COMP 2804 — Assignment 3

Due: Thursday March 21, before 11:55pm.

Assignment Policy:

- Your assignment must be submitted as one single PDF file through cuLearn.
- Late assignments will not be accepted. I will not reply to emails of the type "my internet connection broke down at 11:53pm" or "my scanner stopped working at 11:54pm".
- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you must do so in your own words.
- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.
- When writing your solutions, you must follow the guidelines below.
 - You must justify your answers.
 - The answers should be concise, clear and neat.
 - When presenting proofs, every step should be justified.

Question 1: Write your name and student number.

Question 2: Consider five people, each of which has a uniformly random birthday. (We ignore leap years.) Consider the event

A = "at least three people have the same birthday".

Determine Pr(A).

Question 3: Consider a box that contains four beer bottles b_1, b_2, b_3, b_4 and two cider bottles c_1, c_2 . You choose a uniformly random bottle from the box (and do not put it back), after which you again choose a uniformly random bottle from the box.

Consider the events

A = "the first bottle chosen is a beer bottle",

B = "the second bottle chosen is a beer bottle".

- What is the sample space?
- For each element ω in your sample space, determine $\Pr(\omega)$.

- Determine Pr(A).
- Determine Pr(B).
- Are the events A and B independent?

Question 4: A standard deck of 52 cards contains 13 spades (\spadesuit), 13 hearts (\heartsuit), 13 clubs (\clubsuit), and 13 diamonds (\diamondsuit). You choose a uniformly random card from this deck. Consider the events

A = "the chosen card is a clubs or a diamonds card",

B = "the chosen card is a clubs or a hearts card",

C = "the chosen card is a clubs or a spades card".

- \bullet Are the events A, B, and C pairwise independent?
- Are the events A, B, and C mutually independent?

Question 5: Consider three events A_1 , A_2 , and A_3 in some probability space (S, Pr), and assume that $Pr(A_1 \cap A_2) > 0$ and $Pr(A_1) > 0$. Prove that

$$\Pr(A_1 \cap A_2 \cap A_3) = \Pr(A_3 \mid A_1 \cap A_2) \cdot \Pr(A_2 \mid A_1) \cdot \Pr(A_1).$$

Question 6: A standard deck of 52 cards has four Aces.

• You get a uniformly random hand of three cards. Consider the event

A = "the hand consists of three Aces".

Determine Pr(A).

• You get three cards, which are chosen one after another. Each of these three cards is chosen uniformly at random from the current deck of cards. (When a card has been chosen, it is removed from the current deck.) Consider the events

$$B =$$
 "all three cards are Aces"

and, for i = 1, 2, 3,

$$B_i$$
 = "the *i*-th card is an Ace."

Express the event B in terms of B_1 , B_2 , and B_3 , and use this expression, together with Question 5, to determine Pr(B).

Question 7: Let S be a sample space consisting of 100 elements. Consider three events A, B, and C as indicated in the figure below. For example, the event A consists of 50 elements, 20 of which are only in A, 20 of which are only in $A \cap B$, 5 of which are only in $A \cap C$, and 5 of which are in $A \cap B \cap C$.

Consider the uniform probability function on this sample space.

- \bullet Are the events A and B independent? As always, justify your answer.
- Determine whether or not

$$\Pr(A \cap B \mid C) = \Pr(A \mid C) \cdot \Pr(B \mid C).$$

Again, justify your answer.

Question 8: Alexa¹ and Zoltan² play the following game:

AZ-game:

Step 1: Alexa chooses a uniformly random element from the set $\{1, 2, 3\}$. Let a denote the element that Alexa chooses.

Step 2: Zoltan chooses a uniformly random element from the set $\{1, 2, 3\}$. Let z denote the element that Zoltan chooses.

Step 3: Using one of the three strategies mentioned below, Alexa chooses an element from the set $\{1, 2, 3\} \setminus \{a\}$. Let a' denote the element that Alexa chooses.

Step 4: Using one of the three strategies mentioned below, Zoltan chooses an element from the set $\{1, 2, 3\} \setminus \{z\}$. Let z' denote the element that Alexa chooses.

The AZ-game is a success if $a' \neq z'$.

¹your friendly TA

²another friendly TA

- MinMin Strategy: In Step 3, Alexa chooses the smallest element in the set $\{1, 2, 3\} \setminus \{a\}$, and Zoltan chooses the smallest element in the set $\{1, 2, 3\} \setminus \{z\}$.
 - Describe the sample space for this strategy.
 - For this strategy, determine the probability that the AZ-game is a success.
- MinMax Strategy: In Step 3, Alexa chooses the smallest element in the set $\{1, 2, 3\} \setminus \{a\}$, and Zoltan chooses the largest element in the set $\{1, 2, 3\} \setminus \{z\}$.
 - Describe the sample space for this strategy.
 - For this strategy, determine the probability that the AZ-game is a success.
- Random Strategy: In Step 3, Alexa chooses a uniformly random element in the set $\{1,2,3\}\setminus\{a\}$, and Zoltan chooses a uniformly random element in the set $\{1,2,3\}\setminus\{z\}$.
 - Describe the sample space for this strategy.
 - For this strategy, determine the probability that the AZ-game is a success.

Question 9: You are given a box that contains one red ball and one blue ball. Consider the following algorithm RANDOMREDBLUE(n) that takes as input an integer $n \ge 3$:

```
Algorithm RandomRedBlue(n):

// n \ge 3

// \text{ initially, the box contains one red ball and one blue ball}

// \text{ all random choices are mutually independent}

for k = 1 to n - 2

do choose a uniformly random ball in the box;

if the chosen ball is red

then put the chosen ball back in the box;

add one red ball to the box

else put the chosen ball back in the box;

add one blue ball to the box

endif

endfor
```

For any integers $n \geq 3$ and i with $1 \leq i \leq n-1$, consider the event

```
A_i^n = "at the end of algorithm RANDOMREDBLUE(n), the number of red balls in the box is equal to i".
```

In this exercise, you will prove that for any integers $n \geq 3$ and i with $1 \leq i \leq n-1$,

$$\Pr\left(A_i^n\right) = \frac{1}{n-1}.\tag{1}$$

- Let $n \geq 3$ and k be integers with $1 \leq k \leq n-2$. When running algorithm RANDOMREDBLUE(n),
 - how many balls does the box contain at the start of the k-th iteration,
 - how many balls does the box contain at the end of the k-th iteration?
- Let $n \ge 3$ be an integer. After algorithm RANDOMREDBLUE(n) has terminated, how many balls does the box contain?
- For any integer $n \geq 3$, prove that

$$\Pr\left(A_1^n\right) = \frac{1}{n-1}.$$

• For any integer $n \geq 3$, prove that

$$\Pr\left(A_{n-1}^n\right) = \frac{1}{n-1}.$$

- Let n=3. Prove that (1) holds for all values of i in the indicated range.
- Let $n \geq 4$. Consider the event

A = "in the (n-2)-th iteration of algorithm RANDOMREDBLUE(n), a red ball is chosen".

For any integer i with $2 \le i \le n-2$, express the event A_i^n in terms of the events A_{i-1}^{n-1} , A_i^{n-1} , and A.

• Let $n \geq 4$. For any integer i with $2 \leq i \leq n-2$, prove that

$$\Pr\left(A_{i}^{n}\right) = \Pr\left(A \mid A_{i-1}^{n-1}\right) \cdot \Pr\left(A_{i-1}^{n-1}\right) + \Pr\left(\overline{A} \mid A_{i}^{n-1}\right) \cdot \Pr\left(A_{i}^{n-1}\right).$$

• Let $n \geq 4$. Prove that (1) holds for all values of i in the indicated range.