
COMP 2804 — Solutions Assignment 4

Question 1: On the first page of your assignment, write your name and student number.

Solution:

• Name: Lionel Messi

• Student number: 10

Question 2: Both Alexa and Shelly have an infinite bitstring. Alexa’s bitstring is denoted
by a1a2a3 . . ., whereas Shelly’s bitstring is denoted by s1s2s3 . . .. Alexa can see her bitstring,
but she cannot see Shelly’s bitstring. Similarly, Shelly can see her bitstring, but she cannot
see Alexa’s bitstring. The bits in both bitstrings are uniformly random and independent.

The ladies play the following game: Alexa chooses a positive integer k and Shelly chooses
a positive integer `. The game is a success if sk = 1 and a` = 1. In words, the game is a
success if Alexa chooses a position in Shelly’s bitstring that contains a 1, and Shelly chooses
a position in Alexa’s bitstring that contains a 1.

• Assume Alexa chooses k = 4 and Shelly chooses ` = 7. Determine the probability that
the game is a success.

• Assume Alexa chooses the position, say k, of the leftmost 1 in her bitstring, and Shelly
chooses the position, say `, of the leftmost 1 in her bitstring.

– If k 6= `, is the game a success?

– Determine the probability that the game is a success.

Solution: For the first part, Alexa chooses k = 4 and Shelly chooses ` = 7. The game
is a success if and only if s4 = 1 and a7 = 1. Since the bits are uniformly random and
independent, we have

Pr(success) = Pr(s4 = 1 and a7 = 1)

= Pr(s4 = 1) · Pr(a7 = 1)

= 1/2 · 1/2

= 1/4.

I hope you see that there is nothing magic about the numbers 4 and 7. This part of the
question shows that if Alexa chooses any value for k, without looking at her bitstring, and
Shelly chooses any value for `, without looking at her bitstring, then the success probability
is 1/4.

For the second part, the ladies choose k and ` in a more clever way: They choose these
values while looking at their bitstrings:
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1. Alexa looks at her bitstring and takes for k the first position in which this string has
a 1.

2. Shelly looks at her bitstring and takes for ` the first position in which this string has
a 1.

Assume that k 6= `. We assume that k < `. (The case when k > ` is symmetric.) Look at
the following figure:

1

1

2

2

k

k `

0 0 0 1. . .Alexa

Shelly 00 00 1. . . . . .

Since k < `, Shelly’s string has a 0 at position k, i.e., sk 6= 1. Therefore, the game is not
a success.

From this, it should be clear that the game is a success if and only if k = `. Note that
the possible value for k are 1, 2, 3, . . .. This implies the following:

Pr(success) =
∞∑
k=1

Pr

s1 . . . sk = 0 . . . 0︸ ︷︷ ︸
k−1

1 and a1 . . . ak = 0 . . . 0︸ ︷︷ ︸
k−1

1


=

∞∑
k=1

(1/2)2k

=
∞∑
k=1

(1/4)k

= 1/4 + (1/4)2 + (1/4)3 + (1/4)4 + . . .

= 1/4 ·
(
1 + 1/4 + (1/4)2 + (1/4)3 + . . .

)
= 1/4 · 1

1− 1/4

= 1/3.

Question 3: Let n ≥ 2 be an integer. You have n cider bottles C1, C2, . . . , Cn and two beer
bottles B1 and B2. Consider a uniformly random permutation of these n + 2 bottles. The
positions in this permutation are numbered 1, 2, . . . , n+ 2. Define the following two random
variables:

X = the position of the first cider bottle,

Y = the position of the first bottle having index 1.
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For example, if n = 5 and the permutation is

B2, C5, C2, C4, B1, C3, C1,

then X = 2 and Y = 5.

• Determine the expected value E(X) of the random variable X.

• Determine the expected value E(Y ) of the random variable Y .

Hint:
∑n+1

k=1 k = (n + 1)(n + 2)/2 and
∑n+1

k=1 k
2 = (n + 1)(n + 2)(2n + 3)/6.

• Are X and Y independent random variables? Justify your answer.

Solution: We start with the expected value of X. Since there are only two beer bottles,
the possible value for X are 1, 2, and 3.

1. The number of permutations of the n + 2 bottles is (n + 2)!.

2. How many permutations satisfy X = 1? For this, we use the Product Rule:

(a) Choose a cider bottle and place it at position 1. There are n ways to do this.

(b) Place the remaining n+1 bottles in an arbitrary order at the positions 2, 3, . . . , n+
2. There are (n + 1)! ways to do this.

Thus, the number of permutations with X = 1 is equal to n · (n + 1)!. It follows that

Pr(X = 1) =
n · (n + 1)!

(n + 2)!
=

n

n + 2
.

3. How many permutations satisfy X = 2? For this, we use the Product Rule:

(a) Choose a beer bottle and place it at position 1. There are 2 ways to do this.

(b) Choose a cider bottle and place it at position 2. There are n ways to do this.

(c) Place the remaining n bottles in an arbitrary order at the positions 3, 4, . . . , n+2.
There are n! ways to do this.

Thus, the number of permutations with X = 2 is equal to 2 · n · n!. It follows that

Pr(X = 2) =
2 · n · n!

(n + 2)!
=

2n

(n + 1)(n + 2)
.

4. We can obtain Pr(X = 3) from

Pr(X = 3) = 1− Pr(X = 1)− Pr(X = 2).

Alternatively, we can use the Product Rule to determine the number of permutations
satisfying X = 3:
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(a) Place the two beer bottles at positions 1 and 2. There are 2! = 2 ways to do this.

(b) Place the remaining n bottles in an arbitrary order at the positions 3, 4, . . . , n+2.
There are n! ways to do this.

Thus, the number of permutations with X = 3 is equal to 2 · n!. It follows that

Pr(X = 3) =
2 · n!

(n + 2)!
=

2

(n + 1)(n + 2)
.

From this, we get

E(X) =
3∑

k=1

k · Pr(X = k)

= 1 · Pr(X = 1) + 2 · Pr(X = 2) + 3 · Pr(X = 3)

=
n

n + 2
+ 2 · 2n

(n + 1)(n + 2)
+ 3 · 2

(n + 1)(n + 2)

=
n(n + 1) + 4n + 6

(n + 1)(n + 2)

=
n2 + 5n + 6

(n + 1)(n + 2)

=
(n + 2)(n + 3)

(n + 1)(n + 2)

=
n + 3

n + 1

= 1 +
2

n + 1
.

Next, we determine the expected value of Y . The possible value for Y are 1, 2, . . . , n+ 1.
(Note that Y cannot be equal to n + 2.)

How many permutations satisfy Y = k? For this, we use the Product Rule:

1. Choose one of C1 and B1 and place it at position k. There are 2 ways to do this.

2. Place the other of C1 and B1 at one of the last n+ 2−k positions. There are n+ 2−k
ways to do this.

3. Place the remaining n bottles in an arbitrary order at the n available positions. There
are n! ways to do this.

Thus, the number of permutations with Y = k is equal to 2 · (n + 2− k) · n!. It follows that

Pr(Y = k) =
2 · (n + 2− k) · n!

(n + 2)!
=

2(n + 2− k)

(n + 1)(n + 2)
.
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From this, we get

E(Y ) =
n+1∑
k=1

k · Pr(X = k)

=
n+1∑
k=1

k · 2(n + 2− k)

(n + 1)(n + 2)

=
2

(n + 1)(n + 2)

n+1∑
k=1

k(n + 2− k)

=
2

(n + 1)(n + 2)

(
(n + 2)

n+1∑
k=1

k −
n+1∑
k=1

k2

)

=
2

(n + 1)(n + 2)

(
(n + 2) · (n + 1)(n + 2)

2
− (n + 1)(n + 2)(2n + 3)

6

)
= (n + 2)− 2n + 3

3
= 1 + n/3.

Are X and Y independent? We notice that, if X = 3, then Y ≤ 2. In particular, X = 3
and Y = 3 cannot simultaneously happen, i.e.,

Pr(X = 3 and Y = 3) = 0.

From the calculations above, however, neither of Pr(X = 3) and Pr(Y = 3) is equal to zero.
Thus,

Pr(X = 3 and Y = 3) 6= Pr(X = 3) · Pr(Y = 3).

We conclude that X and Y are not independent.

Question 4: You are given four fair and independent dice, each one having six faces:

1. One die is red and has the numbers 7, 7, 7, 7, 1, 1 on its faces.

2. One die is blue and has the numbers 5, 5, 5, 5, 5, 5 on its faces.

3. One die is green and has the numbers 9, 9, 3, 3, 3, 3 on its faces.

4. One die is yellow and has the numbers 8, 8, 8, 2, 2, 2 on its faces.

Let c be a color in the set {red, blue, green, yellow}. You roll the die of color c. Define
the random variable Xc to be the result of this roll.

• For each c ∈ {red, blue, green, yellow}, determine the expected value E (Xc) of the
random variable Xc.
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• Let c and c′ be two distinct colors in the set {red, blue, green, yellow}. Determine

Pr (Xc < Xc′) + Pr (Xc > Xc′) .

• Let c and c′ be two distinct colors in the set {red, blue, green, yellow}. We say that the
die of color c is better than the die of color c′, if

Pr (Xc > Xc′) > 1/2.

For each of the following four questions, justify your answer.

– Is the red die better than the blue die?

– Is the blue die better than the green die?

– Is the green die better than the yellow die?

– Is the yellow die better than the red die?

Hint: If you are not surprised by the answers to these four parts of the question, then
you made a mistake.

Solution: For each color c, the die has six faces. When you roll this die, each face is the
top side with probability 1/6. If the numbers on the faces of this die are c1, . . . , c6, then

E (Xc) =
6∑

i=1

ci · 1/6

=
c1 + · · ·+ c6

6
.

Thus, E (Xc) is just the standard average of the six numbers on this die. It follow that

E (Xred) = average of 7, 7, 7, 7, 1, 1 = 5,

E (Xblue) = average of 5, 5, 5, 5, 5, 5 = 5,

E (Xgreen) = average of 9, 9, 3, 3, 3, 3 = 5,

E (Xyellow) = average of 8, 8, 8, 2, 2, 2 = 5.

For the next part, by looking at the dice, you see that none of the numbers occurs on two
of the dice. Consider two distinct colors c and c′. Then Xc cannot be equal to Xc′ . Thus,
exactly one of Xc < Xc′ and Xc > Xc′ must occur. This means that

Pr (Xc < Xc′) + Pr (Xc > Xc′) = 1.

In order to decide if the red die is better than the blue die, we have to determine Pr(Xred >
Xblue).

If we roll the red die once and the blue die once, then there are 36 possible outcomes
(these are not all distinct!). How many ways are there so that Xred > Xblue:
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• Xred must be 7 and Xblue must be 5. There are 4 · 6 = 24 ways for this to happen.

Thus, there are 24 outcomes in which Xred > Xblue. It follows that

Pr(Xred > Xblue) =
24

36
=

2

3
>

1

2

and we conclude that the red die is better than the blue die.
We do the same for blue and green: In order to decide if the blue die is better than

the green die, we have to determine Pr(Xblue > Xgreen). How many ways are there so that
Xblue > Xgreen:

• Xblue must be 5 and Xgreen must be 3. There are 6 · 4 = 24 ways for this to happen.

Thus, there are 24 outcomes in which Xblue > Xgreen. It follows that

Pr(Xblue > Xgreen) =
24

36
=

2

3
>

1

2

and we conclude that the blue die is better than the green die.
We do the same for green and yellow: In order to decide if the green die is better than

the yellow die, we have to determine Pr(Xgreen > Xyellow). How many ways are there so that
Xgreen > Xyellow:

1. Xgreen is 9 and Xyellow can have any value. There are 2 · 6 = 12 ways for this to happen.

2. Xgreen is 3 and Xyellow is 2. There are 4 · 3 = 12 ways for this to happen.

Thus, there are 12 + 12 = 24 outcomes in which Xgreen > Xyellow. It follows that

Pr(Xgreen > Xyellow) =
24

36
=

2

3
>

1

2

and we conclude that the green die is better than the yellow die.
We do the same for yellow and red: In order to decide if the yellow die is better than

the red die, we have to determine Pr(Xyellow > Xred). How many ways are there so that
Xyellow > Xred:

1. Xyellow is 8 and Xred can have any value. There are 3 · 6 = 18 ways for this to happen.

2. Xyellow is 2 and Xred is 1. There are 3 · 2 = 6 ways for this to happen.

Thus, there are 18 + 6 = 24 outcomes in which Xyellow > Xred. It follows that

Pr(Xyellow > Xred) =
24

36
=

2

3
>

1

2

and we conclude that the yellow die is better than the red die.
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Conclusion:
red is better than blue,
which is better than green,
which is better than yellow,
which is better than red.

In other words,
the relation “is better than” is not transitive.

These dice are called non-transitive dice. There is a wikipedia article about them. How can
you use/abuse these dice:

Game 1: You choose one of the colors red, blue, green, and yellow. Then you roll the die of
the chosen color. The result of this roll is the amount of money that you win. Which color
do you choose?

A first idea is to choose the color for which the expected value is largest. This does not
help you, because all expected values are equal. A second idea is to use the definition we
made above to define when one color is better than another color. Having this notion of
“being better”, we choose the “best” color. This does not help either, because there is no
“best” color.

Game 2: You choose one of the colors red, blue, green, and yellow. Michiel also chooses
one of these four colors. You roll the die of your chosen color once and Michiel rolls the die
of his chosen color once. The person with the highest result wins the game.

Since Michiel is very polite, he lets you choose your color first. After Michiel sees which
color you have chosen, he chooses his color. Michiel will win this game with probability 2/3.

Question 5: In this question, you are given a fair and independent coin. Let n ≥ 1 be an
integer. Farah flips the coin n times, whereas May flips the coin n + 1 times. Define the
following two random variables:

X = the number of heads in Farah’s sequence of coin flips,

Y = the number of heads in May’s sequence of coin flips.

Let A be the event
A = “X < Y ”.

• Prove that

Pr(A) =
1

22n+1

n∑
k=0

n+1∑
`=k+1

(
n

k

)
·
(
n + 1

`

)
.

• Define the following two random variables:

X ′ = the number of tails in Farah’s sequence of coin flips,

Y ′ = the number of tails in May’s sequence of coin flips.

– What is X + X ′?
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– What is Y + Y ′?

– Let B be the event
B = “ X ′ < Y ′ ”.

Explain in plain English and at most two sentences why

Pr(A) = Pr(B).

– Express the event B in terms of the event A.

– Use the results of the previous parts to determine Pr(A).

• Prove that
n∑

k=0

n+1∑
`=k+1

(
n

k

)
·
(
n + 1

`

)
= 22n.

Solution: The total number of coin flips is equal to 2n + 1. Therefore, the total number of
possible sequences is equal to 22n+1. How many of these sequences satisfy X < Y :

1. Let k be the number of heads in Farah’s sequence. The possible values for k are
0, 1, 2, . . . , n.

2. Let ` be the number of heads in May’s sequence. The possible values for ` are k +
1, k + 2, . . . , n + 1.

3. For fixed k and `, the number of sequences with X = k and Y = ` is equal to
(
n
k

)
·
(
n+1
`

)
.

We conclude that the total number of sequences that satisfy X < Y is equal to

n∑
k=0

n+1∑
`=k+1

(
n

k

)
·
(
n + 1

`

)
.

From this, we get the expression for Pr(A).

• Obviously, X + X ′ = n.

• Obviously, Y + Y ′ = n + 1.

• Since the coin is fair, everything is symmetric in “heads” and “tails”. In other words, if
we interchange the roles of “heads” and “tails”, then nothing changes. The event B is
obtained from the event A by interchanging the roles of “heads” and “tails”. Because
of this, Pr(A) = Pr(B).
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• We have the following chain of equivalencies:

B ⇐⇒ X ′ < Y ′

⇐⇒ n−X < n + 1− Y

⇐⇒ X > Y − 1

⇐⇒ X ≥ Y (because X and Y have integer values)

⇐⇒ A

• Let p = Pr(A). By combining the previous parts, we get

p = Pr(A)

= Pr(B)

= Pr
(
A
)

= 1− Pr(A)

= 1− p.

If we solve this equation for p, we see that

p = Pr(A) = 1/2.

For the last part of the question, we have obtained two expressions for Pr(A): One
expression is the double summation, the other expression is 1/2. These two expressions
must be equal. If you multiply both expressions by 22n+1, we conclude that

n∑
k=0

n+1∑
`=k+1

(
n

k

)
·
(
n + 1

`

)
= 22n.

Question 6: Let n ≥ 2 be an integer and let a1, a2, . . . , an be a permutation of the set
{1, 2, . . . , n}. Define a0 = 0 and an+1 = 0, and consider the sequence

a0, a1, a2, a3, . . . , an, an+1.

A position i with 1 ≤ i ≤ n is called awesome, if ai > ai−1 and ai > ai+1. In words, i is
awesome if the value at position i is larger than both its neighboring values.

For example, if n = 6 and the permutation is 2, 5, 4, 3, 1, 6, we get the sequence

value 0 2 5 4 3 1 6 0

position 0 1 2 3 4 5 6 7

In this case, the positions 2 and 6 are awesome, whereas the positions 1, 3, 4, and 5 are not
awesome.

Consider a uniformly random permutation of the set {1, 2, . . . , n} and define the random
variable X to be the number of awesome positions. Determine the expected value E(X) of
the random variable X.
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Hint: Use indicator random variables.

Solution: We will use indicator random variables X1, X2, . . . , Xn, where

Xi =

{
1 if position i is awesome,
0 otherwise.

Since X =
∑n

i=1Xi, we get

E(X) = E

(
n∑

i=1

Xi

)

=
n∑

i=1

E (Xi) .

Since each Xi has value 0 or 1, we have

E (Xi) = Pr (Xi = 1)

= Pr(i is awesome).

Consider a position i with 2 ≤ i ≤ n − 1. The position i is awesome if and only if the
value at position i is larger than both its neighbors.

Here is an informal argument: Consider the three values at positions i− 1, i, and i + 1.
There are 6! possible permutations of these. In exactly two of them, position i is awesome.
Therefore,

E (Xi) = 2/6 = 1/3.

Let us do this more formally: There are n! possible permutations. For how many of these is
position i awesome? For this, we will use the Product Rule:

• Choose 3 elements, out of n. There are
(
n
3

)
ways to do this.

• From the 3 chosen elements, place the largest at position i, and place the other 2 at
positions i− 1 and i + 1. There are 2 ways to do this.

• Place the remaining n−3 elements in an arbitrary order in the remaining n−3 positions.
There are (n− 3)! ways to do this.

From this, we see that the number of permutations in which position i is awesome is equal
to (

n

3

)
· 2 · (n− 3)! = n!/3.

We conclude that

E (Xi) =
n!/3

n!
= 1/3.
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Consider the position i = 1. This position is awesome if and only if the value at position
1 is larger than its neighbor at position 2. If you understood the reasoning above, then you
won’t have any difficulty to convince yourself that the number of permutations in which
position 1 is awesome is equal to (

n

2

)
· (n− 2)! = n!/2.

We conclude that

E (X1) =
n!/2

n!
= 1/2.

Using the same reasoning, we get
E (Xn) = 1/2.

If we put everything together, we get

E(X) =
n∑

i=1

E (Xi)

= 1/2 + (n− 2) · 1/3 + 1/2

= (n + 1)/3.

Question 7: If X is a random variable that can take any value in {1, 2, 3, . . .}, and if A is
an event, then the conditional expected value E(X | A) is defined as

E(X | A) =
∞∑
k=1

k · Pr(X = k | A).

In words, E(X | A) is the expected value of X, when you are given that the event A occurs.
You roll a fair die repeatedly, and independently, until you see the number 6. Define the

random variable X to be the number of times you roll the die (this includes the last roll, in
which you see the number 6). We have seen in class that E(X) = 6. Let A be the event

A = “the results of all rolls are even numbers”.

Determine the conditional expected value E(X | A).
Hint: The answer is not what you expect. We have seen in class that

∑∞
k=1 k · xk−1 =

1/(1− x)2.

Solution: In class, we have seen the following: Consider an experiment that is successful
with probability p. We repeat the experiment, independently, until it is successful for the
first time. The expected number of times we do the experiment is equal to 1/p.

In this question, the experiment is rolling a die and we are successful if we roll a 6. We
denote the number of rolls by X. The success probability is 1/6 and, therefore, E(X) = 6.
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The event A says that we always roll an even number. This means that, on every roll,
we have one of 2, 4, and 6, and we stop at the first 6. Thus, the success probability becomes
1/3, suggesting that E(X | A) is equal to 3. Most people (including Michiel) think that this
must be the correct answer. Below, we will see that this is not the case. The conclusion is
that probability theory is very strange.

The sample space is the set of all sequences of rolls that can occur:

S = {r1r2 . . . rk : k ≥ 1, r1 6= 6, . . . , rk−1 6= 6, rk = 6}.

The event A is the subset of S in which all rolls are even:

A = {r1r2 . . . rk : k ≥ 1, r1 ∈ {2, 4}, . . . , rk−1 ∈ {2, 4}, rk = 6}.

We will need Pr(A), so we start by determining this probability:

Pr(A) =
∞∑
k=1

Pr

2 or 4, . . . , 2 or 4︸ ︷︷ ︸
k−1

, 6


=

∞∑
k=1

(1/3)k−1 · 1/6

= 1/6 ·
(
1 + 1/3 + (1/3)2 + (1/3)3 + (1/3)4 + · · ·

)
= 1/6 · 1

1− 1/3

= 1/4.

To determine E(X | A), we need Pr(X = k | A):

Pr(X = k | A) =
Pr(X = k ∧ A)

Pr(A)

=
Pr(X = k ∧ A)

1/4

= 4 · Pr(X = k ∧ A)

= 4 · Pr

2 or 4, . . . , 2 or 4︸ ︷︷ ︸
k−1

, 6


= 4 · (1/3)k−1 · 1/6

= 2/3 · (1/3)k−1.

The rest is now obtained by doing the algebra and using the hint:

E(X | A) =
∞∑
k=1

k · Pr(X = k | A)
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=
∞∑
k=1

k · 2/3 · (1/3)k−1

= 2/3
∞∑
k=1

k · (1/3)k−1

= 2/3 ·
(

1

1− 1/3

)2

= 3/2.

Here is an alternative solution. Assume we roll a fair die repeatedly and independently,
until we see one of the numbers 1, 3, 5, 6. Let Y denote the number of rolls (this includes
the last roll, in which we see one of 1, 3, 5, 6). The success probability in one roll is equal
to p = 4/6 = 2/3. Therefore, we know from class that

E(Y ) = 3/2.

For each i ∈ {1, 3, 5, 6}, define the event

Bi = “the result of the last roll is i”.

By symmetry, we have

Pr (B1) = Pr (B3) = Pr (B5) = Pr (B6) = 1/4

and
E (Y | B1) = E (Y | B3) = E (Y | B5) = E (Y | B6) .

Next, we observe that
E(X | A) = E (Y | B6) .

The event “Y = k” happens if and only if one of the four events “Y = k ∧ Bi”, for i ∈
{1, 3, 5, 6}, happens. Since the latter four events are pairwise disjoint, we have (the sum is
over i = 1, 3, 5, 6)

Pr(Y = k) =
∑
i

Pr (Y = k ∧Bi)

=
∑
i

Pr (Y = k|Bi) · Pr (Bi) .

By combining everything, we get

3/2 = E(Y )

=
∞∑
k=1

k · Pr(Y = k)
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=
∞∑
k=1

k
∑
i

Pr (Y = k|Bi) · Pr (Bi)

=
∞∑
k=1

k
∑
i

Pr (Y = k|Bi) · 1/4

= 1/4 ·
∑
i

∞∑
k=1

k · Pr (Y = k|Bi)

= 1/4 ·
∑
i

E (Y |Bi)

= 1/4 ·
∑
i

E(X|A)

= 1/4 · 4 · E (X|A)

= E (X|A) .
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