COMP 2804 — Solutions Assignment 1

Question 1: On the first page of your assignment, write your name and student number.

Solution:
e Name: James Bond
e Student number: 007

Question 2: Let f > 4 and m > 4 be integers. The Carleton Computer Science program
has f female students and m male students that are eligible to be a TA for COMP 2804.
Determine the number of way to choose eight TAs out of these f 4+ m students, such that
the number of female TAs is equal to the number of male TAs.

Solution: In a group of f + m students, we choose a subset of size 8, such that we choose
as many females as males. This means that we choose 4 females and 4 males. We are going
to use the Product Rule:

e Procedure: Choose 4 females out of f females, and choose 4 males out of m males.

!

4) ways to do this.

e First task: Choose 4 females out of f females. There are (

e Second task: Choose 4 males out of m males. There are (T) ways to do this. Note

that this does not depend on how we chose the females in the first task.

By the Product Rule, the total number of ways to do the procedure is equal to

()

Question 3: A string of letters is called a palindrome, if reading the string from left to
right gives the same result as reading the string from right to left. For example, madam and
racecar are palindromes. Recall that there are five vowels in the English alphabet: a, e, 1,
o, and u.

In this question, we consider strings consisting of 28 characters, with each character being
a lowercase letter. Determine the number of such strings that (i) start and end with the
same letter, or (ii) are palindromes, or (iii) contain vowels only.

Solution:
e Let A be the set of all strings of length 28 that start and end with the same letter.
e Let B be the set of all strings of length 28 that are palindromes.

e Let C' be the set of all strings of length 28 that contain vowels only.
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We have to determine the size of the union AU B U C. To do this, we are going to use the
Priciple of Inclusion and Exclusion.

e What is the size of the set A: Any string in A is completely determined by the first 27
characters. For each character, there are 26 choices. By the Product Rule, we have

|A| = 2677

e What is the size of the set B: Any string in B is completely determined by the first
14 characters. For each character, there are 26 choices. By the Product Rule, we have

|B| = 26",

e What is the size of the set C: For any string in C', we have to choose 28 characters.
For each character, there are 5 choices. By the Product Rule, we have

|C| = 5%.

e What is the size of the set AN B: Since B C A, we have AN B = B. Therefore,

|AN B| =26

e What is the size of the set AN C: Any string in AN C is completely determined by
the first 27 characters. For each character, there are 5 choices. By the Product Rule,

we have
|ANC| = 5.

e What is the size of the set B N C: Any string in B N C' is completely determined by
the first 14 characters. For each character, there are 5 choices. By the Product Rule,

we have
|BNC| =5

e What is the size of the set AN BN C: We have seen that AN B = B. Therefore,
ANBNC=BnNC and
AN BNC|=5"

By the Principle of Inclusion and Exclusion, we get (using Wolfram Alpha)

JAUBUC| = |Al+|B|+|C|—|ANB|—|ANC|—|BNC|+|ANnBNC|
= 92627 4264 452 _9gl4 _ 527 _5l4 | 5l4
— 2627 4 528 o 527
= 160,059, 109, 085, 386, 090, 110, 515, 853, 886, 100, 610, 676,

which is



160 undecillion 59 decillion 109 nonillion 85 octillion 386 septillion 90 sextillion 110
quintillion 515 quadrillion 853 trillion 886 billion 100 million 610 thousand 676.

Question 4: Let n > 1 be an integer. A function f:{1,2,...,n} — {1,2,...,n} is called
awesome, if there is at least one integer i in {1,2,...,n} for which f(i) = i.
Determine the number of awesome functions.

Solution: We start with a painful solution: An integer i for which f(i) =i is called a fized
point of the function f. For each k with 1 < k < n, let N denote the number of functions
with exactly k£ fixed points. Then, by the Sum Rule, the number of awesome functions is
equal to

SN
k=1

Note that there is no double counting!
To determine N, we are going to use the Product Rule:

e Procedure: Choose a function with exactly k fixed points.

e First task: Choose a subset of k elements from the set {1,2,...,n}. For each element
i that is in the chosen subset, we define f(i) = i. There are (Z) ways to do this first
task.

e Second task: For each element ¢ that is not in the chosen subset, we choose a value
for f(i) which is not equal to i. There are exactly n — k many such elements i and for
each one, there are n — 1 choices for f(i). Thus, the number of ways to do the second

task is equal to
(n—1)""

Note that this does not depend on how we did the first task.

By the Product Rule, the total number of ways to do the procedure is equal to

Ny = (Z) (n—1)"*.

Thus, the total number of awesome functions is equal to

) (Z) (n—1)""*— (n—1)"

= (use Newton)
= (n—1D)+1)"=(n-1)"
= n"—(n—-1"

M=

k

Il
M=

e
Il

Here is an easier solution, which uses the Complement Rule.
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e Let U be the set of all functions f: {1,2,...,n} — {1,2,...,n}.

e Let A be the set of all functions in U that are awesome. We have to determine the size
of this set A.

e Note that U \ A is the set of all functions in U that are not awesome.

In class, we have seen that
|U| =n".

We determine the size of the set U \ A: A function f is not awesome if and only if for each
i, f(i) #i. We are going to use the Product Rule:

e Procedure: Choose a function f that is not awesome.

e For i = 1,2,...,n, the i-th task is to choose f(i). Since f(i) cannot be equal to i,
there are n — 1 choices for f(i). Thus, there are n — 1 ways to do the i-th task. Note
that this does not depend on how we did the previous i — 1 tasks.

By the Product Rule, the total number of non-awesome functions is equal to
U\ A= (n—1)".
By the Complement Rule, the number of awesome functions is equal to
Al = U] = [U\ A =n" — (n—1)".

Question 5: Let n > 4 be an integer and consider the set S = {1,2,...,n}. Let k be an
integer with 2 < k < n — 2. In this question, we consider subsets A of S for which |A| =k
and {1,2} Z A. Let N denote the number of such subsets.

e Use the Sum Rule to determine N.
e Use the Complement Rule to determine V.

e Use the above two results to prove that
n\ (n-—2 49 n—2 n n—2
k) \ k k—1 k—2)

Solution: We start by using the Sum Rule. We choose a subset A of size k that does not
contain both 1 and 2. There are three possibilities:

e Choose a subset A of size k that does not contain 1 and does not contain 2. This
means that we choose a subset A of size k from the set {3,4,...,n}. Since the latter
set has size n — 2, the number of way to do this is equal to

()
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e Choose a subset A of size k that contains 1 and does not contain 2. This means that
we choose a subset of size k — 1 from the set {3,4,...,n}. Since the latter set has size
n — 2, the number of way to do this is equal to

n—2
E—1)
e Choose a subset A of size k£ that contains 2 and does not contain 1. This means that

we choose a subset of size k — 1 from the set {3,4,...,n}. Since the latter set has size
n — 2, the number of way to do this is equal to

n—2

k—1)
Since these three possibilities are pairwise disjoint (there is no double counting), we can
apply the Sum Rule and conclude that

N:(”;2>+2<Z:i>. (1)

Next, we are going to use the Complement Rule. Overall, there are

Y

ways to choose a subset of size k. Now we have overcounted: We have counted all k-element
subsets A that contain both 1 and 2. How many of these are there: Any such subset A
contains both 1 and 2, and it contains exactly k — 2 elements from the set {3,4,...}. Since
the latter set has size n — 2, we have overcounted by

(173)
v ()-(23)

We have determined the value of NV in two different ways. The answers for both ways
must be equal. In other words, the right-hand sides in (1) and (2) are equal, i.e.,

()62 = (- G=2)

By re-arranging terms, we get

()= )+ (63

We conclude that



Note that you can “see” this identity in Pascal’s Triangle.

Question 6: Let £ > 1 be an integer and consider a sequence ni, ns,...,n, of positive
integers. Use a combinatorial proof to show that

G (<)

Hint: You will not get any marks if you use an induction proof. For each ¢ with 1 < i < k,
consider the complete graph on n; vertices. How many edges does this graph have?

Solution: A complete graph on m vertices has an edge for each pair of vertices. This means

that this graph has (";) edges. Note that any graph on m vertices has at most (Tg) edges.

For each ¢ with 1 < ¢ < k, we consider the complete graph on n; vertices. The total
number of edges in all these complete graphs is equal to

() (5) -+ (5)

Take all these complete graphs and consider them to be one graph on ny 4+ ngy + -+ + ny
vertices. The number of edges in this big graph is at most equal to

(number of Vertices>
2 b

ie.,

2

Question 7: Let n > 1 be an integer, and let X and Y be two disjoint sets, each consisting
of n elements. An ordered triple (A, B, C') of sets is called cool, if

(nl—i—ng—l—---—i—nk)

ACX,BCY,CCB, and |A|+|B| =n.

e Let k be an integer with 0 < k& < n. Determine the number of cool triples (A, B, C)
for which |A| = k.

e Let k be an integer with 0 < k& < n. Determine the number of cool triples (A, B, C)
for which |C| = k.

e Use the above two results to prove that
2
" (n " (n\ (2n—k
2 () =m0 )
k=0 (k) o \F n

Solution: The following figure illustrates cool triples.
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B

n n

We start with the first part: Count the cool triples (A, B, C) for which |A| = k. Note
that |B| =n — k and C can be any subset of B. We are going to use the Product Rule:

e First task: Choose a subset A of X having size k. There are (Z) ways to do this.

e Second task: Choose a subset B of Y having size n — k. There are (nfk) ways to do
this.

e Third task: Choose a subset C' of B. Since B has size n — k, there are 2"* ways to
choose C.

By the Product Rule, the number of cool triples (A, B, C) for which |A| = k is equal to

(D62e) =

Next we do the second part: Count the cool triples (A, B, C) for which |C| = k. Again,
we are going to use the Product Rule:

e First task: Choose a subset C' of Y having size k. There are (Z) ways to do this.

e Second task: Choose a subset Z of X U (Y \ C) having size n — k.

Z)@Y

The part of Z inside X determines the set A, whereas C' together with the part of Z
that is inside Y determines the set B. Note that this gives a cool triple (A, B, C') with
|IC| = k.

Since X U (Y \ C) has size n — 2k, there are (2:__:) ways to choose Z.

X
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By the Product Rule, the number of cool triples (A, B, C') for which |C| = k is equal to

W)

For the final part of the question, we are going to count the total number of cool triples
in two different ways:

e We divide the cool triples (A, B, () into groups, based on the size of A. The size of
A can be any number in {0, 1,2,...,n}. From the first part of the question, the total
number of cool triples is equal to

L6007

e We divide the cool triples (A, B, C) into groups, based on the size of C'. The size of C'
can be any number in {0,1,2,...,n}. From the second part of the question, the total

number of cool triples is equal to
Z” <n> <2n — k)
o \k)\n—k

Both answers must be equal, because they both count the total number of cool triples. Thus,

LG =200
)= )
(2: - :> - <<2n —33 - fn - k)) - <2nn_ k)
) =500

Question 8: In this question, we consider sequences consisting of five digits.

Since

and

it follows that

e Determine the number of 5-digit sequences dydodsdyds, whose digits are decreasing,
i.e., dy > dy > d3 > dy > d5.

e Determine the number of 5-digit sequences dydodsd,ds, whose digits are non-increasing,
ie, dy > dy>ds > dy > ds.
Hint: Consider the numbers 1 = di—ds, xo = do—d3, x5 = d3—dy, x4 = dy—d5, x5 = d5.
What do you know about xy + x5 + 23 + 24 + 257 You may use any result that was
proven in class.



Solution: For the first part of the question, we obtain any 5-digit sequence whose digits
are decreasing, by choosing a subset consisting of 5 digits and writing them in decreasing
order. For example, if we choose the subset {0, 3,4, 6,9}, then we get the decreasing sequence
96430. Thus, the answer to this part is

10
= 252.
(5)

For the second part, we use the hint: Since the digits are non-increasing, we have
sl 2 0,33'2 2 0,1'3 2 Oax4 2 0.

Since x5 = ds, it is clear that
Iy Z 0.

Note that
T+ T+ a3+ x4+ 25 = (dy —do) + (dy — d3) + (ds — dy) + (dy — d5) + ds = dy,

implying that
X1+ Tog+ X3+ T4+ Ty S 9.

If we map any 5-digit sequence djdydsdyds to the quintuple (xq, 2o, 3, 24, x5), then we
get the following claims:

e Any 5-digit sequence didsdzdyds with non-increasing digits is mapped to a unique
solution of
X1+ To+ T3+ T4+ Ts §9

in non-negative integers.
e Any solution (x1, z9, 3, T4, T5) in non-negative integers of
1+ 2o +taxs+rs+25 <9

can be “mapped back” to a unique 5-digit sequence dydsdzdsds with non-increasing
digits: Given (x1, x9, 3, T4, T5), we can solve the equations

r1=dy —dy,x9 = dy — ds,x3 = d3 — dy, x4 = dy — ds, x5 = d5

for the values dy, ds, ds, dy, ds. This gives a unique 5-digit sequence didsdsdsds with
non-increasing digits.

We conclude that the number of 5-digit sequences with non-increasing digits is equal to the
number of solutions of x1 + x5 + 3 + x4 + x5 < 9 in non-negative integers. We have seen in

class that the latter is equal to
9+5 14
= = 2002.
(7))
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Question 9: Let 51,5, ..., So6 be a sequence consisting of 26 subsets of the set {1,2,...,9}.
Assume that each of these 26 subsets consists of at most three elements.
Use the Pigeonhole Principle to prove that there exist two distinct indices ¢ and j, such

that
Yo=Y

Tr€S; :BES]'

i.e., the sum of the elements in S; is equal to the sum of the elements in S;.
Hint: What are the possible values for >, 27

Solution: Consider one subset S;.
e The value of 3 ,cg, # is minimized if S; = (). In this case, Y ,cq, = 0.

e The value of 3 g, @ is maximized if S; = {7,8,9}. In this case, Y ,cq. 2 =7+8+9 =
24.

e We conclude that the value of 3" cg « is an element of the set {0,1,2,...,24}. Note
that this set has size 25.

Thus, we have 26 sums > .5 = that belong to a set of size 25. By the Pigeonhole Principle,
these 26 sums cannot all be distinct.

If you want to be a bit more formal: There are 25 pigeonholes that are labeled 0, 1,2, ..., 24.
For each subset S;, we determine the sum 3°, ¢ . If this sum is equal to s, then we throw
the subset .S; into the pigeonhole with label s. Since we throw 26 subsets into 25 pigeonholes,
there is a pigeonhole that contains two subsets. These two subsets have the same sum.
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