
COMP 2804 — Solutions Assignment 2

Question 1:

• Write your name and student number.

Solution:

• Name: Johan Cruijff

• Student number: 14

Question 2: The function f : N→ N is defined by

f(0) = 1,
f(n) = 7 · f(n− 1) + (2n− 1) · 7n−1 if n ≥ 1.

• Prove that for every integer n ≥ 0,

f(n) =
(
n2 + 7

)
· 7n−1.

Solution: The proof is by induction on n. The base case is when n = 0. For this case, the
left-hand side is f(0), which is 1, and the right-hand side is (02 + 7) · 70−1, which is also 1.
Thus, the base case holds.

For the induction step, let n ≥ 1 be an integer and assume the claim is true for n − 1.
In other words, we assume that

f(n− 1) =
(
(n− 1)2 + 7

)
· 7n−2.

We now prove that the claim is also true for n. For this, we use the recurrence, the assump-
tion, and some algebra:

f(n) = 7 · f(n− 1) + (2n− 1) · 7n−1

= 7
((

(n− 1)2 + 7
)
· 7n−2

)
+ (2n− 1) · 7n−1

=
(
(n− 1)2 + 7 + (2n− 1)

)
· 7n−1

=
(
n2 − 2n+ 1 + 7 + 2n− 1

)
· 7n−1

=
(
n2 + 7

)
· 7n−1.

This proves the induction step.

Question 3: The function f : N→ N is defined by

f(0) = 0,

f(n) = f(n− 1) + 3 · (f(n− 1))2/3 + 3 · (f(n− 1))1/3 + 1 if n ≥ 1.

1



• Solve this recurrence, i.e., express f(n) in terms of n only.

Solution: The solution will be of the type “guess the answer and verify by induction”.
There are two methods to guess the answer:

1. Use the recurrence to compute f(n) for some small values of n: f(0) = 0, f(1) = 1,
f(2) = 8, f(3) = 27. From this, it looks like f(n) = n3.

2. The recurrence looks very similar to Question 6 in Assignment 1. Based on this, we
guess that f(n) = n3.

Now that we think that for all n ≥ 0,

f(n) = n3,

we are going to verify this by induction.
The base case is when n = 0. For this case, the left-hand side is f(0), which is 0, and

the right-hand side is 03, which is also 0. Thus, the base case holds.
For the induction step, let n ≥ 1 be an integer and assume the claim is true for n − 1.

In other words, we assume that

f(n− 1) = (n− 1)3.

We now prove that the claim is also true for n. For this, we use the recurrence, the assump-
tion, and some algebra:

f(n) = f(n− 1) + 3 · (f(n− 1))2/3 + 3 · (f(n− 1))1/3 + 1

= (n− 1)3 + 3 ·
(
(n− 1)3

)2/3
+ 3 ·

(
(n− 1)3

)1/3
+ 1

= (n− 1)3 + 3 · (n− 1)2 + 3 · (n− 1) + 1.

We have seen in Question 6 in Assignment 1 that the right-hand side is equal to n3. Therefore,
we have f(n) = n3. This proves the induction step.

Question 4: Let n ≥ 1 be an integer and consider the set S = {1, 2, . . . , n}.
• Assume we arrange the elements of S in sorted order on a horizontal line. Let Bn be

the number of subsets of S that do not contain any two elements that are neighbors
on this line. For example, if n = 4, then both subsets {1, 3} and {1, 4} are counted in
B4, but neither of the subsets {2, 3} and {2, 3, 4} is counted.

For each integer n ≥ 1, express Bn in terms of numbers that we have seen in class.

• Assume we arrange the elements of S in sorted order along a circle. Let Cn be the
number of subsets of S that do not contain any two elements that are neighbors on
this circle. For example, if n = 4, then the subset {1, 3} is counted in C4, but neither
of the subsets {2, 3} and {1, 4} is counted.

For each integer n ≥ 4, express Cn in terms of numbers that we have seen in class.

2



Solution:

First part:

1. We have seen in class that the number of 00-free bitstrings of length n is equal to fn+2,
which is the Fibonacci number with index n+ 2.

2. By swapping the roles of 0 and 1, we see that the number of 11-free bitstrings of length
n is also equal to fn+2.

3. We have seen in class that any subset of S can be encoded as a bitstring of length n.

4. The condition that the subset cannot contain two elements that are neighbors on the
line means that the bitstring is 11-free.

5. We conclude that Bn = fn+2.

Second part:

1. As above, we are going to encode subsets as binary strings of length n.

2. The condition that the subset cannot contain two elements that are neighbors on the
circle means that the bitstring is 11-free and, additionally, the first and last bits cannot
both be 1.

3. We divide all these bitstrings into two groups:

(a) Group 1: The first bit is 0.

By removing this first bit, we get all 11-free bitstrings of length n−1. The number
of strings in this group is fn+1.

(b) Group 2: The first bit is 1.

The second bit must be 0 and the last bit must be 0 as well. By removing the
first two bits and the last bit, we get all 11-free bitstrings of length n − 3. The
number of strings in this group is fn−1.

4. We conclude that Cn = fn+1 + fn−1.

Question 5: In class, we have seen algorithm Euclid(a, b), which takes as input two
integers a and b with a ≥ b ≥ 1, and returns their greatest common divisior.

• Assume we run this algorithm with two input integers a and b that satisfy b > a ≥ 1.
What is the output of this algorithm? As always, justify your answer.

3



Solution: As we have seen in class, the algorithm is as follows:

Algorithm Euclid(a, b):

// a and b are integers with a ≥ b ≥ 1
r = a mod b;
if r = 0
then return b
else Euclid(b, r)

// observe that b > r ≥ 1
endif

Assume that b > a ≥ 1. Let us see what happens if we run Euclid(a, b):

1. The first line computes a mod b and stores the result in r. Since a < b, we have
a mod b = a. Thus, r = a.

2. Since a ≥ 1, we have r 6= 0.

3. Thus, there is a recursive call Euclid(b, r), which is the same as Euclid(b, a).

4. Since b > a ≥ 1, we have seen in class that Euclid(b, a) returns gcd(b, a), which is
equal to gcd(a, b).

5. We conclude that Euclid(a, b) returns gcd(a, b).

Question 6: The Fibonacci numbers are defined by

f0 = 0,
f1 = 1,
fn = fn−1 + fn−2, if n ≥ 2.

The goal of this exercise is to prove that there exists a Fibonacci number whose 2018 right-
most digits (when written in decimal notation) are all zero.

In the rest of this exercise, N denotes the number 104036. For any integer n ≥ 0, define

gn = fn mod 102018.

• Consider the ordered pairs (gn, gn+1), for n = 0, 1, 2, . . . , N . Use the Pigeonhole Prin-
ciple to prove that these ordered pairs cannot all be distinct. That is, prove that there
exist integers m ≥ 0, p ≥ 1, such that m+ p ≤ N and

(gm, gm+1) = (gm+p, gm+p+1).

• Prove that (gm−1, gm) = (gm+p−1, gm+p).

• Prove that (g0, g1) = (gp, gp+1).

4



• Consider the decimal representation of fp. Prove that the 2018 rightmost digits of fp
are all zero.

Solution:

First part:

1. The number of ordered pairs (gn, gn+1) is equal to N + 1.

2. For each such pair, the first “coordinate” is an element of {0, 1, 2, , . . . ,
√
N−1}. Thus,

there are
√
N possible values for the first coordinate.

3. For each such pair, the second “coordinate” is an element of {0, 1, 2, , . . . ,
√
N − 1}.

Thus, there are
√
N possible values for the second coordinate.

4. The total number of different pairs is equal to
√
N ×

√
N = N .

5. We conclude that there are more pairs than posssible different pairs. By the Pigeonhole
Principle, the sequence (gn, gn+1), for n = 0, 1, 2, . . . , N , contains duplicates.

6. If we use m and m + p to denote the indices of two duplicates, then (gm, gm+1) =
(gm+p, gm+p+1).

Second part:

1. We first look at the Fibonacci numbers:

(a) If we know fn−1 and fn−2, then we can obtain the value fn: It is equal to fn−1 +
fn−2. In other words, this allows us to obtain the next number in the sequence.

(b) If we know fn and fn−1, then we can obtain the value fn−2: It is equal to fn−fn−1.
In other words, this allows us to obtain the previous number in the sequence.

(c) Since gn = fn mod
√
N , the same is true for the numbers in the sequence g0, g1, g2, . . .

2. We know from the first part that

gm = gm+p

and
gm+1 = gm+p+1.

It follows that (all arithmetic is done modulo
√
N):

gm−1 = gm+1 − gm
= gm+p+1 − gm+p

= gm+p−1.

3. Since gm−1 = gm+p−1 and gm = gm+p, we conclude that (gm−1, gm) = (gm+p−1, gm+p).

5



Third part:

1. In the second part, we have shown the following:

Since (gm, gm+1) = (gm+p, gm+p+1), we have (gm−1, gm) = (gm+p−1, gm+p).

2. Of course, we can repeat this: We know that

(gm−1, gm) = (gm+p−1, gm+p),

from which we get
(gm−2, gm−1) = (gm+p−2, gm+p−1),

from which we get
(gm−3, gm−2) = (gm+p−3, gm+p−2),

from which we get
(gm−4, gm−3) = (gm+p−4, gm+p−3),

etc., etc. At the end, we conclude that

(gm−m, gm−m+1) = (gm+p−m, gm+p−m+1),

which is the same as
(g0, g1) = (gp, gp+1).

Fourth part:

1. We have seen above that gp = g0.

2. We know that g0 = f0 mod 102018. Since f0 = 0, we have

g0 = f0 mod 102018 = 0 mod 102018 = 0.

3. We now know that gp = g0 = 0, which means that fp mod 102018 = 0, which means
that fp is divisible by 102018, which means that the 2018 rightmost digits of fp are all
zero.

Remark: Of course there is nothing magic about the number 2018: For every integer k ≥ 1,
there is a Fibonacci number whose k rightmost digits are all 0. To prove this, repeat this
exercise with gn = fn mod 10k and N = 102k.

Question 7: In this exercise, we consider strings of characters, where each character is an
element of {a, b, c}. Such a string is called aa-free, if it does not contain two consecutive a’s.
For any integer n ≥ 1, let Fn be the number of aa-free strings of length n.

• Determine F1, F2, and F3.

6



• Let n ≥ 3 be an integer. Express Fn in terms of Fn−1 and Fn−2.

• Prove that for every integer n ≥ 1,

Fn =

(
1

2
+

1√
3

)(
1 +
√

3
)n

+

(
1

2
− 1√

3

)(
1−
√

3
)n
.

Hint: What are the solutions of the equation x2 = 2x + 2? Using these solutions will
simplify the proof.

Solution:

First part:

1. To determine F1: There are 3 possible strings of length 1; all of them are aa-free.
Therefore, F1 = 3.

2. To determine F2: There are 32 = 9 possible strings of length 2. Among these, the
string aa is not aa-free. Therefore, F2 = 9− 1 = 8.

3. To determine F3: There are 33 = 27 possible strings of length 2. Here are the 5 strings
of length 3 that are not aa-free:

aaa, aab, aac, baa, caa.

Therefore, F3 = 27− 5 = 22.

Second part: Let n ≥ 3. By definition, the number of aa-free strings of length n is equal
to Fn. We are going to divide all these strings into three groups, based on the first character:

1. Group 1: Strings that start with b.

If we remove the first character from all these strings, then we obtain all aa-free strings
of length n− 1. Therefore, this group consists of Fn−1 many strings.

2. Group 2: Strings that start with c.

If we remove the first character from all these strings, then we obtain all aa-free strings
of length n− 1. Therefore, this group consists of Fn−1 many strings.

3. Group 3: Strings that start with a.

We subdivide this group into two subgroups, based on the second character (this second
character cannot be a):

(a) Group 3.1: The second character is b.

If we remove the first two characters from all these strings, then we obtain all aa-
free strings of length n− 2. Therefore, this group consists of Fn−2 many strings.

7



(b) Group 3.2: The second character is c.

If we remove the first two characters from all these strings, then we obtain all aa-
free strings of length n− 2. Therefore, this group consists of Fn−2 many strings.

Based on this way of counting, the number of aa-free strings of length n is equal to

2 · Fn−1 + 2 · Fn−2.

We conclude that Fn = 2 · Fn−1 + 2 · Fn−2.
As a sanity check, we have seen that F1 = 3, F2 = 8, and F3 = 22. We see that

F3 = 2 · F2 + 2 · F1. (If this were not the case, we would have made a mistake!)

Third part: We have obtained the following recurrence:

F1 = 3,
F2 = 8,
Fn = 2 · Fn−1 + 2 · Fn−2, if n ≥ 3.

You learned in high school that the equation x2 = 2x+ 2 has two solutions: α = 1 +
√

3 and
β = 1−

√
3. Thus, we have to prove that for all n ≥ 1,

Fn =

(
1

2
+

1√
3

)
αn +

(
1

2
− 1√

3

)
βn.

We are going to prove this by induction.
The first base case is when n = 1. The left-hand side is F1, which is 3. The right-hand

side is (
1

2
+

1√
3

)
α +

(
1

2
− 1√

3

)
β,

which is also 3. This proves the first base case.
The second base case is when n = 2. The left-hand side is F2, which is 8. The right-hand

side is (
1

2
+

1√
3

)
α2 +

(
1

2
− 1√

3

)
β2,

which is also 8. This proves the second base case.
For the induction step, let n ≥ 3 and assume that the claim is true for n− 1 and n− 2.

Thus, we assume that

Fn−1 =

(
1

2
+

1√
3

)
αn−1 +

(
1

2
− 1√

3

)
βn−1

and

Fn−2 =

(
1

2
+

1√
3

)
αn−2 +

(
1

2
− 1√

3

)
βn−2.

8



Using the recurrence, these two assumptions, and the facts that α2 = 2α+2 and β2 = 2β+2,
we get

Fn = 2 · Fn−1 + 2 · Fn−2

= 2 ·
((

1

2
+

1√
3

)
αn−1

)
+ 2 ·

((
1

2
− 1√

3

)
βn−1

)
+

2 ·
((

1

2
+

1√
3

)
αn−2

)
+ 2 ·

((
1

2
− 1√

3

)
βn−2

)
=

(
1

2
+

1√
3

)
αn−2 (2α + 2) +

(
1

2
− 1√

3

)
βn−2 (2β + 2)

=

(
1

2
+

1√
3

)
αn−2 · α2 +

(
1

2
− 1√

3

)
βn−2 · β2

=

(
1

2
+

1√
3

)
αn +

(
1

2
− 1√

3

)
βn.

This proves the induction step.

Question 8: Let m ≥ 1 and n ≥ 1 be integers and consider an m×n matrix A. The rows of
this matrix are numbered 1, 2, . . . ,m, and its columns are numbered 1, 2, . . . , n. Each entry
of A stores one number and, for each row, all numbers in this row are pairwise distinct. For
each i = 1, 2, . . . ,m, define

g(i) = the position (i.e., column number) of the smallest number in row i.

We say that the matrix A is awesome, if

g(1) ≤ g(2) ≤ g(3) ≤ . . . ≤ g(m).

In the matrix below, the smallest number in each row is in boldface. For this example, we
have m = 4, n = 10, g(1) = 3, g(2) = 3, g(3) = 5, and g(4) = 8. Thus, this matrix is
awesome.

A =


13 12 5 8 6 9 15 20 19 7
3 4 1 17 6 13 7 10 2 5
19 5 12 7 2 4 11 13 6 3
7 4 17 10 5 14 12 3 20 6

 .

From now on, we assume that the m× n matrix A is awesome.

• Let i be an integer with 1 ≤ i ≤ m. Describe, in plain English and a few sentences, an
algorithm that computes g(i) in O(n) time.

• Describe, in plain English and a few sentences, an algorithm that computes all values
g(1), g(2), . . . , g(m) in O(mn) total time.

In the rest of this exercise, you will show that all values g(1), g(2), . . . , g(m) can be computed
in O(m+ n logm) total time.

9



• Assume that m is even and assume that you are given the values

g(2), g(4), g(6), g(8), . . . , g(m).

Describe, in plain English and using one or more figures, an algorithm that computes
the values

g(1), g(3), g(5), g(7), . . . , g(m− 1)

in O(m+ n) total time.

• Assume that m = 2k, i.e., m is a power of two. Describe a recursive algorithm
FindMinima that has the following specification:

Algorithm FindMinima(A, i):
Input: An m× n awesome matrix A and an integer i with 0 ≤ i ≤ k.
Output: The values g (j ·m/2i) for j = 1, 2, 3, . . . , 2i.

For each i with 0 ≤ i ≤ k, let T (i) denote the running time of algorithm FindMinima(A, i).
The running time of your algorithm must satisfy the recurrence

T (0) = O(n),

T (i) = T (i− 1) +O
(
2i + n

)
, if 1 ≤ i ≤ k.

You may use plain English and figures to describe your algorithm, but it must be clear
how you use recursion.

• Assume again that m = 2k. Prove that all values g(1), g(2), . . . , g(m) can be computed
in O(m+ n logm) total time.

Hint: 1 + 2 + 22 + 23 + · · ·+ 2k ≤ 2m.

Solution: This exercise may look difficult. However, if you carefully read, and understand,
the different parts, then you will see that there are many hints!

First part: The algorithm should be obvious: Walk along the elements in row i, and
determine the smallest element in this row. The position of this smallest element is equal to
g(i). The running time is obviously O(n).

Second part: This algorithm should also be obvious: We repeat the first part once for
every i = 1, 2, . . . ,m, i.e., once for every row. The running time is m ·O(n) = O(mn).

10



Third part: The matrix has m rows and n columns. The smallest elements in all rows
form a “staircase”: If you are at the smallest element in row i, and move down to row i+ 1,
then the smallest element in row i+ 1 is to the right or at the same position.

We are given the positions of the smallest elements in the even rows. We want the
positions of the smallest elements in the odd rows.

The smallest element in row 1 is at one of the positions 1, 2, . . . , g(2). We find this
smallest element by scanning the first g(2) positions in row 1. Thus, we scan g(2) many
entries in row 1 and find g(1) in time that is proportional to g(2).

The smallest element in row 3 is at one of the positions g(2), . . . , g(4). We find this
smallest element by scanning these positions in row 3. Thus, we scan g(4)− g(2) + 1 many
entries in row 3 and find g(3) in time that is proportional to g(4)− g(2) + 1.

The smallest element in row 5 is at one of the positions g(4), . . . , g(6). We find this
smallest element by scanning these positions in row 5. Thus, we scan g(6)− g(4) + 1 many
entries in row 5 and find g(5) in time that is proportional to g(6)− g(4) + 1.

Etc., etc.
Here is a more formal way of describing this process:

1. Compute g(1) to be the position of the smallest element among the first g(2) positions
in row 1.

2. For i = 1, 2, . . . , m
2
− 1: Compute g(2i + 1) to be the position of the smallest element

among the positions g(2i), . . . , g(2i+ 2) in row 2i+ 1.

scan
min

min

min
scan

1
2

2i
2i + 1
2i + 2

The total running time is proportional to

g(2) +

m
2
−1∑

i=1

(g(2i+ 2)− g(2i) + 1) ,

which is the sum of

g(2), g(4)− g(2) + 1, g(6)− g(4) + 1, g(8)− g(6) + 1, . . . , g(m)− g(m− 2) + 1,

11



which is
g(m) +

(m
2
− 1
)
.

Since g(m) ≤ n, the total running time is at most

n+
(m

2
− 1
)
≤ n+m = O(m+ n).

Intermezzo: Before we go to the fourth part, here is some intuition of what we are going
to do:

1. Our goal is to compute all values g(1), ..., g(m).

2. From the third part: If we know g(2), g(4), g(6), . . ., then we can compute g(1), g(3), g(5), . . .,
in O(m+ n) time.

3. How do we know g(2), g(4), g(6), . . .? By the same idea: If we know g(4), g(8), g(12), . . .,
then we can compute g(2), g(6), g(10), . . ., in total time O(m/2 + n).

4. How do we know g(4), g(8), g(12), . . .? By the same idea: If we know g(4), g(12), g(20), . . .,
then we can compute g(8), g(16), g(24), . . .,, in total time O(m/4 + n).

5. You will see the pattern. At the end, we get:

6. How do we know g(m/2), g(m)? By the same idea: If we know g(m), then we can
compute g(m/2) in time O(n).

7. How do we know g(m)? For this, we use the first part of the question.

The purpose of the fourth part of the question is to describe this whole process using
recursion.

Fourth part:

1. The algorithm is called FindMinima(A, i) and is recursive. So there must be a base
case. From the recurrence for T (i) in the question, it should be clear that the base
case is when i = 0.

2. From the specification of the algorithm, what is FindMinima(A, 0) supposed to return:
Since i = 0, it returns only one value: g(m). So in the base case, we scan row m, and
return the position of the smallest number in this row.

3. What if i ≥ 1:

(a) From the recurrence for T (i), it should be clear that there is one recursive call,
namely FindMinima(A, i− 1).

(b) Let us see what FindMinima(A, i) is supposed to return: I write L for m/2i.

12



(c) FindMinima(A, i) should return the g-values for all rows that are multiples of L.

(d) If we know the g-values for all rows that are even multiples of L, then we can use
the approach in the third part of the question to obtain the g-values for all rows
that are odd multiples of L, in total time O(2i + n).

(e) The g-values for all rows that are even multiples of L are exactly the g-values for
all rows that are multiples of 2L. Since 2L = m/2i−1, we obtain these values by
calling FindMinima(A, i− 1).

In summary, here is what FindMinima(A, i) does:

Algorithm FindMinima(A, i):
If i = 0: Determine the smallest number in row m. The position of this smallest
number gives us the value g(m).
If i ≥ 1: Run FindMinima(A, i − 1). After this has terminated, we know the
g-values for all rows that are even multiples of m/2i. Now use the approach of the
third part to compute the g-values for all rows that are odd multiples of m/2i.

Fifth part: To obtain all values g(1), . . . , g(m), we run FindMinima(A, k). The total
time for this is equal to T (k).

We are going to use unfolding to solve the recurrence. There are two big-O’s in the
recurrence. We assume that the constants in both of them are equal to 1. (Why are we
allowed to do this?)

T (k) =
(
2k + n

)
+ T (k − 1)

=
(
2k + n

)
+
(
2k−1 + n

)
+ T (k − 2)

=
(
2k + 2k−1

)
+ 2n+ T (k − 2)

=
(
2k + 2k−1

)
+ 2n+

(
2k−2 + n

)
+ T (k − 3)

=
(
2k + 2k−1 + 2k−2

)
+ 3n+ T (k − 3)

...
...

=
(
2k + 2k−1 + 2k−2 + ...+ 2

)
+ kn+ T (0)

=
(
2k + 2k−1 + 2k−2 + ...+ 2

)
+ kn+ n.

According to the hint, 2k + 2k−1 + 2k−2 + ...+ 2 ≤ 2m. Therefore,

T (k) ≤ 2m+ kn+ n = 2m+ n(1 + k).

Since k = logm, we conclude that

T (k) ≤ 2m+ n(1 + logm) = O(m+ n logm).

13


