k. We get

P (n) =
log n

2
· 4n + n · P (n/n)

=
log n

2
· 4n + n · P (1)

=
log n

2
· 4n

= 2n log n.

Question 8: A line is called slanted if it is neither horizontal nor vertical. Let k ≥ 1, m ≥ 1,
and n ≥ 0 be integers. Consider k horizontal lines, m vertical lines, and n slanted lines, such
that

• no two of the slanted lines are parallel,
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• no three of the k + m + n lines intersect in one single point.

These lines divide the plane into regions (some of which are bounded and some of which are
unbounded). Denote the number of these regions by Rk,m,n. From the figure below, you can
see that R4,2,2 = 30.

• Prove that
Rk,m,0 = (k + 1)(m + 1).

Solution: The k horizontal lines divide the plane into k + 1 horizontal slabs, whereas
the m vertical lines divide the plane into m+ 1 vertical slabs. If we overlay these k+ 1
horizontal slabs and m+1 vertical slabs, then we obtain exactly (k+1)(m+1) regions.
Thus, Rk,m,0 = (k + 1)(m + 1).

• Derive a recurrence for the numbers Rk,m,n and use it to prove that

Rk,m,n = (k + 1)(m + 1) + (k + m)n +

(
n + 1

2

)
.

Solution: We fix k and m. Let n ≥ 1 and consider n slanted lines L1, L2, . . . , Ln.

• We start by adding the lines L1, L2, . . . , Ln−1 to the k horizontal lines and m vertical
lines. At this moment, the number of regions is Rk,m,n−1.

• Now we add the line Ln. This line intersects

– each of the k horizontal lines,

– each of the m vertical lines, and

– each of the lines L1, L2, . . . , Ln−1.

– Thus, there are k + m + n − 1 intersections between Ln and the lines we have
already drawn. It follows that Ln goes through k +m+n regions (one more than
the number of intersections), and each such region is cut into two. It follows that,
when adding Ln, the number of regions increases by k + m + n.
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Thus, we obtain the recurrence

Rk,m,n = Rk,m,n−1 + k + m + n.

It remains to prove that

Rk,m,n = (k + 1)(m + 1) + (k + m)n +

(
n + 1

2

)
.

We do this by induction on n. If n = 0, then Rk,m,n = Rk,m,0 = (k + 1)(m + 1) and

(k + 1)(m + 1) + (k + m)0 +

(
0 + 1

2

)
= (k + 1)(m + 1)

as well, proving the base case.
Let n ≥ 1, and assume the claim is true for n− 1, i.e., assume that

Rk,m,n−1 = (k + 1)(m + 1) + (k + m)(n− 1) +

(
n

2

)
.

We have to show that

Rk,m,n = (k + 1)(m + 1) + (k + m)n +

(
n + 1

2

)
.

This follows by applying the recurrence and the assumption:

Rk,m,n = Rk,m,n−1 + k + m + n

= (k + 1)(m + 1) + (k + m)(n− 1) +

(
n

2

)
+ k + m + n

= (k + 1)(m + 1) + (k + m)n +

(
n

2

)
+ n.

Since (
n

2

)
+ n =

n(n− 1)

2
+ n

=
n(n− 1) + 2n

2

=
n(n + 1)

2

=

(
n + 1

2

)
,

it follows that

Rk,m,n = (k + 1)(m + 1)(k + m)n +

(
n + 1

2

)
.
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