
COMP 2804 — Solutions Assignment 3

Question 1: On the first page of your assignment, write your name and student number.

Solution:

• Name: Johan Cruyff

• Student number: 14

Question 2: You are given a red coin and a blue coin. Both coins have the number 1 on
one side and the number 2 on the other side. You flip both coins once (independently of
each other) and take the sum of the two results. Define the events

A = “the sum of the results equal 2”,
B = “the sum of the results equals 3”,
C = “the sum of the results equals 4”.

• Assume both coins are fair. Determine Pr(A), Pr(B), and Pr(C). Show your work.

• Let p and q be real numbers with 0 < p < 1 and 0 < q < 1. Assume the red coin
comes up “1” with probability p and the blue coin comes up “1” with probability q. Is
it possible to choose p and q such that

Pr(A) = Pr(B) = Pr(C)?

As always, justify your answer.

Solution: We start with the case when both coins are fair. For each i ∈ {1, 2}, we define
the events

Ri = “the result of the red coin is i”,
Bi = “the result of the blue coin is i”.

Then Pr(A) = Pr(R1 ∧B1). Since the coin flips are independent, we get

Pr(A) = Pr(R1 ∧B1) = Pr(R1) · Pr(B1) = 1/2 · 1/2 = 1/4.

By the same reasoning, we get

Pr(C) = Pr(R2 ∧B2) = Pr(R2) · Pr(B2) = 1/2 · 1/2 = 1/4.

Since exactly one of the events A, B, and C is guaranteed to occur, we have

Pr(A) + Pr(B) + Pr(C) = 1,
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implying that Pr(B) = 1/2. Alternatively, we have

Pr(B) = Pr ((R2 ∧B1) ∨ (R1 ∧B2))

= Pr (R2 ∧B1) + Pr (R1 ∧B2)

= Pr(R2) · Pr(B1) + Pr(R1) · Pr(B2)

= 1/2 · 1/2 + 1/2 · 1/2

= 1/2.

Next we do the second part of the question. As above, we have

Pr(A) + Pr(B) + Pr(C) = 1.

Thus, if Pr(A) = Pr(B) = Pr(C), then each of them is equal to 1/3.
As above, we get

Pr(A) = pq = 1/3,

implying that

q =
1

3p
. (1)

As above, we get
Pr(C) = (1− p)(1− q) = 1− p− q + pq = 1/3.

Since pq = 1/3, we get 1− p− q + 1/3 = 1/3, which is equivalent to

p = 1− q. (2)

If we combine (1) and (2), we get

p = 1− 1

3p
,

which is equivalent to
3p2 = 3p− 1,

which is equivalent to
3p2 − 3p + 1 = 0.

In highschool, you have learned that the equation Ax2 + Bx + C = 0 has a solution in R if
and only if B2 − 4AC ≥ 0. In our case, we have

B2 − 4AC = (−3)2 − 4 · 3 · 1 = −3 < 0.

We conclude that the equation 3p2 − 3p + 1 = 0 does not have a solution in R. In other
words, it is not possible to choose p and q such that Pr(A) = Pr(B) = Pr(C).

Question 3: Elisa and Nick go to Tan Tran’s Darts Bar. When Elisa throws a dart, she
hits the dartboard with probability p. When Nick throws a dart, he hits the dartboard with
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probability q. Here, p and q are real numbers with 0 < p < 1 and 0 < q < 1. Elisa and Nick
throw one dart each, independently of each other. Define the events

E = “Elisa’s dart hits the dartboard”,
N = “Nick’s dart hits the dartboard”.

Use the formal definition of conditional probability to determine

Pr(E | E ∪N)

and
Pr(E ∩N | E ∪N).

Show your work.

Solution: We start by computing a probability that we will need later. We know, from
inclusion-exclusion, that

Pr(E ∪N) = Pr(E) + Pr(N)− Pr(E ∩N).

Since E and N are independent, we have

Pr(E ∩N) = Pr(E) · Pr(N).

It follows that

Pr(E ∪N) = Pr(E) + Pr(N)− Pr(E) · Pr(N)

= p + q − pq.

Using the definition of conditional probability, we get

Pr(E | E ∪N) =
Pr(E ∩ (E ∪N))

Pr(E ∪N)
.

By drawing a Venn diagram, you will see that

E ∩ (E ∪N) = E.

It follows that

Pr(E | E ∪N) =
Pr(E)

Pr(E ∪N)

=
p

p + q − pq
.

Using the definition of conditional probability, we get

Pr(E ∩N | E ∪N) =
Pr((E ∩N) ∩ (E ∪N))

Pr(E ∪N)
.

3



By drawing a Venn diagram, you will see that

(E ∩N) ∩ (E ∪N) = E ∩N.

It follows that

Pr(E ∩N | E ∪N) =
Pr(E ∩N)

Pr(E ∪N)

=
Pr(E) · Pr(N)

Pr(E ∪N)

=
pq

p + q − pq
.

Question 4: Let n ≥ 4 be an integer. Consider a uniformly random permutation of
{1, 2, . . . , n} and define the events

A = “1 and 2 are next to each other, with 1 to the left of 2, or
4 and 3 are next to each other, with 4 to the left of 3”

and
B = “1 and 2 are next to each other, with 1 to the left of 2, or

2 and 3 are next to each other, with 2 to the left of 3”.

• Determine Pr(A) and Pr(B).

Before you answer this question, spend a few seconds on guessing which probability is
larger.

Solution: We start with Pr(A). Let X be the number of permutations that satisfy the
condition for the event A. Then

Pr(A) =
X

n!
.

Thus, it remains to determine X.

• We first determine the number of permutations in which 1 is the left neighbor of 2.
Imagine these two digits to be one symbol, say, x. Then we have a new alphabet
{x, 3, 4, . . . , n} consisting of n− 1 symbols. This set has (n− 1)! many permutations.

• By the same reasoning, there are (n − 1)! many permutations in which 4 is the left
neighbor of 3.

• We next determine the number of permutations in which 1 is the left neighbor of 2 and
4 is the left neighbor of 3. We imagine the two digits 1 and 2 to be one symbol, say,
x, and the two digits 4 and 3 to be one symbol, say y. Then we have a new alphabet
{x, y, 5, 6, . . . , n} consisting of n−2 symbols. This set has (n−2)! many permutations.
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Using inclusion-exclusion, we conclude that

X = (n− 1)! + (n− 1)!− (n− 2)! = (2n− 3) · (n− 2)!.

This gives

Pr(A) =
X

n!
=

(2n− 3) · (n− 2)!

n!
=

2n− 3

n(n− 1)
.

Next we determine Pr(B). Let Y be the number of permutations that satisfy the condition
for the event B. Then

Pr(B) =
Y

n!
.

Thus, it remains to determine Y .

• We have seen above that the number of permutations in which 1 is the left neighbor
of 2 is equal to (n− 1)!.

• By the same reasoning, there are (n − 1)! many permutations in which 2 is the left
neighbor of 3.

• We next determine the number of permutations in which 1 is the left neighbor of 2 and
2 is the left neighbor of 3. We imagine the three digits 1, 2, and 3 to be one symbol,
say, z. Then we have a new alphabet {z, 4, 5, . . . , n} consisting of n− 2 symbols. This
set has (n− 2)! many permutations.

Using inclusion-exclusion, we conclude that

Y = (n− 1)! + (n− 1)!− (n− 2)! = (2n− 3) · (n− 2)!.

This gives

Pr(B) =
Y

n!
=

(2n− 3) · (n− 2)!

n!
=

2n− 3

n(n− 1)
.

Note that Pr(A) = Pr(B).

Question 5: Let A be an event in some probability space (S,Pr). You are given that the
events A and A are independent1. Determine Pr(A). Show your work.

Solution: Since A and A are independent, we have

Pr(A ∩ A) = Pr(A) · Pr(A).

Since A ∩ A = A, we have
Pr(A ∩ A) = Pr(A).

1This is not a typo.
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By combining these equations, we get

Pr(A) = Pr(A) · Pr(A).

Let p = Pr(A). Then we have
p = p2,

implying that p = 0 or p = 1.
Remark: If p = 0, then A = ∅. It is true that ∅ and ∅ are two independent events. If

p = 1, then A = S. It is true that S and S are two independent events.

Question 6: Three people P1, P2, and P3 are in a dark room. Each person has a bag
containing one red hat and one blue hat. Each person chooses a uniformly random hat from
her bag and puts it on her head. Afterwards, the lights are turned on.

Each person does not know the color of her hat, but can see the colors of the other two
hats. Each person Pi can do one of the following:

• Person Pi announces “my hat is red”.

• Person Pi announces “my hat is blue”.

• Person Pi says “I pass”.

The game is a success if at least one person announces the correct color of her hat and no
person announces the wrong color of her hat. (If a person passes, then she does not announce
any color.)

• Assume person P1 announces “my hat is red” and both P2 and P3 pass. Define the
event

A = “the game is a success.”

Determine Pr(A). Show your work.

• Assume each person Pi does the following:

– If the two hats that Pi sees have different colors, then Pi passes.

– If the two hats that Pi sees are both red, then Pi announces “my hat is blue”.

– If the two hats that Pi sees are both blue, then Pi announces “my hat is red”.

Define the event
B = “the game is a success.”

Determine Pr(B). Show your work.
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Solution: We start with Pr(A). The game is a success if and only if P1 announces the
correct color of her hat. Since the color of P1’s hat is random (red with probability 1/2 and
blue with probability 1/2), it follows that

Pr(A) = 1/2.

Next we determine Pr(B). The sample space S is the possible color-sequences for the
three hats:

S = {rrr, rrb, rbr, brr, rbb, brb, bbr, bbb};

the first letter indicates the color of P1’s hat, the second letter indicates the color of P2’s
hat, and the third letter indicates the color of P3’s hat.

Note that each color-sequence has a probability of 1/8.

• Assume the color-sequence is rrr. Then each person sees two red hats. According to
the rules of the game, each person announces “my hat is blue”. Thus, the game is a
failure.

• Assume the color-sequence is bbb. Then each person sees two blue hats. According to
the rules of the game, each person announces “my hat is red”. Thus, the game is a
failure.

• Assume the color-sequence has two reds and one blue.

– Each person with a red hat sees one red and one blue hat. According to the rules,
this person passes.

– The person with a blue hat sees two red hats. According to the rules of the game,
this person announces “my hat is blue”.

Thus, the game is a success.

• Assume the color-sequence has one red and two blues. (Of course, this case is symmetric
to the previous case.)

– Each person with a blue hat sees one red and one blue hat. According to the
rules, this person passes.

– The person with a red hat sees two blue hats. According to the rules of the game,
this person announces “my hat is red”.

Thus, the game is a success.

To summarize, for 2 elements in the sample space, the game is a failure. For the remaining
6 elements, the game is a success. Therefore,

Pr(B) = 6/8 = 3/4.
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Note that this second strategy is better than the first one.

Question 7: Let n ≥ 0 be an integer. In this question, you will prove that
n∑

k=0

1

k + 1

(
n

k

)
=

1

n + 1

(
2n+1 − 1

)
. (3)

There are n + 1 students in Carleton’s Computer Science program. We denote these
students by P1, P2, . . . , Pn+1. We play the following game:

1. We choose a uniformly random subset X of {P1, P2, . . . , Pn+1}.

2. (a) If X 6= ∅, then we choose a uniformly random student in X. The chosen student
wins a six-pack of cider.

(b) If X = ∅, then nobody wins the six-pack.

The random choices made are independent of each other.

• Define the event
A0 = “nobody wins the six-pack”.

Determine Pr (A0). Justify your answer.

Solution: The event A0 occurs if and only if the set X is empty. Since X is chosen
uniformly at random from all 2n+1 subsets of {P1, P2, . . . , Pn+1}, it follows that

Pr (A0) = Pr(X = ∅) = 1/2n+1.

• For each i = 1, 2, . . . , n + 1, define the event

Ai = “student Pi wins the six-pack”.

Explain in plain English, and in at most two sentences, why

Pr (A1) = Pr (A2) = . . . = Pr (An+1) .

Solution: By symmetry, no student has an advantage over the other students. There-
fore, each student has the same probability of winning the six-pack.

• Prove that

Pr (A1) =
1− 1/2n+1

n + 1
.

Solution: Since exactly one of the events A0, A1, . . . , An+1 is guaranteed to occur, we
have

Pr (A0) + Pr (A1) + · · ·+ Pr (An+1) = 1.

Let p = Pr (A1). Then we get

1/2n+1 + (n + 1)p = 1.

Solving for p gives us

Pr (A1) = p =
1− 1/2n+1

n + 1
.
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• For each k with 0 ≤ k ≤ n, define the event

Bk = “X has size k + 1 and P1 wins the six-pack”.

Prove that

Pr (Bk) =

(
n
k

)
2n+1

· 1

k + 1
.

Solution: The event Bk occurs if and only if both of the following two conditions are
satisfied:

– |X| = k + 1 and P1 ∈ X.

– P1 is chosen from X.

How many (k + 1)-element subsets are there that contain P1? This is the same as
counting the k-element subsets of {P2, P3, . . . , Pn+1}. Thus, the answer is

(
n
k

)
.

If the subset X has size k + 1 and contains P1, then the probability that P1 is chosen
is equal to 1/(k + 1). It follows that

Pr (Bk) =

(
n
k

)
2n+1

· 1

k + 1
.

If you have your doubts about this derivation, let us do this more carefully (you may
read Section 5.9.3 in the textbook): We define the events

C = “|X| = k + 1 and P1 ∈ X”

and
D = “P1 is chosen from X”.

Then the event Bk is equivalent to the event C ∩D. Thus,

Pr (Bk) = Pr(C ∩D)

= Pr(C) · Pr(D | C).

Since the event C occurs for
(
n
k

)
many subsets X, we have

Pr(C) =

(
n
k

)
2n+1

.

To determine Pr(D | C), we assume that the event C occurs. Thus, X has size k + 1
and it contains P1. Then the event D occurs if and only if P1 is chosen. Since the
algorithm chooses a uniformly random element in X, it follows that

Pr(D | C) =
1

k + 1
.

We conclude that

Pr (Bk) =

(
n
k

)
2n+1

· 1

k + 1
.
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• Express the event A1 in terms of the events B0, B1, . . . , Bn.

Solution: The event A1 occurs if and only if P1 wins the six-pack. This can only
happen if the subset X is non-empty. Since the size of X can be any of the numbers
1, 2, . . . , n + 1, it follows that

A1 if and only if B0 ∨B1 ∨ · · · ∨Bn.

• Prove that (3) holds by combining the results of the previous parts.

Solution: Note that the events B0, B1, . . . , Bn are pairwise disjoint. From the previous
parts of this question, we get

Pr (A1) = Pr (B0 ∨B1 ∨ · · · ∨Bn)

=
n∑

k=0

Pr (Bk)

=
n∑

k=0

(
n
k

)
2n+1

· 1

k + 1
.

We have obtained two expressions for Pr (A1). These two expressions must be equal.
If we multiply both by 2n+1, then we get (3).

Question 8: You roll a fair die once. Define the events

A = “the result is even”,
B = “the result is odd”,
C = “the result is at most 4”.

For each of the following questions, justify your answer.

• Are the events A and B independent?

• Are the events A and C independent?

• Are the events B and C independent?

Solution: The sample space is S = {1, 2, 3, 4, 5, 6}. As subsets of the sample space, the
events are

A = {2, 4, 6},

B = {1, 3, 5},

C = {1, 2, 3, 4}.
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We have
Pr(A) = |A|/|S| = 3/6 = 1/2,

Pr(B) = |B|/|S| = 3/6 = 1/2,

Pr(C) = |C|/|S| = 4/6 = 2/3.

Since A ∩B = ∅, we have
Pr(A ∩B) = Pr(∅) = 0.

Thus,
Pr(A ∩B) 6= Pr(A) · Pr(B),

i.e., A and B are not independent.
We have

Pr(A ∩ C) = Pr({2, 4}) = 2/6 = 1/3,

implying that
Pr(A ∩ C) = Pr(A) · Pr(C),

i.e., A and C are independent.
We have

Pr(B ∩ C) = Pr({1, 3}) = 2/6 = 1/3,

implying that
Pr(B ∩ C) = Pr(B) · Pr(C),

i.e., B and C are independent.

Question 9: Let n be a large power of two (thus, log n is an integer). Consider a binary
string s = s1s2 . . . sn, where each bit si is 0 with probability 1/2, and 1 with probability 1/2,
independently of the other bits.

A run of length k is a substring of length k, all of whose bits are equal. In class, we have
seen that it is very likely that the bitstring s contains a run of length at least log n−2 log log n.
In this exercise, you will prove that it is very unlikely that s contains a run of length more
than 2 log n.

• Let k be an integer with 1 ≤ k ≤ n. Define the event

A = “the bitstring s contains a run of length at least k”.

For each i with 1 ≤ i ≤ n− k + 1, define the event

Ai = “the substring sisi+1 . . . si+k−1 is a run”.

Use the Union Bound (Lemma 5.3.5 on page 135 of the textbook) to prove that

Pr(A) ≤ n− k + 1

2k−1
.
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• Let k = 2 log n. Prove that
Pr(A) ≤ 2/n.

Solution: First, we express the event A in terms of the events Ai: A run of length at least
k can start at any of the positions 1, 2, . . . , n− k + 1, implying that

A if and only if A1 ∨ A2 ∨ · · · ∨ An−k+1.

Thus, we have
Pr(A) = Pr (A1 ∨ A2 ∨ · · · ∨ An−k+1) .

Note that the events A1, . . . , An−k+1 are not pairwise disjoint. By applying the Union-Bound
to the right-hand side, we get

Pr(A) ≤ Pr (A1) + Pr (A2) + · · ·+ Pr (An−k+1)

=
n−k+1∑
i=1

Pr (Ai) .

The event Ai occurs if and only the substring si . . . si+k−1 consists of k zeroes or k ones.
Since the bits are generated uniformly at random, we get

Pr (Ai) = Pr(k zeroes) + Pr(k ones)

= (1/2)k + (1/2)k

= 1/2k−1.

We conclude that

Pr(A) ≤
n−k+1∑
i=1

Pr (Ai)

=
n−k+1∑
i=1

1/2k−1

= Pr(A) ≤ n− k + 1

2k−1
.

Now we take k = 2 log n. Since

2k = 22 logn = 2log(n2) = n2,

we get

Pr(A) ≤ n− k + 1

2k−1
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≤ n

2k−1

=
2n

2k

=
2n

n2

=
2

n
.
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