COMP 2804 — Assignment 3

Due: Thursday March 22, before 11:55pm, through cuLearn.

Assignment Policy:

- Your assignment must be submitted as one single PDF file through cuLearn.
- Late assignments will not be accepted.
- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you must do so in your own words.
- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.
- When writing your solutions, you must follow the guidelines below.
 - You must justify your answers.
 - The answers should be concise, clear and neat.
 - When presenting proofs, every step should be justified.

Question 1: Write your name and student number.

Question 2: When Tri¹ is a big boy, he wants to have four children. Assuming that the genders of these children are uniformly random, which of the following three events has the highest probability?

- 1. All four kids are of the same gender.
- 2. Three kids are of the same gender and the fourth kid is of the opposite gender.
- 3. Two kids are boys and two kids are girls.

As always, justify your answer.

¹ your	friendly TA	

Question 3: In this exercise, we assume that, when a child is born, its gender and day of birth are uniformly random and independent of other children. Thus, for each $G \in \{\text{boy, girl}\}$ and each

$$D \in \{\text{Sun, Mon, Tue, Wednes, Thurs, Fri, Satur}\},\$$

the probability that a child has gender G and is born on a Dday is equal to 1/14.

Anil Maheshwari² has two children. You are given that at least one of Anil's kids is a boy who was born on a Sunday. Determine the probability that Anil has two boys.

Question 4: You are given a fair red die and a fair blue die. Each of these two dice has the letter a on one face, the letter b on two faces, and the letter c on three faces. You roll both dice uniformly at random and independently of each other. Define the events

A = "at least one of the two rolls results in the letter b"

and

B = "both rolls result in the same letter".

• Determine Pr(A), Pr(B), and $Pr(A \mid B)$.

Question 5: In a standard deck of 52 cards, each card has a *suit* and a *rank*. There are four suits (spades \spadesuit , hearts \heartsuit , clubs \clubsuit , and diamonds \diamondsuit), and 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King).

A hand of cards is a subset consisting of five cards. A hand of cards is called a *straight*, if the ranks of these five cards are consecutive and the cards are not all of the same suit.

An Ace and a 2 are considered to be consecutive, whereas a King and an Ace are also considered to be consecutive. For example, each of the three hands below is a straight:

$$8 \spadesuit, 9 \heartsuit, 10 \diamondsuit, J \spadesuit, Q \clubsuit$$
$$A \diamondsuit, 2 \heartsuit, 3 \spadesuit, 4 \spadesuit, 5 \clubsuit$$
$$10 \diamondsuit, J \heartsuit, Q \spadesuit, K \spadesuit, A \clubsuit$$

• Assume you get a uniformly random hand of cards. Determine the probability that this hand is a straight.

²the guy in the office next to my office

Question 6: In this exercise, we consider a standard deck of 52 cards.

• We choose, uniformly at random, one card from the deck. Define the events

A = "the rank of the chosen card is Ace",

B = "the suit of the chosen card is diamonds".

Are the events A and B independent? As always, justify your answer.

• Assume we remove the Queen of hearts from the deck. We choose, uniformly at random, one card from the remaining 51 cards. Define the events

C = "the rank of the chosen card is Ace",

D = "the suit of the chosen card is diamonds".

Are the events C and D independent? Again, justify your answer.

Question 7: Let $n \geq 2$ be an integer. Assume we have n balls and 10 boxes. We throw the balls independently and uniformly at random in the boxes. Thus, for each k and i with $1 \leq k \leq n$ and $1 \leq i \leq 10$,

Pr(the k-th ball falls in the i-th box) = 1/10.

Define the event

 $A_n =$ "there is a box that contains at least two balls"

and let $p_n = \Pr(A_n)$.

- Determine the smallest value of n for which $p_n \geq 1/2$.
- Determine the smallest value of n for which $p_n \geq 2/3$.

Question 8: Nick³ is taking the course SPID 2804 (The Effect of Spiderman on the Banana Industry). The final exam for this course consists of one true/false question. To answer this question, Nick uses the following approach:

- 1. If Nick knows that the answer to the question is "true", he answers "true".
- 2. If Nick knows that the answer is "false", he answers "false".
- 3. If Nick does not know the answer, he flips a fair coin.
 - (a) If the coin comes up heads, he answers "true".
 - (b) If the coin comes up tails, he answers "false".

You are given that Nick knows the answer to the question with probability 0.8. Define the event

A = "Nick gives the correct answer to the question".

• Determine Pr(A).

Hint: Use the event B = "Nick knows the answer". What are the conditional probabilities $Pr(A \mid B)$ and $Pr(A \mid \overline{B})$?

Question 9: You are asked to design a random bit generator. You find a coin in your pocket, but, unfortunately, you are not sure if it is a fair coin. After some thought, you come up with the following algorithm GENERATEBIT(n), which takes as input an integer $n \ge 1$:

```
Algorithm GENERATEBIT(n):

// all coin flips made are mutually independent
flip the coin n times;
k = the number of heads in the sequence of n coin flips;
if k is odd
then return 0
else return 1
endif
```

In this exercise, you will show that, when $n \to \infty$, algorithm GenerateBit(n) returns a uniformly random bit.

Let p be the real number with 0 , such that, if the coin is flipped once, it comes up heads with probability <math>p and tails with probability 1 - p. (Note that algorithm GenerateBit does not need to know the value of p.) For any integer $n \ge 1$, define the two events

$$A_n =$$
 "algorithm GenerateBit(n) returns 0"

³your friendly TA

and

 B_n = "the *n*-th coin flip made by algorithm GENERATEBIT(*n*) results in heads", and define

$$P_n = \Pr\left(A_n\right)$$

and

$$Q_n = P_n - 1/2.$$

- Determine P_1 and Q_1 .
- For any integer $n \geq 2$, prove that

$$P_n = p + (1 - 2p) \cdot P_{n-1}$$
.

Hint: Express the event A_n in terms of the events A_{n-1} and B_n .

• For any integer $n \geq 2$, prove that

$$Q_n = (1 - 2p) \cdot Q_{n-1}.$$

• For any integer $n \geq 1$, prove that

$$Q_n = (1 - 2p)^{n-1} \cdot (p - 1/2).$$

• Prove that

$$\lim_{n \to \infty} Q_n = 0$$

and

$$\lim_{n \to \infty} P_n = 1/2.$$

Question 10: Let p be a real number with $0 . You are given two coins <math>C_1$ and C_2 . The coin C_1 is fair, i.e., if you flip this coin, it comes up heads with probability 1/2 and tails with probability 1/2. If you flip the coin C_2 , it comes up heads with probability p and tails with probability 1-p. You pick one of these two coins uniformly at random, and flip it twice. These two coin flips are independent of each other. Define the events

A = "the first coin flip results in heads",

B = "the second coin flip results in heads".

• Determine Pr(A).

Hint: Express Pr(A) in terms of conditional probabilities, depending on which coin is chosen.

- Assume that p = 1/4. Are the events A and B independent? As always, justify your answer.
- Determine all values of p for which the events A and B are independent. Again, justify your answer.