COMP 2804 — Assignment 2

Due: Thursday October 19, before 11:55pm (= 23:55), through cuLearn.

Assignment Policy:

- Your assignment must be submitted as a PDF file through cuLearn.
- Late assignments will not be accepted.
- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you should do so in your own words.
- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.
- When writing your solutions, you must follow the guidelines below.
 - You must justify your answers.
 - The answers should be concise, clear and neat.
 - When presenting proofs, every step should be justified.

Question 1: On the first page of your assignment, write your name and student number.

Question 2: The function $f: \mathbb{N} \to \mathbb{N}$ is defined by

$$f(0) = 7,$$

 $f(n) = 2^n - 7 + 2 \cdot f(n-1)$ if $n \ge 1$.

- Determine f(n) for n = 0, 1, 2, 3, 4, 5.
- Prove that

$$f(n) = n \cdot 2^n + 7$$

for all integers $n \geq 0$.

Question 3: The functions $f: \mathbb{N} \to \mathbb{N}$, $g: \mathbb{N}^2 \to \mathbb{N}$, and $h: \mathbb{N} \to \mathbb{N}$ are recursively defined as follows:

$$\begin{array}{lll} f(n) & = & g(n,h(n)) & \text{if } n \geq 0, \\ g(m,0) & = & 0 & \text{if } m \geq 0, \\ g(m,n) & = & g(m,n-1)+m & \text{if } m \geq 0 \text{ and } n \geq 1, \\ h(0) & = & 1, \\ h(n) & = & 2 \cdot h(n-1) & \text{if } n \geq 1. \end{array}$$

Solve these recurrences for f, i.e., express f(n) in terms of n.

Question 4: The sequence of numbers a_n , for $n \geq 0$, is recursively defined as follows:

$$a_0 = 0,$$

 $a_1 = 1,$
 $a_n = 2 \cdot a_{n-1} + a_{n-2}$ if $n \ge 2.$

- Determine a_n for n = 0, 1, 2, 3, 4, 5.
- Prove that

$$a_n = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}} \tag{1}$$

for all integers $n \geq 0$.

Hint: What are the solutions of the equation $x^2 = 2x + 1$? Using these solutions will simplify the proof.

• Since the numbers a_n , for $n \ge 0$, are obviously integers, the fraction on the right-hand side of (1) is an integer as well.

Prove that the fraction on the right-hand side of (1) is an integer using only Newton's Binomial Theorem.

Question 5: Let n be a positive integer and consider a $1 \times n$ board B_n consisting of n cells, each one having sides of length one. The top part of the figure below shows B_9 .

You have an unlimited supply of bricks, which are of the following types (see the bottom part of the figure above):

- There are red (R) and blue (B) bricks, both of which are 1×1 cells. We refer to these bricks as *squares*.
- There are green (G) bricks, which are 1×2 cells. We refer to these as dominous.

A tiling of the board B_n is a placement of bricks on the board such that

- the bricks exactly cover B_n and
- no two bricks overlap.

In a tiling, a color can be used more than once and some colors may not be used at all. The figure below shows an example of a tiling of B_9 .

~	_				~	
I = G	B	B	R	B	G	R
_			-		_	-

Let T_n be the number of different tilings of the board B_n .

- Determine T_1 , T_2 , and T_3 .
- For any integer $n \geq 1$, express T_n in terms of numbers that appear in this assignment.

Question 6: In this question, we use the notation of Question 5. Let $n \ge 1$ be an integer and consider the $1 \times (2n+1)$ board B_{2n+1} . We number the cells of this board, from left to right, as $1, 2, 3, \ldots, 2n+1$.

- Determine the number of tilings of the board B_{2n+1} in which the rightmost square is at position 1.
- Let k be an integer with $1 \le k \le n$. Determine the number of tilings of the board B_{2n+1} in which the rightmost square is at position 2k+1.
- Use the results of the above two parts to prove that

$$T_{2n+1} = 2 + 2\sum_{k=1}^{n} T_{2k}.$$

Question 7: In this question, we use the notation of Question 5. Let $n \ge 1$ be an integer and consider the $1 \times n$ board B_n .

• Consider strings consisting of characters, where each character is S or D. Let k be an integer with $0 \le k \le \lfloor n/2 \rfloor$. Determine the number of such strings of length n-k, that contain exactly k many D's.

Hint: This is a very easy question!

• Let k be an integer with $0 \le k \le \lfloor n/2 \rfloor$. Determine the number of tilings of the board B_n that use exactly k dominoes.

Hint: How many bricks are used for such a tiling? In the first part, imagine that S stands for "square" and D stands for "domino".

• Use the results of the previous part to prove that

$$T_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{k} \cdot 2^{n-2k}.$$

Question 8: The few of you who come to class will remember that Elisa Kazan¹ loves to drink cider. On Saturday night, Elisa goes to her neighborhood pub and runs the following recursive algorithm, which takes as input an integer $n \ge 1$:

```
Algorithm ELISADRINKSCIDER(n):

if n = 1
then drink one pint of cider
else if n is even
then ELISADRINKSCIDER(n/2);
drink one pint of cider;
ELISADRINKSCIDER(n/2)
else drink one pint of cider;
ELISADRINKSCIDER(n/2)
else drink one pint of cider;
else drink one pint of cider
endif
endif
```

For any integer $n \geq 1$, let P(n) be the number of pints of cider that Elisa drinks when running algorithm ELISADRINKSCIDER(n). Determine the value of P(n).

Question 9: Let $n \geq 1$ be an integer and consider a set S consisting of n points in \mathbb{R}^2 . Each point p of S is given by its x- and y-coordinates p_x and p_y , respectively. We assume that no two points of S have the same x-coordinate and no two points of S have the same y-coordinate.

A point p of S is called *maximal* in S if there is no point in S that is to the north-east of p, i.e.,

$${q \in S : q_x > p_x \text{ and } q_y > p_y} = \emptyset.$$

The figure below shows an example, in which the \bullet -points are maximal and the \times -points are not maximal. Observe that, in general, there is more than one maximal element in S.

¹President of the Carleton Computer Science Society

Describe a recursive algorithm MAXELEM(S, n) that has the same structure as algorithms MERGESORT and CLOSESTPAIR that we have seen in class, and does the following:

Input: A set S of $n \geq 1$ points in \mathbb{R}^2 , in sorted order of their x-coordinates. You may assume that n is a power of two.

Output: All maximal elements of S, in sorted order of their x-coordinates.

The running time of your algorithm must be $O(n \log n)$. Explain why your algorithm runs in $O(n \log n)$ time. You may use any result that was proven in class.