COMP 2804 — Solutions Assignment 2

Question 1: On the first page of your assignment, write your name and student number.

Solution:
e Name: Sidney Crosby
e Student number: 87

Question 2: The function f : N — N is defined by

f0) = 1,
f(n) = 54" f(n—1) ifn>1.
Prove that for every integer n > 0,
f(n) =2

this reads as 2 to the power n?.

Solution: The proof is by induction on n. The base case is when n = 0. Since f(0) = 1 and
o =20 =20 =1,

the base case holds.
Let n > 1 and assume that the claim is true for n — 1. Thus, the induction hypothesis is
that
fln—1) =207,

We have to show that
fln) =2,

Using the recurrence, the induction hypothesis, and some basic algebra, we get

1
fn) = S-4" f(n—1)
2—1 . 22n . 2(n—1)2
9-1. 92n 2n2—2n+1

2

2",

Question 3: The functions f : N — N and g : N> — N are recursively defined as follows:

[0 =1
f(n) = g(f(n_1)72n) ifn>1,
g(0,n) = 0 ifn >0,

(
glm,n) = gm—1,n)+n ifm>1andn>0.
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Solve these recurrence relations for f, i.e., express f(n) in terms of n. Justify your answer.
Hint: Start by solving the recurrence relation for g.

Solution: If you stare long enough at the recurrence for g, it makes sense that
g(m,n) = mn

for all m > 0 and n > 0. We prove by induction on m that this is indeed the case.
The base case is when m = 0. Since g(0,n) = 0 and mn = 0-n = 0, the base case holds.
Let m > 1 and assume that

glm—1,n) = (m — 1)n.

Then
gm,n) =g(m—1,n)+n=(m-—1)n+n=mn.

Now that we have solved the recurrence for g, we can rewrite the recurrence for f:

f0) = 1,
fn) = 2n-f(n—1) ifn>1.

The recursive rule says: To get f(n), take the previous value f(n — 1), and multiply it by 2
and by n. From this, it makes sense to guess that

fn)=2"-n!

for all n > 0. We prove by induction on n that this is indeed the case.
The base case is when n = 0. Since f(0) =1 and

m.opl=20.01=1-1=1,

the base case holds.
Let n > 1 and assume that the claim is true for n — 1. Thus, we assume that

fln—1)=2""1.(n—-1).

Then we get
fn) = 20 fln—1)
= 2n-2""1. (n—1)!
= (2:2Y) (n-(n—1))
2" - nl.
Question 4: For any integer n > 1, a permutation ay, as,...,a, of the set {1,2,... n} is

called awesome, if the following condition holds:
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e For every ¢ with 1 < ¢ < n, the element a; in the permutation belongs to the set
{i —1,4,i+ 1}.

For example, for n = 5, the permutation 2,1, 3, 5,4 is awesome, whereas 2, 1,5, 3,4 is not an
awesome permutation.
Let P, denote the number of awesome permutations of the set {1,2,...,n}.

e Determine P, P, and P;.

e Determine the value of P,, i.e., express P, in terms of numbers that we have seen in
class. Justify your answer.

Hint: Derive a recurrence relation. What are the possible values for the last element
a, in an awesome permutation?

Solution:

e n = 1: There is only one permutation of the set {1}, namely 1. This permutation is
awesome and, therefore, P, = 1.

e n = 2: There are two permutations of the set {1,2}, namely 12 and 21. Both are
awesome and, therefore, P, = 2.

e n = 3: If a permutation ajasas of the set {1,2,3} is awesome, then a; € {1,2} and
az € {2,3}. This leads to three awesome permutations: 123, 132, and 213. Thus,
P;=3.

If you want, you can consider the other three permutations 231, 312, and 321 and
convince yourself that neither of these is awesome.

e Let n > 3 and consider an awesome permutation as, as, . .., a, of the set {1,2,...,n}.
We follow the hint: The value a,, can be either n — 1 or n.

— Assume a,, = n. Then aq,as,...,a,_1 is an awesome permutation of the set
{1,2,...,n—1}. There are P,_; many permutations of this type.

— Assume a,, = n— 1. Then a,_; must be equal to n. (Otherwise, there is an ¢ with
1 <i < n—2 such that a; = n. But then the permutation is not awesome.)

Then ay, as, . .., a,_o is an awesome permutation of the set {1,2,...,n—2}. There
are P, s many permutations of this type.

Conclusion: On the one hand, the number of awesome permutations is equal to P,.
On the other hand, the number of such permutations is equal to P,_; + P,_s.

e We have obtained the recurrence P, =1, P, =2, and P, = P, 1 + P,_» for n > 3.
This is a shifted Fibonacci sequence and it follows that P, = f,,1 for all n > 1.



Question 5: The Fibonacci numbers are defined as follows: fy = 0, f; = 1, and f, =
fn—l + fn—2 for n 2 2.
In class, we have seen that for any m > 1, the number of 00-free bitstrings of length m
is equal to fi,42. (In class, I showed this for m > 2, but this result is also valid for m = 1.)
Let n > 1 be an integer. For each question below, justify your answer.

How many 00-free bitstrings of length n 4+ 2 do not contain any 07

Solution: Such a string contains only 1’s. There is only one such string. Thus, the
answer is
1. (1)

How many 00-free bitstrings of length n 4 2 contain exactly one 07

Solution: Such a string contains one 0 and n + 1 many 1’s. Since there are n + 2
positions for the bit 0, the answer is

n+ 2. (2)

How many 00-free bitstrings of length n + 2 have the following property: The bitstring
contains at least two 0’s, and the second rightmost 0 is at position 1.

Solution: Such a string must start with 01 and it contains exactly one 0 in the
positions 3,4, ...,n + 2. Since there are n positions for this bit 0, the answer is

n=mn-fi. (3)

How many 00-free bitstrings of length n + 2 have the following property: The bitstring
contains at least two 0’s, and the second rightmost 0 is at position 2.

Solution: Such a string must start with 101 and it contains exactly one 0 in the
positions 4, 5,...,n + 2. Since there are n — 1 positions for this bit 0, the answer is

n—1=(n-1)-f. (4)

Let k£ be an integer with 3 < k < n. How many 00-free bitstrings of length n + 2
have the following property: The bitstring contains at least two 0’s, and the second
rightmost 0 is at position k.

Solution: Such a string can be divided into three pieces:

— The middle piece is the substring at positions £ — 1, k, k+ 1. We know that there
is a 0 at position k. Since the entire string is 00-free, there is a 1 at position k—1,
and a 1 at position k£ + 1. Thus, this middle piece is 101.



— The left piece is the substring at positions 1,2,...,k — 2. This left piece can be
any 00-free bitstring of length k — 2. Thus, there are f; many possibilities for this
left piece.

— The right piece is the substring at positions k + 2,k + 3,...,n + 2; this piece has
length n — k + 1. In this right piece, there is exactly one 0. This 0 can be in any
of the n — k + 1 possible positions. Thus, there are n — k + 1 many possibilities
for this right piece.

— By the Product Rule, the answer to this part of the question is
n—k+1)- fx. (5)

e Let k be an element of {n + 1,n + 2}. How many 00-free bitstrings of length n + 2
have the following property: The bitstring contains at least two 0’s, and the second
rightmost 0 is at position k.

Solution: If £ = n+1, then the second rightmost 0 cannot be at position k; otherwise,
the rightmost 0 is at position £+ 1 = n + 2, and the string is not 00-free.

If kK = n + 2, then the second rightmost 0 cannot be at position k; otherwise, there is
no space for the rightmost 0.

Thus, the answer to this part of the question is

0. (6)

e Use the previous results to prove that

n

Z(n_k+1)'fk:fn+4_n_3a

k=1

ie.,

nf1+<n_1)f2+(n_2)f3++2fn—1+1fn:fn+4_n_3

Solution: We know that the number of 00-free bitstrings of length n + 2 is equal to
fnra. Fach such string is of exactly one of the types as we have considered above.
Thus, the sum of (1), (2), (3), (4), (5), and (6) is equal to fy,14.

Question 6: Those of you who come to class will remember that Elisa Kazan® loves to
drink cider. After a week of bossing the Vice-Presidents around, Elisa goes to the pub and
runs the following recursive algorithm, which takes as input an integer n > 0:
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Algorithm ELISAGOESTOTHEPUB(n):

ifn=0
then drink one bottle of cider
elsefork=0ton—1
do ELiSAGOESTOTHEPUB(k);
drink one bottle of cider
endfor

endif

For n > 0, let C(n) be the number of bottles of cider that Elisa drinks when running
algorithm ELISAGOESTOTHEPUB(n).
Prove that for every integer n > 1,

C(n)=3-2""1-1.
Hint: 1424922493 4 ... 49702 _9n-1_ 1

Solution: If Elisa runs ELISAGOESTOTHEPUB(0), then she drinks one bottle of cider.
Thus,

c(0) =1.
Let n > 1 and consider what happens when Elisa runs ELISAGOESTOTHEPUB(n). The
for-loop makes n iterations, one for every k = 0,1,2,...,n — 1. In the k-th iteration, (i)

Elisa runs ELISAGOESTOTHEPUB(k), during which she drinks C(k) bottles of cider, and
(ii) Elisa drinks one bottle of cider. Overall, in the k-th iteration, Elisa drinks 1 + C(k)
bottles of cider. We conclude that, for n > 1,

n—1
Cn)=)> (1+C(k))
k=0
This is the same as .
C(n)=n+ C(k)
k=0

In words, C'(0) = 1. For any n > 1, to obtain C(n), we take the sum of n and the total sum
of all previous C-values.
It remains to verify that this recurrence relation solves to

C(n)=3-2""1-1,

for each n > 1. (Note that this is not true for n = 0.) We prove this by induction:
The base case is when n = 1. Since

Cl)=1+C0)=1+1=2
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and
3.2 —1=3.2-1=3.-1-1=2,

the base case holds.
Let n > 2 and assume that for all 1 <k <n —1,

C(k)=3-2F1 1.

Then, using the recurrence for C'(n), the induction hypothesis, and the hint, we get

n—1

C(n) = n+Y C(k)

= n—i—l—i-z 3.6
1
:n—i—l—i-(SZ ) (n—1)
k=1
n—1
= 2+<322’f 1)
k=1

= 243 (14242242 +... 42"
= 243 (2" -1)
= 3.2»1 1.

Question 7: The sequence SFq, SF1,SF,,... of snowflakes is recursively defined in the
following way:

e The snowflake SFy is an equilateral triangle with edges of length 1.
e For any integer n > 1, the snowflake SF',, is obtained by taking the snowflake SF,,_;
and doing the following for each of its edges:
— Divide this edge into three edges of equal length.

— Draw an equilateral triangle that has the middle edge from the previous step as
its base, and that is outside of SF,,_;.

— Remove the edge that is the base of the equilateral triangle from the previous

step.

Note: In the original question, these were called crystals. I changed the name to snowflakes,
because that is what these things are called.
In the figure below, you see the snowflakes SF up to SF's.

7



e For any integer n > 0, let N,, be the total number of edges of SF,. Determine the
value of N, by deriving a recurrence relation and solving it.

Solution: Since SF is a triangle, we have Ny = 3. Let n > 1. We obtain SF,, by
replacing each edge in SF,,_; by four edges. This implies that N, = 4 - N,_;. By
unfolding this recurrence, we see that, for each n > 0,

N, =3-4".

e For any integer n > 0, let ¢, be the length of one single edge of SF,,. Determine the
value of /,,, by deriving a recurrence relation and solving it.

Solution: Since each edge of the triangle SFy has length 1, we have ¢, = 1. Let
n > 1. By construction, the length of each edge in SF',, is one-third of the edge-length
in SF,,_1. This implies that ¢, = % - £,_1. By unfolding this recurrence, we see that,
for each n > 0,

l, = (1/3)".

e For any integer n > 0, let L, be the total length of all edges of SF',,. Prove that
4 n
L,=3-(=] .
(5)

Solution: For any n > 0, we have
L, = N,-¢,
= 3-4"-(1/3)"
3-(4/3)".
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e Let ay be the area of the triangle SFy. For any integer n > 1, let a,, be the area of one
single triangle that is added when constructing SF,, from SF,,_;. Determine the value
of a,, by deriving a recurrence relation and solving it.

Solution: According to the construction, each triangle that is added is equilateral. In
high school, you have learned that the height of an equilateral triangle with sides of
length /¢ is equal to

1
512\/3.

(In case you forgot, you can either use Pythagoras to prove this, or you use the fact
that the height of such a triangle is equal to £-sin(7/3).) Thus, the area of this triangle
is equal to

1 1
SIING
2 2 \/_7
which is a constant times ¢2.

Let n > 1. Since ¢, = % - l,_1, it follows that a, = % - @n_1. By unfolding this

recurrence, we see that, for each n > 0,
a, = (1/9)" - ao.

e For any integer n > 1, let A,, be the total area of all triangles that are added when
constructing SF,, from SF,,_;. Prove that

3 [4\"
An—zl(g) - ap.

Solution: Let n > 1. When constructing SF,,, we add triangles to SF',,_1; each such
triangle has area a,. How many such triangles do we add: We add one triangle for
each edge of SF,_;. Since SF,,_; has N,_; edges, we get

An = Ny_1-ay

e ()
(Y

e Let n > 1 be an integer. Prove that the total area of SF',, is equal to

s 6)

Hint: For any real number z # 1,




Solution: For n > 0, let area,, denote the total area of SF,,. Then areaqg = a¢ and,
forn > 1,
area, = aret,_1 + A,.

Note that we have determined A,, above. The question asks to prove that

arean:@~ 8§—3- 4 .
5 9

One way to prove this it to use induction; the recurrence is used in the induction step;
in this way, you do not need the hint. Another way is to unfold the recurrence. If you
do this, you will get, for each n > 0,

area, = areag + Zn: A, =ag+ 2": A,.

k=1 k=1

This gives us

Using the hint with x = 4/9, we get

ANt 4 149"
;(5) T 9 1-4/9
= S
Thus, ; A
a'rean:ao—l—Z-ao-g(l—(4/9)”).

After some algebra, you will see that the right-hand side is exactly the value that we
are trying to obtain.

Remark: Consider the “limit snowflake“, when n goes to infinity. Imagine this snowflake
to be a country. Since

lim L, = oo,
n—oo

the length of this country’s border is infinite. But, since

lim area,, = 8ay/5,
n—oo

this country has a finite area.
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