
COMP 2804 — Solutions Assignment 2

Question 1: On the first page of your assignment, write your name and student number.

Solution:

• Name: Sidney Crosby

• Student number: 87

Question 2: The function f : N→ N is defined by

f(0) = 1,
f(n) = 1

2
· 4n · f(n− 1) if n ≥ 1.

Prove that for every integer n ≥ 0,
f(n) = 2n2

;

this reads as 2 to the power n2.

Solution: The proof is by induction on n. The base case is when n = 0. Since f(0) = 1 and

2n2

= 202 = 20 = 1,

the base case holds.
Let n ≥ 1 and assume that the claim is true for n− 1. Thus, the induction hypothesis is

that
f(n− 1) = 2(n−1)2 .

We have to show that
f(n) = 2n2

.

Using the recurrence, the induction hypothesis, and some basic algebra, we get

f(n) =
1

2
· 4n · f(n− 1)

= 2−1 · 22n · 2(n−1)2

= 2−1 · 22n · 2n2−2n+1

= 2n2

.

Question 3: The functions f : N→ N and g : N2 → N are recursively defined as follows:

f(0) = 1,
f(n) = g(f(n− 1), 2n) if n ≥ 1,
g(0, n) = 0 if n ≥ 0,
g(m,n) = g(m− 1, n) + n if m ≥ 1 and n ≥ 0.
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Solve these recurrence relations for f , i.e., express f(n) in terms of n. Justify your answer.
Hint: Start by solving the recurrence relation for g.

Solution: If you stare long enough at the recurrence for g, it makes sense that

g(m,n) = mn

for all m ≥ 0 and n ≥ 0. We prove by induction on m that this is indeed the case.
The base case is when m = 0. Since g(0, n) = 0 and mn = 0 · n = 0, the base case holds.
Let m ≥ 1 and assume that

g(m− 1, n) = (m− 1)n.

Then
g(m,n) = g(m− 1, n) + n = (m− 1)n+ n = mn.

Now that we have solved the recurrence for g, we can rewrite the recurrence for f :

f(0) = 1,
f(n) = 2n · f(n− 1) if n ≥ 1.

The recursive rule says: To get f(n), take the previous value f(n− 1), and multiply it by 2
and by n. From this, it makes sense to guess that

f(n) = 2n · n!

for all n ≥ 0. We prove by induction on n that this is indeed the case.
The base case is when n = 0. Since f(0) = 1 and

2n · n! = 20 · 0! = 1 · 1 = 1,

the base case holds.
Let n ≥ 1 and assume that the claim is true for n− 1. Thus, we assume that

f(n− 1) = 2n−1 · (n− 1)!.

Then we get

f(n) = 2n · f(n− 1)

= 2n · 2n−1 · (n− 1)!

=
(
2 · 2n−1) (n · (n− 1)!)

= 2n · n!.

Question 4: For any integer n ≥ 1, a permutation a1, a2, . . . , an of the set {1, 2, . . . , n} is
called awesome, if the following condition holds:
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• For every i with 1 ≤ i ≤ n, the element ai in the permutation belongs to the set
{i− 1, i, i+ 1}.

For example, for n = 5, the permutation 2, 1, 3, 5, 4 is awesome, whereas 2, 1, 5, 3, 4 is not an
awesome permutation.

Let Pn denote the number of awesome permutations of the set {1, 2, . . . , n}.

• Determine P1, P2, and P3.

• Determine the value of Pn, i.e., express Pn in terms of numbers that we have seen in
class. Justify your answer.

Hint: Derive a recurrence relation. What are the possible values for the last element
an in an awesome permutation?

Solution:

• n = 1: There is only one permutation of the set {1}, namely 1. This permutation is
awesome and, therefore, P1 = 1.

• n = 2: There are two permutations of the set {1, 2}, namely 12 and 21. Both are
awesome and, therefore, P2 = 2.

• n = 3: If a permutation a1a2a3 of the set {1, 2, 3} is awesome, then a1 ∈ {1, 2} and
a3 ∈ {2, 3}. This leads to three awesome permutations: 123, 132, and 213. Thus,
P3 = 3.

If you want, you can consider the other three permutations 231, 312, and 321 and
convince yourself that neither of these is awesome.

• Let n ≥ 3 and consider an awesome permutation a1, a2, . . . , an of the set {1, 2, . . . , n}.
We follow the hint: The value an can be either n− 1 or n.

– Assume an = n. Then a1, a2, . . . , an−1 is an awesome permutation of the set
{1, 2, . . . , n− 1}. There are Pn−1 many permutations of this type.

– Assume an = n−1. Then an−1 must be equal to n. (Otherwise, there is an i with
1 ≤ i ≤ n− 2 such that ai = n. But then the permutation is not awesome.)

Then a1, a2, . . . , an−2 is an awesome permutation of the set {1, 2, . . . , n−2}. There
are Pn−2 many permutations of this type.

Conclusion: On the one hand, the number of awesome permutations is equal to Pn.
On the other hand, the number of such permutations is equal to Pn−1 + Pn−2.

• We have obtained the recurrence P1 = 1, P2 = 2, and Pn = Pn−1 + Pn−2 for n ≥ 3.
This is a shifted Fibonacci sequence and it follows that Pn = fn+1 for all n ≥ 1.
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Question 5: The Fibonacci numbers are defined as follows: f0 = 0, f1 = 1, and fn =
fn−1 + fn−2 for n ≥ 2.

In class, we have seen that for any m ≥ 1, the number of 00-free bitstrings of length m
is equal to fm+2. (In class, I showed this for m ≥ 2, but this result is also valid for m = 1.)

Let n ≥ 1 be an integer. For each question below, justify your answer.

• How many 00-free bitstrings of length n+ 2 do not contain any 0?

Solution: Such a string contains only 1’s. There is only one such string. Thus, the
answer is

1. (1)

• How many 00-free bitstrings of length n+ 2 contain exactly one 0?

Solution: Such a string contains one 0 and n + 1 many 1’s. Since there are n + 2
positions for the bit 0, the answer is

n+ 2. (2)

• How many 00-free bitstrings of length n+ 2 have the following property: The bitstring
contains at least two 0’s, and the second rightmost 0 is at position 1.

Solution: Such a string must start with 01 and it contains exactly one 0 in the
positions 3, 4, . . . , n+ 2. Since there are n positions for this bit 0, the answer is

n = n · f1. (3)

• How many 00-free bitstrings of length n+ 2 have the following property: The bitstring
contains at least two 0’s, and the second rightmost 0 is at position 2.

Solution: Such a string must start with 101 and it contains exactly one 0 in the
positions 4, 5, . . . , n+ 2. Since there are n− 1 positions for this bit 0, the answer is

n− 1 = (n− 1) · f2. (4)

• Let k be an integer with 3 ≤ k ≤ n. How many 00-free bitstrings of length n + 2
have the following property: The bitstring contains at least two 0’s, and the second
rightmost 0 is at position k.

Solution: Such a string can be divided into three pieces:

– The middle piece is the substring at positions k− 1, k, k+ 1. We know that there
is a 0 at position k. Since the entire string is 00-free, there is a 1 at position k−1,
and a 1 at position k + 1. Thus, this middle piece is 101.
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– The left piece is the substring at positions 1, 2, . . . , k − 2. This left piece can be
any 00-free bitstring of length k−2. Thus, there are fk many possibilities for this
left piece.

– The right piece is the substring at positions k + 2, k + 3, . . . , n+ 2; this piece has
length n− k + 1. In this right piece, there is exactly one 0. This 0 can be in any
of the n − k + 1 possible positions. Thus, there are n − k + 1 many possibilities
for this right piece.

– By the Product Rule, the answer to this part of the question is

(n− k + 1) · fk. (5)

• Let k be an element of {n + 1, n + 2}. How many 00-free bitstrings of length n + 2
have the following property: The bitstring contains at least two 0’s, and the second
rightmost 0 is at position k.

Solution: If k = n+1, then the second rightmost 0 cannot be at position k; otherwise,
the rightmost 0 is at position k + 1 = n+ 2, and the string is not 00-free.

If k = n + 2, then the second rightmost 0 cannot be at position k; otherwise, there is
no space for the rightmost 0.

Thus, the answer to this part of the question is

0. (6)

• Use the previous results to prove that

n∑
k=1

(n− k + 1) · fk = fn+4 − n− 3,

i.e.,

n · f1 + (n− 1) · f2 + (n− 2) · f3 + · · ·+ 2 · fn−1 + 1 · fn = fn+4 − n− 3.

Solution: We know that the number of 00-free bitstrings of length n + 2 is equal to
fn+4. Each such string is of exactly one of the types as we have considered above.
Thus, the sum of (1), (2), (3), (4), (5), and (6) is equal to fn+4.

Question 6: Those of you who come to class will remember that Elisa Kazan1 loves to
drink cider. After a week of bossing the Vice-Presidents around, Elisa goes to the pub and
runs the following recursive algorithm, which takes as input an integer n ≥ 0:

1President of the Carleton Computer Science Society
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Algorithm ElisaGoesToThePub(n):

if n = 0
then drink one bottle of cider
else for k = 0 to n− 1

do ElisaGoesToThePub(k);
drink one bottle of cider

endfor
endif

For n ≥ 0, let C(n) be the number of bottles of cider that Elisa drinks when running
algorithm ElisaGoesToThePub(n).

Prove that for every integer n ≥ 1,

C(n) = 3 · 2n−1 − 1.

Hint: 1 + 2 + 22 + 23 + · · ·+ 2n−2 = 2n−1 − 1.

Solution: If Elisa runs ElisaGoesToThePub(0), then she drinks one bottle of cider.
Thus,

C(0) = 1.

Let n ≥ 1 and consider what happens when Elisa runs ElisaGoesToThePub(n). The
for-loop makes n iterations, one for every k = 0, 1, 2, . . . , n − 1. In the k-th iteration, (i)
Elisa runs ElisaGoesToThePub(k), during which she drinks C(k) bottles of cider, and
(ii) Elisa drinks one bottle of cider. Overall, in the k-th iteration, Elisa drinks 1 + C(k)
bottles of cider. We conclude that, for n ≥ 1,

C(n) =
n−1∑
k=0

(1 + C(k)) .

This is the same as

C(n) = n+
n−1∑
k=0

C(k).

In words, C(0) = 1. For any n ≥ 1, to obtain C(n), we take the sum of n and the total sum
of all previous C-values.

It remains to verify that this recurrence relation solves to

C(n) = 3 · 2n−1 − 1,

for each n ≥ 1. (Note that this is not true for n = 0.) We prove this by induction:
The base case is when n = 1. Since

C(1) = 1 + C(0) = 1 + 1 = 2
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and
3 · 2n−1 − 1 = 3 · 20 − 1 = 3 · 1− 1 = 2,

the base case holds.
Let n ≥ 2 and assume that for all 1 ≤ k ≤ n− 1,

C(k) = 3 · 2k−1 − 1.

Then, using the recurrence for C(n), the induction hypothesis, and the hint, we get

C(n) = n+
n−1∑
k=0

C(k)

= n+ C(0) +
n−1∑
k=1

C(k)

= n+ 1 +
n−1∑
k=1

(
3 · 2k−1 − 1

)
= n+ 1 +

(
3

n−1∑
k=1

2k−1

)
− (n− 1)

= 2 +

(
3

n−1∑
k=1

2k−1

)
= 2 + 3 ·

(
1 + 2 + 22 + 23 + · · ·+ 2n−2)

= 2 + 3 ·
(
2n−1 − 1

)
= 3 · 2n−1 − 1.

Question 7: The sequence SF 0, SF 1, SF 2, . . . of snowflakes is recursively defined in the
following way:

• The snowflake SF 0 is an equilateral triangle with edges of length 1.

• For any integer n ≥ 1, the snowflake SF n is obtained by taking the snowflake SF n−1
and doing the following for each of its edges:

– Divide this edge into three edges of equal length.

– Draw an equilateral triangle that has the middle edge from the previous step as
its base, and that is outside of SF n−1.

– Remove the edge that is the base of the equilateral triangle from the previous
step.

Note: In the original question, these were called crystals. I changed the name to snowflakes,
because that is what these things are called.

In the figure below, you see the snowflakes SF 0 up to SF 5.
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• For any integer n ≥ 0, let Nn be the total number of edges of SF n. Determine the
value of Nn, by deriving a recurrence relation and solving it.

Solution: Since SF 0 is a triangle, we have N0 = 3. Let n ≥ 1. We obtain SF n by
replacing each edge in SF n−1 by four edges. This implies that Nn = 4 · Nn−1. By
unfolding this recurrence, we see that, for each n ≥ 0,

Nn = 3 · 4n.

• For any integer n ≥ 0, let `n be the length of one single edge of SF n. Determine the
value of `n, by deriving a recurrence relation and solving it.

Solution: Since each edge of the triangle SF 0 has length 1, we have `0 = 1. Let
n ≥ 1. By construction, the length of each edge in SF n is one-third of the edge-length
in SF n−1. This implies that `n = 1

3
· `n−1. By unfolding this recurrence, we see that,

for each n ≥ 0,
`n = (1/3)n.

• For any integer n ≥ 0, let Ln be the total length of all edges of SF n. Prove that

Ln = 3 ·
(

4

3

)n

.

Solution: For any n ≥ 0, we have

Ln = Nn · `n
= 3 · 4n · (1/3)n

= 3 · (4/3)n.
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• Let a0 be the area of the triangle SF 0. For any integer n ≥ 1, let an be the area of one
single triangle that is added when constructing SF n from SF n−1. Determine the value
of an, by deriving a recurrence relation and solving it.

Solution: According to the construction, each triangle that is added is equilateral. In
high school, you have learned that the height of an equilateral triangle with sides of
length ` is equal to

1

2
`
√

3.

(In case you forgot, you can either use Pythagoras to prove this, or you use the fact
that the height of such a triangle is equal to ` ·sin(π/3).) Thus, the area of this triangle
is equal to

1

2
· ` · 1

2
`
√

3,

which is a constant times `2.

Let n ≥ 1. Since `n = 1
3
· `n−1, it follows that an = 1

9
· an−1. By unfolding this

recurrence, we see that, for each n ≥ 0,

an = (1/9)n · a0.

• For any integer n ≥ 1, let An be the total area of all triangles that are added when
constructing SF n from SF n−1. Prove that

An =
3

4
·
(

4

9

)n

· a0.

Solution: Let n ≥ 1. When constructing SF n, we add triangles to SF n−1; each such
triangle has area an. How many such triangles do we add: We add one triangle for
each edge of SF n−1. Since SF n−1 has Nn−1 edges, we get

An = Nn−1 · an

=
(
3 · 4n−1) · ((1

9

)n

· a0
)

=
3

4
·
(

4

9

)n

· a0.

• Let n ≥ 1 be an integer. Prove that the total area of SF n is equal to

a0
5
·
(

8− 3 ·
(

4

9

)n)
.

Hint: For any real number x 6= 1,

n∑
k=1

xk = x · 1− xn

1− x
.
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Solution: For n ≥ 0, let arean denote the total area of SF n. Then area0 = a0 and,
for n ≥ 1,

arean = arean−1 + An.

Note that we have determined An above. The question asks to prove that

arean =
a0
5
·
(

8− 3 ·
(

4

9

)n)
.

One way to prove this it to use induction; the recurrence is used in the induction step;
in this way, you do not need the hint. Another way is to unfold the recurrence. If you
do this, you will get, for each n ≥ 0,

arean = area0 +
n∑

k=1

An = a0 +
n∑

k=1

An.

This gives us

arean = a0 +
n∑

k=1

3

4
·
(

4

9

)k

· a0

= a0 +
3

4
· a0

n∑
k=1

(
4

9

)k

.

Using the hint with x = 4/9, we get

n∑
k=1

(
4

9

)k

=
4

9
· 1− (4/9)n

1− 4/9

=
4

5
(1− (4/9)n) .

Thus,

arean = a0 +
3

4
· a0 ·

4

5
(1− (4/9)n) .

After some algebra, you will see that the right-hand side is exactly the value that we
are trying to obtain.

Remark: Consider the “limit snowflake“, when n goes to infinity. Imagine this snowflake
to be a country. Since

lim
n→∞

Ln =∞,

the length of this country’s border is infinite. But, since

lim
n→∞

arean = 8a0/5,

this country has a finite area.
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