
COMP 2804 — Solutions Assignment 3

Question 1: On the first page of your assignment, write your name and student number.

Solution:

• Name: Johan Cruyff

• Student number: 14

Question 2: Consider the set Y = {1, 2, 3, . . . , 10}. We choose a 6-element subset X of Y
uniformly at random. Define the events

A = “5 is an element of X”,
B = “6 is an element of X”,
C = “6 is an element of X or 7 is an element of X”.

• Determine Pr(A), Pr(B), and Pr(C). Show your work.

• Use the formal definition of conditional probability to determine Pr(A | B), Pr(A | C),
and Pr(B | C). Show your work.

Solution: The sample space is the set of all 6-element subsets of Y . This sample space has
size (

10

6

)
= 210.

To determine Pr(A), we first count the 6-element subsets of Y that contain 5. This is the
same as counting the 5-element subsets of a set of size 9; the number of these is(

9

5

)
= 126.

It follows that
Pr(A) = 126/210 = 3/5.

The reasoning for Pr(B) is exactly the same; thus,

Pr(B) = 126/210 = 3/5.

For Pr(C), we use inclusion-exclusion:

Pr(C) = Pr(6 ∈ X) + Pr(7 ∈ X)− Pr(6, 7 ∈ X).

The reasoning above implies that

Pr(6 ∈ X) = Pr(7 ∈ X) = 3/5.
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To determine Pr(6, 7 ∈ X), we first count the 6-element subsets of Y that contain both 6
and 7. This is the same as counting the 4-element subsets of a set of size 8; the number of
these is (

8

4

)
= 70.

Thus,
Pr(6, 7 ∈ X) = 70/210 = 1/3.

We conclude that
Pr(C) = 3/5 + 3/5− 1/3 = 13/15.

We are going to compute Pr(A | B) using the definition

Pr(A | B) =
Pr(A ∩B

Pr(B)
.

The event A ∩B is the same as “5, 6 ∈ X”. Using the reasoning as above, we get

Pr(A ∩B) = 70/210 = 1/3.

It follows that

Pr(A | B) =
1/3

3/5
= 5/9.

We are going to compute Pr(A | C) using the definition

Pr(A | C) =
Pr(A ∩ C

Pr(C)
.

The event A∩C is the same as “5, 6 ∈ X or 5, 7 ∈ X”. Using inclusion-exclusion, we obtain

Pr(A ∩ C) = Pr(5, 6 ∈ X) + Pr(5, 7 ∈ X)− Pr(5, 6, 7 ∈ X)

= 1/3 + 1/3−
(
7
3

)
210

= 1/3 + 1/3− 35/210

= 1/3 + 1/3− 1/6

= 1/2.

We conclude that

Pr(A | C) =
1/2

13/15
= 15/26.

We are going to compute Pr(B | C) using the definition

Pr(B | C) =
Pr(B ∩ C

Pr(C)
.
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We observe that B ∩ C is equivalent to B. It follows that

Pr(B | C) =
Pr(B)

Pr(C)
=

3/5

13/15
= 9/13.

Question 3: Let n ≥ 4 be an integer and consider a uniformly random permutation of the
set {1, 2, . . . , n}. Define the event

A = “in the permutation, both 3 and 4 are to the left of both 1 and 2”.

Determine Pr(A).

Solution: The total number of possible permutations is equal to n!. We are going to use
the Product Rule to determine the number of permutations in which both 3 and 4 are to
the left of both 1 and 2:

• Choose four positions out of n. There are
(
n
4

)
ways to do this.

• In the two leftmost positions that were chosen, write 34 or 43. There are 2 ways to do
this.

• In the two rightmost positions that were chosen, write 12 or 21. There are 2 ways to
do this.

• In the remaining n−4 positions, write a permutation of the numbers 5, 6, . . . , n. There
are (n− 4)! ways to do this.

It follows that the number of permutations in which both 3 and 4 are to the left of both 1
and 2 is equal to (

n

4

)
· 2 · 2 · (n− 4)! =

n!

6
.

We concluce that

Pr(A) =
n!/6

n!
= 1/6.

Question 4: You roll a fair die. Define the events

A = “the result is an element of {1, 3, 4}”

and
B = “the result is an element of {3, 4, 5, 6}”.

Before you answer the following question, spend a few seconds on guessing what the answer
is.

• Are A and B independent events? Justify your answer. If you use conditional proba-
bility to answer this question, then you must use the formal definition.
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Solution: We have
Pr(A) = 3/6 = 1/2,

Pr(B) = 4/6 = 2/3,

and, since A ∩B = {3, 4},
Pr(A ∩B) = 2/6 = 1/3.

It follows that
Pr(A ∩B) = Pr(A) · Pr(B),

implying that A and B are independent events.
A second solution is as follows:

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

1/3

2/3
= 1/2,

which is the same as Pr(A). Therefore, A and B are independent events.

Question 5: You are doing two experiments:

• Experiment 1 is successful with probability 2/3 and fails with probability 1/3.

• Experiment 2 is successful with probability 4/5 and fails with probability 1/5.

• The results of these two experiments are independent of each other.

Determine the probability that both experiments fail.

Solution: Some students have asked themselves “Why is he giving us a freebie?” In some
sense this is a freebie, because I did not think of the obvious solution:

First Solution: Define the events

A = “experiment 1 is a success”

and
B = “experiment 2 is a success”.

Then we want to determine
Pr
(
A ∩B

)
.

We are given that the events A and B are independent. It follows that

Pr
(
A ∩B

)
= Pr

(
A
)
· Pr

(
B
)

= 1/3 · 1/5 = 1/15.

Second Solution: This is the solution that I had in mind. We know from De Morgan that

A ∩B = A ∪B,
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implying that

Pr
(
A ∩B

)
= Pr

(
A ∪B

)
= 1− Pr(A ∪B).

Using inclusion-exclusion, we get

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

We are given that Pr(A) = 2/3 and Pr(B) = 4/5. Since we are given that the events A and
B are independent, we have

Pr(A ∩B) = Pr(A) · Pr(B) = 2/3 · 4/5 = 8/15.

It follows that
Pr(A ∪B) = 2/3 + 4/5− 8/15 = 14/15.

We conclude that
Pr
(
A ∩B

)
= 1− 14/15 = 1/15.

Question 6: You are given three dice D1, D2, and D3:

• Die D1 has 0 on two of its faces and 1 on the other four faces.

• Die D2 has 0 on all six faces.

• Die D3 has 1 on all six faces.

You throw these three dice in a box so that they end up at uniformly random orientations.
You pick a uniformly random die in the box and observe that it has 0 on its top face. Use
the formal definition of conditional probability to determine the probability that the die that
you picked is D1.
Hint: You want to determine Pr(A | B), where A is the event that you pick D1 and B is the
event that you see a 0 on the top face of the die that you picked. There are different ways
to define the sample space S. One way is to take

S = {(D1, 0), (D1, 1), (D2, 0), (D3, 1)},

where, for example, (D1, 1) is the outcome in which you observe 1 on top of die D1. Note
that this is not a uniform probability space.

Solution: Following the hint, we have

A = {(D1, 0), (D1, 1)},

B = {(D1, 0), (D2, 0)},
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and
A ∩B = {(D1, 0)}.

We are going to determine Pr(A | B) using the definition

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

The three dice have a total of 3 ·6 = 18 faces. Each of these 18 faces has the same probability
of being chosen. Out of these, 8 have 0 on them. Thus, event B occurs in 8 out of 18
possibilities. It follows that

Pr(B) = 8/18 = 4/9.

Event A ∩B occurs in 2 out of 18 possibilities. It follows that

Pr(A ∩B) = 2/18 = 1/9.

We conclude that

Pr(A | B) =
1/9

4/9
= 1/4.

Question 7: Let n ≥ 0 be an integer. In this question, you will prove that

n∑
k=0

1

2k
·
(
n + k

k

)
= 2n. (1)

The Ottawa Senators and the Toronto Maple Leafs play a best-of-(2n + 1) series: These
two hockey teams play games against each other, and the first team to win n+ 1 games wins
the series. Assume that

• each game has a winner (thus, no game ends in a tie),

• in any game, the Sens have a probability of 1/2 of defeating the Leafs,

• the results of the games are mutually independent.

Define the events
A = “the Sens win the series”

and
B = “the Leafs win the series”.

• Explain in plain English, and in at most two sentences, why Pr(A) = Pr(B).

Solution: Each team has the same probability of winning a game and, thus, the
question is completely symmetric. Both teams have the same probability of winning
the series. Therefore1, Pr(A) = Pr(B).

1Oops! This is the third sentence.
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Before we move on, since either the Sens win the series or the Leafs win the series, we
have

Pr(A) + Pr(B) = 1,

implying that
Pr(A) = 1/2.

• For each k with 0 ≤ k ≤ n, define the event

Ak = “the Sens win the series after winning the (n + k + 1)-st game”.

Express the event A in terms of the events A0, A1, . . . , An.

Solution: The number of games played can be any integer from n+ 1 up to 2n+ 1. If
event A occurs, then the Sens win the series. In that case, let k be such that the series
consists of exactly n + k + 1 games. Then 0 ≤ k ≤ n and event Ak occurs. Based on
this, we see that

A⇐⇒ A0 ∨ A1 ∨ A2 ∨ · · · ∨ An.

• Consider a fixed value of k with 0 ≤ k ≤ n. Prove that

Pr (Ak) =
1

2n+k+1
·
(
n + k

k

)
.

Hint: Assume event Ak occurs. Which team wins the (n+ k + 1)-st game? In the first
n + k games, how many games are won by the Leafs?

Solution: The event Ak is equivalent to the following:

– In the first n + k games, the Sens win exactly n games and, thus, the Leafs win
exactly k games.

– The Sens win the last game in the series.

The number of ways for this to happen is equal
(
n+k
k

)
. Any way for this to happen

can be described by a string of length n + k + 1 consisting of n + 1 symbols W (the
Sens win), k symbols L (the Sens lose), and the last symbol is W . Consider any such
string S. Each symbol in S is a W with probability 1/2 and an L with probability 1/2.
Since the symbols are independent of each other, the probability of getting exactly the
string S is equal to (1/2)n+k+1. Since the number of possible strings is equal to

(
n+k
k

)
,

it follows that

Pr (Ak) =
1

2n+k+1
·
(
n + k

k

)
.

• Prove that (1) holds by combining the results of the previous parts.

Solution: We have seen above that

A⇐⇒ A0 ∨ A1 ∨ A2 ∨ · · · ∨ An.
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Since the events on the right-hand side are pairwise disjoint, we have

Pr(A) = Pr (A0 ∨ A1 ∨ A2 ∨ · · · ∨ An)

=
n∑

k=0

Pr (Ak)

=
n∑

k=0

1

2n+k+1
·
(
n + k

k

)
.

We have also seen above that Pr(A) = 1/2. We conclude that

1

2
=

n∑
k=0

1

2n+k+1
·
(
n + k

k

)
.

If we multiply both sides by 2n+1, then we get (1).

Question 8: You know by now that Elisa Kazan loves to drink cider. You may not be
aware that Elisa is not a big fan of beer.

Consider a round table that has six seats numbered 1, 2, 3, 4, 5, 6. Elisa is sitting in seat 1.
On top of the table, there is a rotating tray2. On this tray, there are five bottles of beer (B)
and one bottle of cider (C), as in the figure below. After the tray has been spun around,
there is always a bottle exactly in front of Elisa. (In other words, you can only spin the tray
by a multiple of 60 degrees.)

BB

B B

B

C

1

2

3

4

5

6

Elisa spins the tray uniformly at random in clockwise order. After the tray has come to
a rest, there is a bottle of beer in front of her. Since Elisa is obviously not happy, she gets a
second chance, i.e., Elisa can choose between one of the following two options:

1. Spin the tray again uniformly at random and independently of the first spin. After the
tray has come to a rest, Elisa must drink the bottle that is in front of her.

2According to Wikipedia, such a tray is called a Lazy Susan or Lazy Suzy. You will have seen them in
Chinese restaurants.
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2. Rotate the tray one position (i.e., 60 degrees) in clockwise order, after which Elisa
must drink the bottle that is in front of her.

Before you answer the two questions below, spend a few seconds on guessing which option
is better for Elisa, i.e., which option has a higher probability of drinking the bottle of cider.

• Elisa decides to go for the first option. Determine the probability that she drinks the
bottle of cider.

Solution: Define the events

A = “after the second spin, Elisa has a bottle of beer in front of her”

and
B = “after the first spin, Elisa has a bottle of beer in front of her”.

Then we want to determine the conditional probability Pr(A | B). Since the first spin
and second spin are independent of each other, Pr(A | B) = Pr(A), which is equal to
1/6.

• Elisa decides to go for the second option. Determine the probability that she drinks
the bottle of cider.

Solution: Define the events

C = “Elisa drinks the bottle of cider”

and
B = “after the first spin, Elisa has a bottle of beer in front of her”.

We have to determine Pr(C | B). We number the beer bottles in clockwise order
as b1, . . . , b5: b1 is the clockwise neighbor of the bottle of cider and b5 is the counter
clockwise neighbor of the bottle of cider.

To determine Pr(C | B), we assume that event B holds. Thus, one of b1, . . . , b5 is in
front of Elisa. In this second option, Elisa rotates the tray by 60 degrees. Event C
occurs if and only if, after this rotation, the bottle of cider is in front of her. This
happens if and only if, before the rotation, beer bottle b1 is in front of her. Thus, given
event B, event C happens in one out of 5 cases. We conclude that Pr(C | B) = 1/5.

Question 9: Let k ≥ 1 be an integer. Assume we live on a planet on which one year
has d = 4k2 days. Consider

√
d = 2k people P1, P2, . . . , P2k living on our planet. Each

person has a uniformly random birthday, and the birthdays of these 2k people are mutually
independent. Define the event

A = “at least two of P1, P2, . . . , P2k have the same birthday”.
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This question will lead you through a proof of the claim that

0.221 < Pr(A) < 0.5.

Thus, if one year has d days, then
√
d people are enough to have a good chance that not all

birthdays are distinct.
Do not be intimidated by the long list of questions that follows. All of them have a short

answer.

• For each i with 1 ≤ i ≤ 2k, define the event

Bi = “Pi has the same birthday as at least one of P1, P2, . . . , Pi−1”.

Prove that

Pr (Bi) ≤
i− 1

d
.

Solution: Let X be the set of birthdays of P1, P2, . . . , Pi−1; thus, equal birthdays
among them occur only once in X. Since Pi has a uniformly random birthday, we have
Pr (Bi) = |X|/d. Since X is determined by the birthdays of i − 1 people, we have
|X| ≤ i− 1. Therefore,

Pr (Bi) = |X|/d ≤ (i− 1)/d.

Remark: Since the set X is random, this solution is not rigorous. To obtain a rigorous
solution, we have to use the Law of Total Probability.

• Express the event A in terms of the events B1, B2, . . . , B2k.

Solution: If event A occurs, then there are distinct indices i and j such that Pi and
Pj have the same birthday. We may assume that j < i. Then Pi has the same birthday
as at least one of P1, P2, . . . , Pi−1 and, thus, event Bi occurs. From this, it should be
clear that

A⇐⇒ B1 ∨B2 ∨ · · · ∨B2k.

• Use the Union Bound (Lemma 5.3.5 on page 127 of the textbook) to prove that

Pr(A) < 1/2.

Solution:

Pr(A) = Pr (B1 ∨B2 ∨ · · · ∨B2k) (Union Bound)

≤
2k∑
i=1

Pr (Bi)

≤
2k∑
i=1

i− 1

d
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=
1

d
(1 + 2 + 3 + · · ·+ (2k − 1)) (Gauss trick)

=
1

d
· 1

2
(2k)(2k − 1)

=
k(2k − 1)

d

<
2k2

d
.

Since d = 4k2, we get

Pr(A) <
2k2

4k2
=

1

2
.

• Define the event

B = “at least two of Pk+1, Pk+2, . . . , P2k have the same birthday”

and for each i with 1 ≤ i ≤ k, the event

Ci = “Pi has the same birthday as at least one of Pk+1, Pk+2, . . . , P2k”.

Prove that

Pr
(
Ci | B

)
=

1

4k
.

Solution: We assume that the event B occurs: all of Pk+1, Pk+2, . . . , P2k have different
birthdays. Thus, these k people determine k distinct birthdays. Event Ci occurs if and
only if Pi has one of these k birthdays. Since there are d = 4k2 days in one year, we
get

Pr
(
Ci | B

)
=

k

d
=

k

4k2
=

1

4k
.

• Prove that if the event A occurs, then the event(
C1 ∩B

)
∩
(
C2 ∩B

)
∩ · · · ∩

(
Ck ∩B

)
also occurs.

Solution: Assume that A occurs. Then all of P1, P2, . . . , P2k have distinct birthdays.
In particular, all of Pi, Pk+1, Pk+2, . . . , Pk have distinct birthdays. Thus, Ci∩B occurs.
This is true for all i.

• Prove that

Pr
(
A
)
≤
(

1− 1

4k

)k

.

You may use the fact that the events C1 ∩ B, C2 ∩ B, . . . , Ck ∩ B are mutually
independent.
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Solution: We have seen above that

A =⇒
(
C1 ∩B

)
∩
(
C2 ∩B

)
∩ · · · ∩

(
Ck ∩B

)
.

This implies that

Pr
(
A
)
≤ Pr

((
C1 ∩B

)
∩
(
C2 ∩B

)
∩ · · · ∩

(
Ck ∩B

))
.

By using the fact that the events on the right-hand side are mutually independent, we
get

Pr
(
A
)
≤

k∏
i=1

Pr
(
Ci ∩B

)
=

k∏
i=1

Pr
(
Ci | B

)
· Pr

(
B
)
.

We have seen above that Pr
(
Ci | B

)
= 1/(4k). It follows that

Pr
(
Ci | B

)
= 1− Pr

(
Ci | B

)
= 1− 1/(4k).

This, together with Pr
(
B
)
≤ 1, gives us

Pr
(
A
)
≤

k∏
i=1

(
1− 1

4k

)
=

(
1− 1

4k

)k

.

• Use the inequality 1− x ≤ e−x to prove that

Pr(A) ≥ 1− e−1/4 > 0.221.

Solution: The inequality, with x = 1/(4k), tells us that

1− 1

4k
≤ e−1/(4k).

If we raise both sides to the power k, we get(
1− 1

4k

)k

≤
(
e−1/(4k)

)k
= e−1/4.

Thus, we get
Pr
(
A
)
≤ e−1/4,

implying that
Pr(A) = 1− Pr

(
A
)
≥ 1− e−1/4 > 0.221.
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