
COMP 2804 — Solutions Assignment 2

Question 1:

• Write your name and student number.

Solution:

• Name: Daniel Alfredsson

• Student number: 11

Question 2: The function f : N→ Z is defined by

f(0) = 0,
f(n) = f(n− 1) + (n2 − n− 4) · 2n−1 if n ≥ 1.

• Determine f(n) for n = 0, 1, 2, 3, 4, 5.

• Prove that for every integer n ≥ 0,

f(n) =
(
n2 − 3n

)
· 2n.

Solution: We are given that f(0) = 0. From the recurrence, with n = 1, we get

f(1) = f(0) +
(
12 − 1− 4

)
· 21−1

= 0− 4

= −4.

From the recurrence, with n = 2, we get

f(2) = f(1) +
(
22 − 2− 4

)
· 22−1

= −4− 2 · 2
= −8.

From the recurrence, with n = 3, we get

f(3) = f(2) +
(
32 − 3− 4

)
· 23−1

= −8 + 2 · 4
= 0.
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From the recurrence, with n = 4, we get

f(4) = f(3) +
(
42 − 4− 4

)
· 24−1

= 0 + 8 · 8
= 64.

From the recurrence, with n = 5, we get

f(5) = f(4) +
(
52 − 5− 4

)
· 25−1

= 64 + 16 · 16

= 320.

Next, we prove by induction that for every integer n ≥ 0,

f(n) =
(
n2 − 3n

)
· 2n.

The base case is when n = 0. In this case, the left-hand side is equal to f(0), which is 0.
The right-hand side is equal to (02 − 3 · 0) · 20, which is also 0. This proves the base case.

For the induction step, let n ≥ 1 be an integer, and assume the claim is true for n − 1.
Thus, we assume that

f(n− 1) =
(
(n− 1)2 − 3(n− 1)

)
· 2n−1.

Using the recurrence, the induction hypothesis, and basic algebra, we get

f(n) = f(n− 1) +
(
n2 − n− 4

)
· 2n−1

=
(
(n− 1)2 − 3(n− 1)

)
· 2n−1 +

(
n2 − n− 4

)
· 2n−1

=
(
n2 − 5n + 4

)
· 2n−1 +

(
n2 − n− 4

)
· 2n−1

=
(
2n2 − 6n

)
· 2n−1

=
(
n2 − 3n

)
· 2n.

This proves the induction step.

Question 3: You are asked to come up with an exam question about recurrences that is in
the same style as Question 2. Thus, you write down some recurrence, which you then solve.
Afterwards, you give the recurrence to the students and you give them the solution as well.
The students must then prove that the given solution is indeed correct.

This is a painful process, because you must solve the recurrence yourself. Since you are
lazy, you start with the following:

2



Exam Question:

The function f : N→ N is defined by

f(0) = XXX,
f(n) = f(n− 1) + Y Y Y if n ≥ 1.

Prove that for every integer n ≥ 0,

f(n) = 7n2 − 2n + 9.

• Complete the question, i.e., fill in XXX and Y Y Y , so that you obtain a complete
recurrence that has the given solution.

Solution: If the solution is f(n) = 7n2 − 2n + 9, then the base case of the recurrence must
be

f(0) = 7 · 02 − 2 · 0 + 9 = 9.

Thus, XXX = 9.
To obtain the recurrence, if the solution is

f(n) = 7n2 − 2n + 9,

then
f(n− 1) = 7(n− 1)2 − 2(n− 1) + 9.

This gives

Y Y Y = f(n)− f(n− 1)

=
(
7n2 − 2n + 9

)
−
(
7(n− 1)2 − 2(n− 1) + 9

)
=

(
7n2 − 2n + 9

)
−
(
7n2 − 16n + 18

)
= 14n− 9.

Question 4: The sequence of numbers an, for n ≥ 0, is recursively defined as follows:

a0 = 5,
a1 = 3,
an = 6 · an−1 − 9 · an−2 if n ≥ 2.

• Determine an for n = 0, 1, 2, 3, 4, 5.

• Prove that for every integer n ≥ 0,

an = (5− 4n) · 3n.
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Solution: We are given that a0 = 5 and a1 = 3. From the recurrence, with n = 2, we get

a2 = 6 · a1 − 9 · a0 = 6 · 3− 9 · 5 = −27.

From the recurrence, with n = 3, we get

a3 = 6 · a2 − 9 · a1 = 6 · (−27)− 9 · 3 = −189.

From the recurrence, with n = 4, we get

a4 = 6 · a3 − 9 · a2 = 6 · (−189)− 9 · (−27) = −891.

From the recurrence, with n = 5, we get

a5 = 6 · a4 − 9 · a3 = 6 · (−891)− 9 · (−189) = −3645.

Next, we prove by induction that for every integer n ≥ 0,

an = (5− 4n) · 3n.

There are two base cases:
If n = 0: The left-hand side is equal to a0, which is 5. The right-hand side is equal to

(5− 4 · 0) · 30, which is also 5.
If n = 1: The left-hand side is equal to a1, which is 3. The right-hand side is equal to

(5− 4 · 1) · 31, which is also 3.
This proves the two base cases.
For the induction step, let n ≥ 2 be an integer, and assume the claim is true for n − 1

and for n− 2. Thus, we assume that

an−1 = (5− 4(n− 1)) · 3n−1

and
an−2 = (5− 4(n− 2)) · 3n−2.

From the recurrence, these two assumptions, and basic algebra, we get

an = 6 · an−1 − 9 · an−2

= 6 (5− 4(n− 1)) · 3n−1 − 9 (5− 4(n− 2)) · 3n−2

= 2 (5− 4(n− 1)) · 3n − (5− 4(n− 2)) · 3n

= 2 (9− 4n) · 3n − (13− 4n) · 3n

= (5− 4n) · 3n.

This proves the induction step.

Question 5: In this exercise, we consider strings of characters, where each character is an
element of {a, b, c}. For any integer n ≥ 1, let En be the number of such strings of length n
that have an even number of c’s, and let On be the number of such strings of length n that
have an odd number of c’s. (Recall that 0 is even.)
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• Determine E1, O1, E2, and O2.

• Explain in plain English and at most two sentences why

En + On = 3n.

• Prove that for every integer n ≥ 2,

En = 2 · En−1 + On−1.

• Prove that for every integer n ≥ 1,

En =
1 + 3n

2
.

Solution: For n = 1, there are three strings of length 1: Both the strings a and b have an
even number of c’s, whereas the string c has an odd number of c’s. This gives

E1 = 2 and O1 = 1.

For n = 2, there are 32 = 9 strings:

• How many of these have an odd number of c’s: Such strings have one c and one non-c:
There are 2 choices for the position of the c. Once this position has been chosen, we
write a or b in the other position. This gives

O2 = 2 · 2 = 4.

• The other 9− 4 = 5 strings have an even number of c’s. This gives

E2 = 5.

Let n ≥ 1. For each of the n positions, there are three possible characters. Therefore,
the total number of strings is equal to 3n. For each of these strings, the number of c’s is
either even or odd (and not both). Because of this,

En + On = 3n.

Let n ≥ 2. Consider all strings of length n with an even number of c’s. There are En

many of these. We divide these into three groups:

• The first group consists of all these strings that start with a. If we remove the first
character from all strings in this group, then we obtain all strings of length n− 1 with
an even number of c’s. Thus, the number of strings in this group is equal to En−1.
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• The second group consists of all these strings that start with b. If we remove the first
character from all strings in this group, then we obtain all strings of length n− 1 with
an even number of c’s. Thus, the number of strings in this group is equal to En−1.

• The third group consists of all these strings that start with c. If we remove the first
character from all strings in this group, then we obtain all strings of length n− 1 with
an odd number of c’s. Thus, the number of strings in this group is equal to On−1.

Since the groups are pairwise disjoint, we conclude that

En = En−1 + En−1 + On−1 = 2 · En−1 + On−1.

For the last part of the question, we use the results that we have obtained above:

En = 2 · En−1 + On−1

= 2 · En−1 +
(
3n−1 − En−1

)
= En−1 + 3n−1.

This gives a recurrence for the numbers En; recall that the base case is E1 = 2. We use this
recurrence to prove by induction that for every integer n ≥ 1,

En =
1 + 3n

2
.

The base case is when n = 1. The left-hand side is equal to E1, which is 2. The right-hand
side is equal to 1+31

2
, which is also 2. This proves the base case.

For the induction astep, let n ≥ 2 be an integer, and assume that the claim is true for
n− 1. Thus, we assume that

En−1 =
1 + 3n−1

2
.

We now prove that the claim is also true for n:

En = En−1 + 3n−1

=
1 + 3n−1

2
+ 3n−1

=
1 + 3n−1

2
+

2 · 3n−1

2

=
1 + 3 · 3n−1

2

=
1 + 3n

2
.

This proves the induction step.

Question 6: A block in a bitstring is a maximal consecutive substring of 1’s. For example,
the bitstring 1100011110100111 has four blocks: 11, 1111, 1, and 111.
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For a given integer n ≥ 1, consider all 2n bitstrings of length n. Let Bn be the total
number of blocks in all these bitstrings.

For example, the left part of the table below contains all 8 bitstrings of length 3. Each
entry in the rightmost column shows the number of blocks in the corresponding bitstring.
Thus,

B3 = 0 + 1 + 1 + 1 + 1 + 2 + 1 + 1 = 8.

0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 1
1 0 1 2
1 1 0 1
1 1 1 1

• Determine B1 and B2.

Solution: We use the same notation as above. For n = 1, we get

0 0
1 1

This shows that B1 = 0 + 1 = 1.

For n = 2, we get

0 0 0
0 1 1
1 0 1
1 1 1

This shows that B2 = 0 + 1 + 1 + 1 = 3.

• Let n ≥ 3 be an integer.

– Consider all bitstrings of length n that start with 0. What is the total number of
blocks in these bitstrings?

Solution: The number of bitstrings of length n that start with 0 is equal to 2n−1.
We want to know the total number of blocks in all these strings. If we remove the
first bit from each of these strings, then the number of blocks does not change;
moreover, this gives all bitstrings of length n− 1. Therefore, the answer is

Bn−1. (1)
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– Determine the number of blocks in the bitstring

1 · · · 1︸ ︷︷ ︸
n

.

Solution: This bitstring is one block. Therefore, the answer is

1. (2)

– Determine the number of blocks in the bitstring

1 · · · 1︸ ︷︷ ︸
n−1

0.

Solution: This bitstring contains one block. Therefore, the answer is

1. (3)

– Let k be an integer with 2 ≤ k ≤ n − 1. Consider all bitstrings of length n that
start with

1 · · · 1︸ ︷︷ ︸
k−1

0.

Prove that the total number of blocks in these bitstrings is equal to

2n−k + Bn−k.

Solution: How many strings are there of this type: The strings have length n,
and the first k bits are fixed. Therefore, there are 2n−k strings of this type. Each
such string starts with a block of length k− 1; this block is separated by a 0 from
the other blocks in the string. This explains the term 2n−k. If we remove the first
k bits from all these strings, then we obtain all 2n−k bitstrings of length n − k.
The total number of blocks in these strings is equal to Bn−k; this explains the
term Bn−k.

Therefore, the total number of blocks in all strings of this type is equal to

2n−k + Bn−k. (4)

– Prove that

Bn = 2 + Bn−1 +
n−1∑
k=2

(
2n−k + Bn−k

)
.

Solution: By definition, Bn is equal to the total number of blocks in all 2n

bitstrings of length n. In the previous parts, we have divided all these 2n strings
into groups; we determined the number of blocks within each group. Since the
groups are pairwise disjoint, and together they contain all bitstrings of length n:
If we add up all answers in (1)–(4), then the result is equal to Bn. Therefore, we
have, for n ≥ 3,

Bn = 2 + Bn−1 +
n−1∑
k=2

(
2n−k + Bn−k

)
. (5)
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– Use 1 + 2 + 22 + 23 + 2n−2 = 2n−1 − 1, to prove that

Bn = 2n−1 + B1 + B2 + · · ·+ Bn−1. (6)

Solution: Using the hint, we get

n−1∑
k=2

2n−k = 2n−2 + 2n−3 + · · ·+ 22 + 2

=
(
2n−2 + 2n−3 + · · ·+ 22 + 2 + 1

)
− 1

=
(
2n−1 − 1

)
− 1

= 2n−1 − 2.

Plugging this into (5) gives

Bn = 2 + Bn−1 +
n−1∑
k=2

(
2n−k + Bn−k

)
= 2 + Bn−1 +

n−1∑
k=2

2n−k +
n−1∑
k=2

Bn−k

= 2 + Bn−1 +
(
2n−1 − 2

)
+

n−1∑
k=2

Bn−k

= 2n−1 + Bn−1 +
n−1∑
k=2

Bn−k

= 2n−1 + B1 + B2 + · · ·+ Bn−1.

Remark: This gives a recurrence for the Bn’s. Below, we will obtain a simpler
recurrence.

• Prove that (6) also holds for n = 2.

Solution: For n = 2, the left-hand side in (6) is B2, which, as we have seen in the
first part of this question, is equal to 3. The right-hand side in (6) is 22−1 +B1, which,
as we have seen in the first part of this question, is equal to 2 + 1 = 3.

• Let n ≥ 3. Prove that
Bn = 2n−2 + 2 ·Bn−1.

Hint: Write (6) on one line. Below this line, write (6) with n replaced by n− 1.

Solution: We follow the hint: First, we write (6) for n. Then, we write (6) for n− 1;
we can do this this, because n− 1 ≥ 2.

Bn = 2n−1 + B1 + B2 + · · ·+ Bn−2 + Bn−1.

Bn−1 = 2n−2 + B1 + B2 + · · ·+ Bn−2.
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If we subtract these equations, we get

Bn −Bn−1 = 2n−1 − 2n−2 + Bn−1

= 2n−2 + Bn−1.

This is equivalent to
Bn = 2n−2 + 2 ·Bn−1. (7)

Remark: This gives a recurrence for the Bn’s. I hope you agree that this recurrence
is simpler than the one we had before.

• Prove that for every n ≥ 1,

Bn =
n + 1

4
· 2n.

Solution: We have seen in (7) that for n ≥ 3,

Bn = 2n−2 + 2 ·Bn−1.

In fact, this is also true for n = 2: B2 = 3 and 22−2 + 2 ·B2−1 = 1 + 2 · 1 = 3.

We will use this recurrence to prove the claim.

The base case is when n = 1. In this case, the left-hand side is B1, which is 1. The
right-hand side is 1+1

4
· 21, which is also 1. This proves the base case.

For the induction step, let n ≥ 2, and assume the claim is true for n − 1. Thus, we
assume that

Bn−1 =
n

4
· 2n−1.

Using the recurrence, the induction hypothesis, and basic algebra, we get

Bn = 2n−2 + 2 ·Bn−1

= 2n−2 + 2 · n
4
· 2n−1

=
1

4
· 2n +

n

4
· 2n

=
n + 1

4
· 2n.

Remark: I am sure you all enjoyed this question. What a pain, eh? Near the end of
the term, once we have seen indicator random variables, I will show you a much simpler
solution!

Question 7: Let n ≥ 1 be an integer and consider n beer bottles B1, B2, . . . , Bn. In this
exercise, we consider different ways to divide these bottles into subsets of size at most 2.

For example, if n = 6, then two different ways to do this are

{B1}, {B2, B6}, {B3, B4}, {B5}
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and
{B1, B4}, {B2}, {B3}, {B5, B6}.

The order in which we write the subsets does not matter.
For each n ≥ 1, let Wn be the number of different ways to divide n beer bottles into

subsets of size at most 2.

• Determine W1, W2, W3, and W4.

• Prove that for every integer n ≥ 3,

Wn = Wn−1 + (n− 1) ·Wn−2.

Solution: The following tables show all possible ways for n = 1, 2, 3, 4. Each row shows one
way. The integers indicate the indices of the bottles.

n = 1

{1}
W1 = 1

n = 2

{1}, {2}
{1, 2}
W2 = 2

n = 3

{1}, {2}, {3}
{1}, {2, 3}
{1, 2}, {3}
{1, 3}, {2}
W3 = 4

n = 4

{1}, {2}, {3}, {4}
{1}, {2, 3}, {4}
{1}, {2, 4}, {3}
{1}, {3, 4}, {2}
{1, 2}, {3}, {4}
{1, 2}, {3, 4}
{1, 3}, {2}, {4}
{1, 3}, {2, 4}
{1, 4}, {2}, {3}
{1, 4}, {2, 3}
W4 = 10
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Next, we prove the recurrence. Let n ≥ 3. By definition, there are Wn many ways to
divide n bottles into subsets of size at most 2. We are going to divide these into 2 groups
(the division can be seen in the tables for n = 3 and n = 4):

• The first group consists of all ways in which B1 is in a subset of size 1. How many of
these are there: If we remove B1, then we obtain all ways to divide n− 1 bottles into
groups of size at most 2. Thus, this group contains Wn−1 ways.

• The second group consists of all ways in which B1 is in a subset of size 2. How many
of these are there:

– There are n− 1 choices for the second bottle in B1’s subset.

– For each choice, there are Wn−2 ways to divide the remaining bottles into subsets
of size at most 2.

– By the Product Rule, the second group contains (n− 1) ·Wn−2 ways.

Since these two groups are disjoint, we conclude that

Wn = Wn−1 + (n− 1) ·Wn−2.

Question 8: Consider the following recursive algorithm, which takes as input a sequence
(a1, a2, . . . , an) of length n, where n ≥ 1:

Algorithm Mystery(a1, a2, . . . , an):

if n = 1
then return the sequence (a1)
else (b1, b2, . . . , bn−1) = Mystery(a1, a2, . . . , an−1);

return the sequence (an, b1, b2, . . . , bn−1)
endif

• Express the output of algorithm Mystery(a1, a2, . . . , an) in terms of the input se-
quence (a1, a2, . . . , an). Prove that your answer correct.

Solution: After having stared at the algorithm long enough, you will guess that the output of
a call to Mystery(a1, a2, . . . , an) is the reverse of the input sequence, i.e., (an, an−1, . . . , a1).
We will prove by induction on n that this is correct.

The base case is when n = 1. In this case, the output of Mystery(a1) is the sequence
(a1), which is indeed the reverse of the input.

For the induction step, let n ≥ 2 be an integer, and assume that the claim is true for
n − 1. Thus, we assume that, for any input sequence of length n − 1, algorithm Mystery
returns the reverse sequence. We are going to show that the claim is true for n.

Let us see what algorithm Mystery(a1, a2, . . . , an) does:
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• It runs Mystery(a1, a2, . . . , an−1). By the induction hypothesis, the output of this
call is

(b1, b2, . . . , bn−1) = (an−1, an−2, . . . , a1).

• It returns the sequence (an, b1, b2, . . . , bn−1), which is equal to (an, an−1, . . . , a1), which
is the reverse of the input sequence.

This proves the induction step.

Question 9: Ever since he was a child, Nick1 has been dreaming to be like Spiderman. As
you all know, Spiderman can climb up the outside of a building; if he is at a particular floor,
then, in one step, he can move up several floors. Nick is not that advanced yet. In one step,
Nick can move up either one floor or two floors.

Let n ≥ 1 be an integer and consider a building with n floors, numbered 1, 2, . . . , n.
(The first floor has number 1; this is not the ground floor.) Nick is standing in front of this
building, at the ground level. There are different ways in which Nick can climb to the n-th
floor. For example, here are three different ways for the case when n = 5:

move up 2 floors, move up 1 floor, move up 2 floors.

move up 1 floor, move up 2 floors, move up 2 floors.

move up 1 floor, move up 2 floors, move up 1 floor, move up 1 floor .

Let Sn be the number of different ways, in which Nick can climb to the n-th floor.

• Determine, S1, S2, S3, and S4.

• Determine the value of Sn, i.e., express Sn in terms of numbers that we have seen in
class. As always, justify your answer.

Solution:

1. For n = 1, there is only 1 way to move from the ground floor to the first floor. Thus,
S1 = 1.

2. For n = 2, here are the different ways to move from the ground floor to the second
floor:

(1, 1), (2).

Thus, S2 = 2.

1your friendly TA
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3. For n = 3, here are the different ways to move from the ground floor to the third floor:

(1, 1, 1), (2, 1), (1, 2).

Thus, S3 = 3.

4. For n = 4, here are the different ways to move from the ground floor to the fourth
floor:

(1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2).

Thus, S4 = 5.

Now we are going to derive a recurrence for the numbers Sn. Let n ≥ 2. By definition, there
are Sn many different ways for Nick to move from the ground floor to the n-th floor. We
divide them into two groups, depending on the last step:

1. Group 1: In the last step, Nick moves from floor n− 1 to floor n.

In each of these, Nick first has to move from the ground floor to floor n − 1. The
number of ways to do this is equal to Sn−1.

2. Group 2: In the last step, Nick moves from floor n− 2 to floor n.

In each of these, Nick first has to move from the ground floor to floor n − 2. The
number of ways to do this is equal to Sn−2.

Since the two groups are disjoint, and together they contain all ways to move from the
ground floor to floor n, it follows that

Sn = Sn−1 + Sn−2.

This is of course, the Fibonacci recurrence.
In the following table, we compare the Fibonacci numbers fn with the numbers Sn:

f0 f1 f2 f3 f4 f5 f6
0 1 1 2 3 5 8

S1 S2 S3 S4 S5

From this table, we see that for each integer n ≥ 1,

Sn = fn+1.
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