COMP 2804 — Assignment 2

Due: Sunday October 14, before 11:55pm.

Assignment Policy:

- Your assignment must be submitted as one single PDF file through cuLearn.
- Late assignments will not be accepted. I will not reply to emails of the type "my internet connection broke down at 11:53pm" or "my scanner stopped working at 11:54pm".
- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you must do so in your own words.
- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.
- When writing your solutions, you must follow the guidelines below.
 - You must justify your answers.
 - The answers should be concise, clear and neat.
 - When presenting proofs, every step should be justified.

Question 1:

• Write your name and student number.

Question 2: The function $f: \mathbb{N} \to \mathbb{N}$ is defined by

$$\begin{array}{lcl} f(0) & = & 1, \\ f(n) & = & 7 \cdot f(n-1) + (2n-1) \cdot 7^{n-1} & \text{if } n \geq 1. \end{array}$$

• Prove that for every integer $n \geq 0$,

$$f(n) = (n^2 + 7) \cdot 7^{n-1}.$$

Question 3: The function $f: \mathbb{N} \to \mathbb{N}$ is defined by

$$f(0) = 0,$$

$$f(n) = f(n-1) + 3 \cdot (f(n-1))^{2/3} + 3 \cdot (f(n-1))^{1/3} + 1 \text{ if } n \ge 1.$$

• Solve this recurrence, i.e., express f(n) in terms of n only.

Question 4: Let $n \ge 1$ be an integer and consider the set $S = \{1, 2, \dots, n\}$.

• Assume we arrange the elements of S in sorted order on a horizontal line. Let B_n be the number of subsets of S that do not contain any two elements that are neighbors on this line. For example, if n = 4, then both subsets $\{1,3\}$ and $\{1,4\}$ are counted in B_4 , but neither of the subsets $\{2,3\}$ and $\{2,3,4\}$ is counted.

For each integer $n \geq 1$, express B_n in terms of numbers that we have seen in class.

• Assume we arrange the elements of S in sorted order along a circle. Let C_n be the number of subsets of S that do not contain any two elements that are neighbors on this circle. For example, if n = 4, then the subset $\{1,3\}$ is counted in C_4 , but neither of the subsets $\{2,3\}$ and $\{1,4\}$ is counted.

For each integer $n \geq 4$, express C_n in terms of numbers that we have seen in class.

Question 5: In class, we have seen algorithm Euclid(a,b), which takes as input two integers a and b with $a \ge b \ge 1$, and returns their greatest common divisior.

• Assume we run this algorithm with two input integers a and b that satisfy $b > a \ge 1$. What is the output of this algorithm? As always, justify your answer.

Question 6: The Fibonacci numbers are defined by

$$f_0 = 0,$$

 $f_1 = 1,$
 $f_n = f_{n-1} + f_{n-2}, \text{ if } n \ge 2.$

The goal of this exercise is to prove that there exists a Fibonacci number whose 2018 right-most digits (when written in decimal notation) are all zero.

In the rest of this exercise, N denotes the number 10^{4036} . For any integer $n \ge 0$, define

$$g_n = f_n \bmod 10^{2018}.$$

• Consider the ordered pairs (g_n, g_{n+1}) , for n = 0, 1, 2, ..., N. Use the Pigeonhole Principle to prove that these ordered pairs cannot all be distinct. That is, prove that there exist integers $m \geq 0$, $p \geq 1$, such that $m + p \leq N$ and

$$(g_m, g_{m+1}) = (g_{m+p}, g_{m+p+1}).$$

- Prove that $(g_{m-1}, g_m) = (g_{m+p-1}, g_{m+p}).$
- Prove that $(g_0, g_1) = (g_p, g_{p+1}).$
- Consider the decimal representation of f_p . Prove that the 2018 rightmost digits of f_p are all zero.

Question 7: In this exercise, we consider strings of characters, where each character is an element of $\{a, b, c\}$. Such a string is called *aa-free*, if it does not contain two consecutive a's. For any integer $n \geq 1$, let F_n be the number of aa-free strings of length n.

- Determine F_1 , F_2 , and F_3 .
- Let $n \geq 3$ be an integer. Express F_n in terms of F_{n-1} and F_{n-2} .
- Prove that for every integer $n \geq 1$,

$$F_n = \left(\frac{1}{2} + \frac{1}{\sqrt{3}}\right) \left(1 + \sqrt{3}\right)^n + \left(\frac{1}{2} - \frac{1}{\sqrt{3}}\right) \left(1 - \sqrt{3}\right)^n.$$

Hint: What are the solutions of the equation $x^2 = 2x + 2$? Using these solutions will simplify the proof.

Question 8: Let $m \ge 1$ and $n \ge 1$ be integers and consider an $m \times n$ matrix A. The rows of this matrix are numbered $1, 2, \ldots, m$, and its columns are numbered $1, 2, \ldots, n$. Each entry of A stores one number and, for each row, all numbers in this row are pairwise distinct. For each $i = 1, 2, \ldots, m$, define

g(i) = the position (i.e., column number) of the smallest number in row i.

We say that the matrix A is awe some, if

$$g(1) \le g(2) \le g(3) \le \ldots \le g(m).$$

In the matrix below, the smallest number in each row is in boldface. For this example, we have m=4, n=10, g(1)=3, g(2)=3, g(3)=5, and g(4)=8. Thus, this matrix is awesome.

$$A = \begin{pmatrix} 13 & 12 & \mathbf{5} & 8 & 6 & 9 & 15 & 20 & 19 & 7 \\ 3 & 4 & \mathbf{1} & 17 & 6 & 13 & 7 & 10 & 2 & 5 \\ 19 & 5 & 12 & 7 & \mathbf{2} & 4 & 11 & 13 & 6 & 3 \\ 7 & 4 & 17 & 10 & 5 & 14 & 12 & \mathbf{3} & 20 & 6 \end{pmatrix}.$$

From now on, we assume that the $m \times n$ matrix A is awesome.

- Let i be an integer with $1 \le i \le m$. Describe, in plain English and a few sentences, an algorithm that computes g(i) in O(n) time.
- Describe, in plain English and a few sentences, an algorithm that computes all values $g(1), g(2), \ldots, g(m)$ in O(mn) total time.

In the rest of this exercise, you will show that all values $g(1), g(2), \ldots, g(m)$ can be computed in $O(m + n \log m)$ total time.

• Assume that m is even and assume that you are given the values

$$g(2), g(4), g(6), g(8), \dots, g(m).$$

Describe, in plain English and using one or more figures, an algorithm that computes the values

$$g(1), g(3), g(5), g(7), \dots, g(m-1)$$

in O(m+n) total time.

• Assume that $m = 2^k$, i.e., m is a power of two. Describe a recursive algorithm FINDMINIMA that has the following specification:

Algorithm FINDMINIMA(A, i):

Input: An $m \times n$ awesome matrix A and an integer i with $0 \le i \le k$.

Output: The values $g(j \cdot m/2^i)$ for $j = 1, 2, 3, \dots, 2^i$.

For each i with $0 \le i \le k$, let T(i) denote the running time of algorithm FINDMINIMA(A, i). The running time of your algorithm must satisfy the recurrence

$$T(0) = O(n),$$

 $T(i) = T(i-1) + O(2^{i} + n), \text{ if } 1 \le i \le k.$

You may use plain English and figures to describe your algorithm, but it must be clear how you use recursion.

• Assume again that $m = 2^k$. Prove that all values $g(1), g(2), \ldots, g(m)$ can be computed in $O(m + n \log m)$ total time.

Hint: $1 + 2 + 2^2 + 2^3 + \dots + 2^k \le 2m$.