
COMP 2804 — Solutions Assignment 2

Question 1: On the first page of your assignment, write your name and student number.

Solution:

• Name: Daniel Alfredsson

• Student number: 11

Question 2: The function f : N→ N is defined by

f(0) = 7,
f(n) = 2n − 7 + 2 · f(n− 1) if n ≥ 1.

• Determine f(n) for n = 0, 1, 2, 3, 4, 5.

• Prove that
f(n) = n · 2n + 7

for all integers n ≥ 0.

Solution: The value of f(0) is given to be 7. From the recurrence, we get

f(1) = 21 − 7 + 2 · f(0)

= 2− 7 + 2 · 7
= 9.

From the recurrence, we get

f(2) = 22 − 7 + 2 · f(1)

= 4− 7 + 2 · 9
= 15.

From the recurrence, we get

f(3) = 23 − 7 + 2 · f(2)

= 8− 7 + 2 · 15

= 31.

From the recurrence, we get

f(4) = 24 − 7 + 2 · f(3)

= 16− 7 + 2 · 31

= 71.

1



From the recurrence, we get

f(5) = 25 − 7 + 2 · f(4)

= 32− 7 + 2 · 71

= 167.

Next we prove that
f(n) = n · 2n + 7

for all integers n ≥ 0.
The base case is when n = 0. In this case, the left-hand side is f(0), which is 7, whereas

the right-hand side is 0 · 20 + 7, which is also 7. Thus, the claim is true if n = 0.
For the induction step, let n ≥ 1 and assume that the claim is true for n− 1. Thus, we

assume that
f(n− 1) = (n− 1) · 2n−1 + 7.

We have to prove that the claim is true for n. In other words, we have to prove that

f(n) = n · 2n + 7.

Here we go:

f(n) = 2n − 7 + 2 · f(n− 1) (from the recurrence)

= 2n − 7 + 2 ·
(
(n− 1) · 2n−1 + 7

)
(from the assumption)

= 2n − 7 + (n− 1) · 2n + 14

= n · 2n + 7.

This proves the induction step.

Question 3: The functions f : N→ N, g : N2 → N, and h : N→ N are recursively defined
as follows:

f(n) = g(n, h(n)) if n ≥ 0,
g(m, 0) = 0 if m ≥ 0,
g(m,n) = g(m,n− 1) +m if m ≥ 0 and n ≥ 1,
h(0) = 1,
h(n) = 2 · h(n− 1) if n ≥ 1.

Solve these recurrences for f , i.e., express f(n) in terms of n.

Solution: From the definitions, we see that the function f is defined in terms of the functions
g and h; the function g is defined in terms of the function g only; the function h is defined
in terms of the function h only.

Based on this, we first solve the recurrence for g, then we solve the recurrence for h. At
the end we will figure out what the function f does.

2



We start with the function g. If you stare long enough at the recurrence for g, then you
will guess that g(m,n) multiplies m and n by repeated addition. We verify that this guess
is correct: We are going to prove that

g(m,n) = mn

for all m ≥ 0 and n ≥ 0.
We fix an integer m ≥ 0. Now we are going to use induction on n.
The base case is when n = 0. In this case, the left-hand side is g(m, 0), which is 0,

whereas the right-hand side is m · 0, which is also 0. Thus, the claim is true if n = 0.
For the induction step, let n ≥ 1 and assume that the claim is true for n− 1. Thus, we

assume that
g(m,n− 1) = m(n− 1).

We will show that g(m,n) = mn:

g(m,n) = g(m,n− 1) +m (from the recurrence)

= m(n− 1) +m (from the assumption)

= mn.

This proves the induction step.

We next go to the function h. If you stare long enough at the recurrence for h, then you
will guess that h(n) = 2n. We verify that this guess is correct: We are going to prove that

h(n) = 2n

for all n ≥ 0.
The base case is when n = 0. In this case, the left-hand side is h(0), which is 1, whereas

the right-hand side is 20, which is also 1. Thus, the claim is true if n = 0.
For the induction step, let n ≥ 1 and assume that the claim is true for n− 1. Thus, we

assume that
h(n− 1) = 2n−1.

We will show that h(n) = 2n:

h(n) = 2 · h(n− 1) (from the recurrence)

= 2 · 2n−1 (from the assumption)

= 2n.

This proves the induction step.

Now we can determine f(n):

f(n) = g(n, h(n)) (from the definition)

= n · h(n) (g multiplies)

= n · 2n. (h(n) = 2n)

3



Question 4: The sequence of numbers an, for n ≥ 0, is recursively defined as follows:

a0 = 0,
a1 = 1,
an = 2 · an−1 + an−2 if n ≥ 2.

• Determine an for n = 0, 1, 2, 3, 4, 5.

• Prove that

an =

(
1 +
√

2
)n − (1−√2

)n
2
√

2
(1)

for all integers n ≥ 0.

Hint: What are the solutions of the equation x2 = 2x + 1? Using these solutions will
simplify the proof.

• Since the numbers an, for n ≥ 0, are obviously integers, the fraction on the right-hand
side of (1) is an integer as well.

Prove that the fraction on the right-hand side of (1) is an integer using only Newton’s
Binomial Theorem.

Solution: We are given that a0 = 0 and a1 = 1. From the recurrence, we get

a2 = 2 · a1 + a0

= 2 · 1 + 0

= 2.

a3 = 2 · a2 + a1

= 2 · 2 + 1

= 5.

a4 = 2 · a3 + a2

= 2 · 5 + 2

= 12.

a5 = 2 · a4 + a3

= 2 · 12 + 5

= 29.

Next we are going to prove that for all n ≥ 0,

an =

(
1 +
√

2
)n − (1−√2

)n
2
√

2
.

4



The hint says that we should determine the solutions of the quadratic equation x2 = 2x+ 1.
This equation has two solutions

α = 1 +
√

2 and β = 1−
√

2.

Thus, we have to prove that for all n ≥ 0,

an =
αn − βn

2
√

2
.

We will prove this by induction. By the way, using α and β simplifies the algebra!
The first base case is when n = 0. In this case, the left-hand side is a0, which is 0,

whereas the right-hand side is
α0 − β0

2
√

2
=

1− 1

2
√

2
,

which is also 0. Thus, the claim is true if n = 0.
The second base case is when n = 1. In this case, the left-hand side is a1, which is 1,

whereas the right-hand side is

α1 − β1

2
√

2
=

(1 +
√

2)− (1−
√

2)

2
√

2
=

2
√

2

2
√

2

which is also 1. Thus, the claim is true if n = 1.
For the induction step, let n ≥ 2, and assume the claim is true for n−1 and n−2. Thus,

we assume that

an−1 =
αn−1 − βn−1

2
√

2

and

an−2 =
αn−2 − βn−2

2
√

2
.

We get

an = 2 · an−1 + an−2 (from the recurrence)

= 2 ·
(
αn−1 − βn−1

2
√

2

)
+
αn−2 − βn−2

2
√

2
(from the assumptions)

=
αn−2(2α + 1)− βn−2(2β + 1)

2
√

2

=
αn−2α2 − βn−2β2

2
√

2
(2α + 1 = α2, 2β + 1 = β2)

=
αn − βn

2
√

2
.

This proves the induction step.

5



Finally, we are going to use Newton to prove that(
1 +
√

2
)n − (1−√2

)n
2
√

2

is an integer. For n = 0 and n = 1, we have already seen that this is the case.
Assume that n ≥ 2. Newton tells us that

(1 +
√

2)n − (1−
√

2)n

=
n∑

k=0

(
n

k

)(√
2
)k
−

n∑
k=0

(
n

k

)(
−
√

2
)k

=
n∑

k=0

(
n

k

)((√
2
)k
−
(
−
√

2
)k)

. (2)

If k is even, then (√
2
)k
−
(
−
√

2
)k

=
(√

2
)k
−
(√

2
)k

= 0.

If k is odd, then (√
2
)k
−
(
−
√

2
)k

=
(√

2
)k

+
(√

2
)k

= 2
√

2 ·
(√

2
)k−1

.

Since k is odd, we have k ≥ 1 and k − 1 is even. Therefore,
(√

2
)k−1

is an integer.

We conclude: For any k, the k-th term in (2) is either 0 or an integer multiple of 2
√

2.
It follows that (

1 +
√

2
)n
−
(

1−
√

2
)n

is an integer multiple of 2
√

2. This implies that(
1 +
√

2
)n − (1−√2

)n
2
√

2

is an integer.

Question 5: Let n be a positive integer and consider a 1×n board Bn consisting of n cells,
each one having sides of length one. The top part of the figure below shows B9.

B GR

You have an unlimited supply of bricks, which are of the following types (see the bottom
part of the figure above):

6



• There are red (R) and blue (B) bricks, both of which are 1× 1 cells. We refer to these
bricks as squares.

• There are green (G) bricks, which are 1× 2 cells. We refer to these as dominoes.

A tiling of the board Bn is a placement of bricks on the board such that

• the bricks exactly cover Bn and

• no two bricks overlap.

In a tiling, a color can be used more than once and some colors may not be used at all. The
figure below shows an example of a tiling of B9.

B GRG RBB

Let Tn be the number of different tilings of the board Bn.

• Determine T1, T2, and T3.

• For any integer n ≥ 1, express Tn in terms of numbers that appear in this assignment.

Solution: For n = 1, we have the board B1 consisting of one cell. There are two ways to
tile this board: R and B. Thus, T1 = 2.

For n = 2, we have the board B2 consisting of two cells. There are five ways to tile this
board: RR, RB, BR, BB, and G. Thus, T2 = 5.

For n = 3, we have the board B3 consisting of three cells. There are twelve ways to tile
this board:

• RRR, BBB,

• RRB, RBR, BRR, RBB, BRB, BBR,

• GR, GB, RG, BG.

Thus, T3 = 12.

For the second part of the question, we are going to derive a recurrence for Tn. Assume
n ≥ 3. Any tiling of the board Bn is of one of the following three types:

• The leftmost brick is a red square. Any such tiling is of the form R followed by an
arbitrary tiling of the board Bn−1. The number of such tilings is equal to Tn−1.

• The leftmost brick is a blue square. Any such tiling is of the form B followed by an
arbitrary tiling of the board Bn−1. The number of such tilings is equal to Tn−1.

7



• The leftmost brick is a green domino. Any such tiling is of the form G followed by an
arbitrary tiling of the board Bn−2. The number of such tilings is equal to Tn−2.

Since these three types are pairwise disjoint, we conclude that, for n ≥ 3,

Tn = 2 · Tn−1 + Tn−2.

The base cases are given by T1 = 2 and T2 = 5.
This is the same recurrence as in Question 4, but it has different base cases. We compare

the numbers an and Tn:

a0 a1 a2 a3 a4 a5
0 1 2 5 12 29

T1 T2 T3 T4

From this table, we see that the Tn’s are a shifted version of the an’s. That is, for each n ≥ 1,
we have

Tn = an+1.

If you want to be formal, you prove this by induction. But in this case, it is obvious and,
therefore, no formal proof is needed.

Question 6: In this question, we use the notation of Question 5. Let n ≥ 1 be an integer
and consider the 1× (2n+ 1) board B2n+1. We number the cells of this board, from left to
right, as 1, 2, 3, . . . , 2n+ 1.

• Determine the number of tilings of the board B2n+1 in which the rightmost square is
at position 1.

• Let k be an integer with 1 ≤ k ≤ n. Determine the number of tilings of the board
B2n+1 in which the rightmost square is at position 2k + 1.

• Use the results of the above two parts to prove that

T2n+1 = 2 + 2
n∑

k=1

T2k.

Solution: For the first part of the question, the rightmost square is at position 1. There are
two choices for this square: It is either R or B. The positions 2, 3, . . . , 2n + 1 (there are an
even number of them) must be tiled using dominoes (G); there is one way to do this. Thus,
the answer to this part is 2.

For the second part, the rightmost square is at position 2k + 1:

8



1 2k + 1 2n + 1

2k 2n− 2k

• There are two choices for the square at position 2k + 1: R or B.

• The positions 2k + 2, . . . , 2n + 1 (there are an even number of them) must be tiled
using dominoes (G); there is one way to do this. (Note: If k = n, this part is empty.
Still, there is one way to tile an empty board.)

• The positions 1, 2, . . . , 2k contain an arbitrary tiling of the board B2k. There are T2k
many such tilings.

By the Product Rule, the answer to this part of the question is 2 · T2k.

For the third part: By definition, the number of tilings of the board B2n+1 is equal to
T2n+1. We are going to divide all these tilings into groups, based on the location of the
rightmost square.

• Since the board B2n+1 has an odd length, any tiling must contain at least one square.

• In any tiling, the rightmost square must be at an odd position.

The total number of tilings of B2n+1 is equal to

n∑
k=0

number of tilings in which the rightmost square is at position 2k + 1.

From the first two parts of the question, this summation is equal to

2 +
n∑

k=1

2 · T2k.

We conclude that

T2n+1 = 2 + 2
n∑

k=1

T2k.

Question 7: In this question, we use the notation of Question 5. Let n ≥ 1 be an integer
and consider the 1× n board Bn.

• Consider strings consisting of characters, where each character is S or D. Let k be an
integer with 0 ≤ k ≤ bn/2c. Determine the number of such strings of length n − k,
that contain exactly k many D’s.

Hint: This is a very easy question!

9



• Let k be an integer with 0 ≤ k ≤ bn/2c. Determine the number of tilings of the board
Bn that use exactly k dominoes.

Hint: How many bricks are used for such a tiling? In the first part, imagine that S
stands for “square” and D stands for “domino”.

• Use the results of the previous part to prove that

Tn =

bn/2c∑
k=0

(
n− k
k

)
· 2n−2k.

Solution: For the first part: This is the same as counting binary strings of length n − k
that have exactly k many 1’s. The answer is(

n− k
k

)
.

For the second part: We consider tilings of the board Bn that use exactly k dominoes
(G).

• Bn has length n.

• The total length of the k dominoes is 2k.

• The remaining length, which is n− 2k, must be covered by n− 2k squares.

• Conclusion: Any such tiling uses k dominoes and n − 2k squares. In total, the tiling
uses k + (n− 2k) = n− k bricks.

To determine the number such tilings, we will use the Product Rule:

• Write down a string of length n − k that contains k many D’s and n − 2k many S’s.
There are

(
n−k
k

)
ways to do this.

• Replace each D by a dominoe (G). There is one way to do this.

• Replace each S by either a red square (R) or a blue square (B). There are 2n−2k ways
to do this.

By the Product Rule, the number of tilings of the board Bn that use exactly k dominoes is
equal to (

n− k
k

)
· 2n−2k.

For the third part: By definition, the number of tilings of the board Bn is equal to Tn. We
are going to divide all these tilings into groups, based on the number of dominoes. Denote

10



the number of dominoes by k. Obviously, k ≥ 0. What is the largest possible value for k:
The total length of the k dominoes is 2k, which must be at most n. In other words, 2k ≤ n,
which is equivalent to k ≤ bn/2c.

This gives:

Tn = number of tilings of Bn

=

bn/2c∑
k=0

number of tilings of Bn that use k dominoes

=

bn/2c∑
k=0

(
n− k
k

)
· 2n−2k.

Question 8: The few of you who come to class will remember that Elisa Kazan1 loves to
drink cider. On Saturday night, Elisa goes to her neighborhood pub and runs the following
recursive algorithm, which takes as input an integer n ≥ 1:

Algorithm ElisaDrinksCider(n):

if n = 1
then drink one pint of cider
else if n is even

then ElisaDrinksCider(n/2);
drink one pint of cider;
ElisaDrinksCider(n/2)

else drink one pint of cider;
ElisaDrinksCider(n− 1);
drink one pint of cider

endif
endif

For any integer n ≥ 1, let P (n) be the number of pints of cider that Elisa drinks when
running algorithm ElisaDrinksCider(n). Determine the value of P (n).

Solution: Since the algorithm is recursive, we are going to derive a recurrence for the
function P (n):

• If n = 1, Elisa drinks one pint; thus, P (1) = 1.

• If n ≥ 2 and n is even: Elisa drinks P (n/2) pints, followed by one pint, followed by
P (n/2) pints. Thus,

P (n) = 1 + 2 · P (n/2).

1President of the Carleton Computer Science Society

11



• If n ≥ 3 and n is odd: Elisa drinks one pint, followed by P (n − 1) pints, followed by
one pint. Thus,

P (n) = 2 + P (n− 1).

By looking at P (n) for some small values of n, you will guess that, for n ≥ 1,

P (n) = 2n− 1.

We verify using induction that this guess is correct.
The base case is when n = 1. In this case, the left-hand side is P (1), which is 1, whereas

the right-hand side is 2 · 1− 1, which is also 1. Thus, the claim is true if n = 1.
For the induction step, let n ≥ 2 and assume that the claim is true for all values that are

strictly smaller than n.

• Assume n is even. We know that

P (n) = 1 + 2 · P (n/2).

Since n/2 < n, the assumption implies that

P (n/2) = 2 · (n/2)− 1 = n− 1.

This gives
P (n) = 1 + 2 · P (n/2) = 1 + 2(n− 1) = 2n− 1.

• Assume n is odd. We know that

P (n) = 2 + P (n− 1).

Since n− 1 < n, the assumption implies that

P (n− 1) = 2(n− 1)− 1 = 2n− 3.

This gives
P (n) = 2 + P (n− 1) = 2 + (2n− 3) = 2n− 1.

Question 9: Let n ≥ 1 be an integer and consider a set S consisting of n points in R2.
Each point p of S is given by its x- and y-coordinates px and py, respectively. We assume
that no two points of S have the same x-coordinate and no two points of S have the same
y-coordinate.

A point p of S is called maximal in S if there is no point in S that is to the north-east
of p, i.e.,

{q ∈ S : qx > px and qy > py} = ∅.
The figure below shows an example, in which the •-points are maximal and the ×-points are
not maximal. Observe that, in general, there is more than one maximal element in S.

12



•

•

•
•

•

×

×
× ×

×

Describe a recursive algorithm MaxElem(S, n) that has the same structure as algorithms
MergeSort and ClosestPair that we have seen in class, and does the following:

Input: A set S of n ≥ 1 points in R2, in sorted order of their x-coordinates. You may
assume that n is a power of two.

Output: All maximal elements of S, in sorted order of their x-coordinates.

The running time of your algorithm must be O(n log n). Explain why your algorithm
runs in O(n log n time. You may use any result that was proven in class.

Solution: The algorithm will be recursive. The base case is when n = 1, i.e., the set S
consists of only one point. Since this point is maximal in S, the algorithm returns this point.

Assume that n ≥ 2. Here is the main approach:

• Let ` be a vertical line that divides the set S into two subsets, each of size n/2.

• Let S1 be the set of all points of S that are to the left of the line `. Run algorithm
MaxElem(S1, n/2). This gives as output the set, say M1, of all maximal elements in
S1. The set M1 is returned in sorted x-order. These are the •-points to the left of ` in
the figure below.

• Let S2 be the set of all points of S that are to the right of the line `. Run algorithm
MaxElem(S2, n/2). This gives as output the set, say M2, of all maximal elements in
S2. The set M2 is returned in sorted x-order. These are the •-points to the right of `
in the figure below.

`

×
×

×
××

×

S1 S2

q

13



• Each point of M2 is maximal in the set S2. Since S1 is to the left of `, each point of
M2 is maximal in the entire set S. Thus, the points of M2 belong to the output.

• Each point of M1 is maximal in the set S1, but not necessarily in the entire set S. Let
q be the leftmost point of M2. Then a point p of M1 is maximal in the entire set S if
and only p is above q.

• From this, we can see how to obtain the final output: It consists of all points of M1

that are above q, followed by all points of M2.

This leads to the following algorithm in pseudocode:

Algorithm MaxElem(S, n):

// S is a set of n points, sorted by x-coordinates
if n = 1
then return the only point of S
else S1 = first n/2 points of S;

S2 = last n/2 points of S;
M1 = MaxElem(S1, n/2);
M2 = MaxElem(S2, n/2);
q = first point in M2;
M = empty list;
add to M all points p of M1 for which py > qy;
add all points of M2 at the end of M ;
return M

endif

Let T (n) be the running time of algorithm MaxElem on an input of size n. Then T (1)
is some constant. Assume that n ≥ 2.

• There are two recursive calls, each on a set of size n/2. The total time for these
recursive calls is 2 · T (n/2).

• Besides the recursive calls, the algorithm spends O(n) time, because it obtains S1 and
S2 by traversing S, and it obtains M by traversing M1 and M2.

Thus, the running time satisfies the recurrence

T (n) = O(n) + 2 · T (n/2).

We have seen in class that this recurrence solves to T (n) = O(n log n).

14


