
COMP 2804 — Solutions Assignment 2

Question 1:

• Write your name and student number.

Solution:

• Name: Frenkie de Jong

• Student number: 21

Question 2: The function f : {1, 2, 3, . . .} → R is defined by

f(1) = 2,

f(n) = 1
2

(
f(n− 1) + 1

f(n−1)

)
if n ≥ 2.

• Prove that for every integer n ≥ 1,

f(n) =
32n−1

+ 1

32n−1 − 1
.

Note that 32n−1
is 3 to the power of 2n−1.

Solution: We prove the claim by induction on n.
The base case is when n = 1. Since f(1) = 2 and

321−1
+ 1

321−1 − 1
=

320 + 1

320 − 1
=

31 + 1

31 − 1
=

3 + 1

3− 1
= 2,

the base case holds.
For the induction step, let n ≥ 2 be an integer, and assume that the claim holds for n−1.

Thus, we assume that

f(n− 1) =
32n−2

+ 1

32n−2 − 1
.

We will use the recurrence to prove that the claim also holds for n:

f(n) =
1

2

(
f(n− 1) +

1

f(n− 1)

)
=

1

2

(
32n−2

+ 1

32n−2 − 1
+

32n−2 − 1

32n−2 + 1

)

=
1

2
·

(
32n−2

+ 1
)2

+
(

32n−2 − 1
)2

(32n−2 − 1) (32n−2 + 1)
.

1



Both terms on the top of this fraction are of the form

(x± 1)2 = x2 ± 2x+ 1,

whereas the term at the bottom is of the form

(x− 1)(x+ 1) = x2 − 1,

where x = 32n−2
. Note that

x2 =
(

32n−2
)2

= 32·2n−2

= 32n−1

.

This gives

f(n) =
1

2
· (x2 + 2x+ 1) + (x2 − 2x+ 1)

x2 − 1

=
1

2
· 2x2 + 2

x2 − 1

=
x2 + 1

x2 − 1

=
32n−1

+ 1

32n−1 − 1
.

This proves the induction step.

Question 3: The function f : N× N→ N is defined by

f(m, 0) = 0, if m ≥ 0,
f(m,n) = m+ f(m,n− 1) if m ≥ 0 and n ≥ 1.

• Solve this recurrence, i.e., express f(m,n) in terms of m and n only. As always, prove
that your answer is correct.

Solution: We consider an example, from which we (hopefully) see the solution:

f(7, 3) = 7 + f(7, 2)

= 7 + (7 + f(7, 1))

= 7 + 7 + (7 + f(7, 0))

= 7 + 7 + 7 + 0

= 21.

From this, it looks like the function f does multiplication by repeated addition. Thus, we
guess that for all m ≥ 0 and n ≥ 0,

f(m,n) = mn.

2



We will prove by induction that this is correct. We choose an integer m ≥ 0. Now we do
induction on n.

The base case is when n = 0. Since f(m, 0) = 0 and m · 0 = 0, the base case holds.
For the induction step, let n ≥ 1 be an integer, and assume that the claim holds for n−1.

Thus, we assume that
f(m,n− 1) = m(n− 1).

We will use the recurrence to prove that the claim also holds for n:

f(m,n) = m+ f(m,n− 1)

= m+m(n− 1)

= mn.

This proves the induction step.

Question 4: In class, we have seen that for any integer m ≥ 1, the number of 00-free
bitstrings of length m is equal to fm+2, which is the (m+ 2)-th Fibonacci number.

Let n ≥ 2 be an integer. For each of the following, justify your answer.

• How many 00-free bitstrings of length n do not contain any 0?

Solution: There is only one such bitstring: the bitstring consisting of n many 1’s.

• How many 00-free bitstrings of length n have the following property: The rightmost 0
is at position 1.

Solution: If the rightmost 0 is at position 1, then there is a 1 at each of the positions
2, 3, . . . , n. This bitstring is 00-free. Thus, the answer is 1.

• How many 00-free bitstrings of length n have the following property: The rightmost 0
is at position 2.

Solution: If the rightmost 0 is at position 2, then there is a 1 at position 1, and there
is a 1 at each of the positions 3, 4, . . . , n. This bitstring is 00-free. Thus, the answer is
1.

• Let k be an integer with 3 ≤ k ≤ n. How many 00-free bitstrings of length n have the
following property: The rightmost 0 is at position k.

Solution: Assume the rightmost 0 is at position k. Then there is a 1 at position k−1,
and there is a 1 at each of the positions k + 1, . . . , n. The positions 1, 2, . . . , k − 2
contain an arbitrary 00-free bitstring of length k − 2. Thus, the answer is fk.

00-free only 1’s1 0

k

k − 2

3



• Use the previous results to prove that

fn+2 = 1 +
n∑

k=1

fk.

Solution: We know that the total number of 00-free bitstrings of length n is equal to
fn+2. We are going to divide these bitstrings into groups, depending on the position of
the rightmost 0; there is one extra group for the bitstrings that do not contain any 0.
All these groups have been covered in the previous parts. Thus, if we add the answers
to the previous parts, then we have counted each 00-free bitstring of length n exactly
once. This gives

fn+2 = (part 1) + (part 2) + (part 3) +
n∑

k=3

(part 4)

= 1 + 1 + 1 +
n∑

k=3

fk

= 1 + f1 + f2 +
n∑

k=3

fk

= 1 +
n∑

k=1

fk.

Question 5: Let n ≥ 1 be an integer and consider a set S consisting of n numbers. A
function f : S → S is called cool, if for all elements x of S,

f(f(f(x))) = x.

Let An be the number of cool functions f : S → S.

• Let f : S → S be a cool function, and let x be an element of S. Prove that the set

{x, f(x), f(f(x))}

has size 1 or 3.

Solution: If x, f(x), and f(f(x)) are pairwise distinct, then the set

X = {x, f(x), f(f(x))}

has size 3.

We will show the following: If two of x, f(x), and f(f(x)) are equal, then all three are
equal. This will imply that the set X cannot have size 2.

4



1. If x = f(x), then f(x) = f(f(x)).

2. If x = f(f(x)), then f(x) = f(f(f(x))) = x.

3. If f(x) = f(f(x)), then f(f(x)) = f(f(f(x))) = x.

• Let f : S → S be a cool function, and let x and y be two distinct elements of S.
Assume that f(y) = y. Prove that f(x) 6= y.

Solution: We will prove this by contradiction. Thus, we assume that f(x) = y. Then

f(f(x)) = f(y) = y,

which implies that
f(f(f(x))) = f(y) = y.

Since f is cool, this implies that x = y, which is a contradiction.

• Prove that for any integer n ≥ 4,

An = An−1 + (n− 1)(n− 2) · An−3.

Hint: Let y be the largest element in S. Some cool functions f have the property that
f(y) = y, whereas some other cool functions f have the property that f(y) 6= y.

Solution: Let S be a set of size n. The number of cool functions f : S → S is equal
to An.

We fix an arbitrary element y in S. (Note that the argument will work for any y, even
if it is not the largest element in S.)

We are going to divide the cool functions f : S → S into two groups.

Group 1: All cool functions f for which f(y) = y.

Thus, for each function f in this group, the value f(y) is fixed.

From the second part of this question, we know the following: If x ∈ S \ {y}, then
f(x) ∈ S \ {y}. This implies the following: If we restrict the domain of the function f
to S \ {y}, then we obtain a cool function

f : S \ {y} → S \ {y}.

Since the set S \ {y} has size n− 1, the number of functions in this group is equal to
An−1.

Group 2: All cool functions f for which f(y) 6= y.

Task 1: Choose f(y). There are n− 1 ways to do this.

Task 2: Choose f(f(y)).

Since f(y) 6= y, we know from the first part that f(f(y)) 6∈ {y, f(y)}. Thus, there are
n− 2 ways to do this second task.

5



y
f (y)

f (f (y)) S \ {y, f (y), f (f (y))}

Task 3: Specify f(x) for each x 6∈ {y, f(y), f(f(y))}.
We observe: if x 6∈ {y, f(y), f(f(y))}, then f(x) 6∈ {y, f(y), f(f(y))}. (Why: because
otherwise, f(f(f(x))) 6= x.)

This implies the following: If we restrict the domain of the function f to S\{y, f(y), f(f(y))},
then we obtain a cool function

f : S \ {y, f(y), f(f(y))} → S \ {y, f(y), f(f(y))}.
Since the set S \ {y, f(y), f(f(y))} has size n− 3, the number of ways to do this third
task is equal to An−3.

By the Product Rule, the number of functions in Group 2 is equal to

(n− 1)(n− 2) · An−3.

Conclusion:

An = number of cool functions f : S → S

= size of Group 1 + size of Group 2

= An−1 + (n− 1)(n− 2) · An−3.

Question 6: In this exercise, we will denote Boolean variables by lowercase letters, such
as p and q. A proposition is any Boolean formula that can be obtained by applying the
following recursive rules:

1. For every Boolean variable p, p is a proposition.

2. If f is a proposition, then ¬f is also a proposition.

3. If f and g are propositions, then (f ∨ g) is also a proposition.

4. If f and g are propositions, then (f ∧ g) is also a proposition.

• Let p and q be Boolean variables. Prove that

¬ ((p ∧ ¬q) ∨ (¬p ∨ q))
is a proposition.

Solution: We have to show that the given logical formula can be “built” using the
rules 1.—4. Here we go:

6



A: From 1.: p is a proposition.

B: From 1.: q is a proposition.

C: From B and 2.: ¬q is a proposition.

D: From A, C, and 4.: (p ∧ ¬q) is a proposition.

E: From A and 2.: ¬p is a proposition.

F: From E, B, and 3.: (¬p ∨ q) is a proposition.

G: From D, F, and 3.:
((p ∧ ¬q) ∨ (¬p ∨ q))

is a proposition.

H: From G and 2.:
¬((p ∧ ¬q) ∨ (¬p ∨ q))

is a proposition.

• Let ↑ denote the not-and operator. In other words, if f and g are Boolean formulas,
then (f ↑ g) is the Boolean formula that has the following truth table (0 stands for
false, and 1 stands for true):

f g (f ↑ g)

0 0 1
0 1 1
1 0 1
1 1 0

– Let p be a Boolean variable. Use a truth table to prove that the Boolean formulas
(p ↑ p) and ¬p are equivalent.

Solution: Here is the truth table:

p (p ↑ p) ¬p
0 1 1
1 0 0

Since the two rightmost columns are equal, (p ↑ p) and ¬p are equivalent.

– Let p and q be Boolean variables. Use a truth table to prove that the Boolean
formulas ((p ↑ p) ↑ (q ↑ q)) and p ∨ q are equivalent.

Solution: Here is the truth table:

p q (p ↑ p) (q ↑ q) ((p ↑ p) ↑ (q ↑ q)) p ∨ q
0 0 1 1 0 0
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 1 1

7



Since the two rightmost columns are equal, ((p ↑ p) ↑ (q ↑ q)) and p ∨ q are
equivalent.

– Let p and q be Boolean variables. Express the Boolean formula (p ∧ q) as an
equivalent Boolean formula that only uses the ↑-operator. Use a truth table to
justify your answer.

Solution: After some trying, we think that ((p ↑ q) ↑ (p ↑ q)) and p ∧ q are
equivalent. To verify this, we construct the truth table:

p q (p ↑ q) ((p ↑ q) ↑ (p ↑ q)) p ∧ q
0 0 1 0 0
0 1 1 0 0
1 0 1 0 0
1 1 0 1 1

Since the two rightmost columns are equal, ((p ↑ q) ↑ (p ↑ q)) and p ∧ q are
equivalent.

Note: We could have used De Morgan:

p ∧ q = ¬¬(p ∧ q) = ¬(¬p ∨ ¬q).

On the right-hand side, we only use the logical operators ¬ and ∨, which we have
done before.

• Prove that any proposition can be written as an equivalent Boolean formula that only
uses the ↑-operator.

Solution: We are going to show the following: Let f be an arbitrary proposition (thus,
f only uses Boolean variables, ¬, ∨, and ∧). Then f can be converted to an equivalent
Boolean formula f ′ that only uses the ↑-operator.

Since propositions are defined using recursion, the proof is by induction.

Base case: The base case is when f = p, where p is a Boolean variable. In this case,
we convert f to f ′ = p.

Induction step 1: Assume the claim is true for the proposition f . Thus, f can be
converted to an equivalent Boolean formula f ′ that only uses the ↑-operator.

Then, we convert the proposition ¬f to (f ′ ↑ f ′). Note that the latter only uses the
↑-operator.

Induction step 2: Assume the claim is true for the propositions f and g. Thus, f can
be converted to an equivalent Boolean formula f ′ that only uses the ↑-operator, and g
can be converted to an equivalent Boolean formula g′ that only uses the ↑-operator.

Then, we convert the proposition (f ∨ g) to ((f ′ ↑ f ′) ↑ (g′ ↑ g′)). Note that the latter
only uses the ↑-operator.

8



Induction step 3: Assume the claim is true for the propositions f and g. Thus, f can
be converted to an equivalent Boolean formula f ′ that only uses the ↑-operator, and g
can be converted to an equivalent Boolean formula g′ that only uses the ↑-operator.

Then, we convert the proposition (f ∧ g) to ((f ′ ↑ g′) ↑ (f ′ ↑ g′)). Note that the latter
only uses the ↑-operator.

Question 7: In this exercise, we consider strings of characters, where each character is an
element of {a, b, c}. Such a string is called awesome, if it does not contain the substring ab
and does not contain the substring ba. For any integer n ≥ 1, let

1. Sn denote the number of awesome strings of length n,

2. An denote the number of awesome strings of length n that start with a,

3. Bn denote the number of awesome strings of length n that start with b,

4. Cn denote the number of awesome strings of length n that start with c.

• Determine S1 and S2.

Solution: If n = 1: There are 3 possible strings of length 1: a, b, and c. Since all of
these are awesome, we have S1 = 3.

If n = 2: There are 32 = 9 possible strings. Out of these, only ab and ba are not
awesome. Therefore, S2 = 9− 2 = 7.

• Let n ≥ 1 be an integer. Express Sn in terms of An, Bn, and Cn.

Solution: Since Sn counts all awesome strings of length n, and each of them starts
with one of a, b, and c, it is obvious that

Sn = An +Bn + Cn. (1)

• Let n ≥ 2 be an integer. Express Cn in terms of Sn−1.

Solution: Each string of length n that is counted in Cn is awesome and starts with c.
If we delete the first letter, then we are left with an arbitrary awesome string of length
n− 1 (without any restriction on the first letter). Therefore,

Cn = Sn−1. (2)

• Let n ≥ 2 be an integer. Prove that

Sn = (Sn−1 −Bn−1) + (Sn−1 − An−1) + Sn−1. (3)

Solution: The number of awesome strings of length n is equal to Sn. We divide them
into three groups (based on the first letter):

9



1. Awesome strings of length n that start with a.

If we delete the first letter, then we obtain an awesome string of length n−1 that
does not start with b. The number of such strings is equal to Sn−1 −Bn−1.

2. Awesome strings of length n that start with b.

If we delete the first letter, then we obtain an awesome string of length n−1 that
does not start with a. The number of such strings is equal to Sn−1 − An−1.

3. Awesome strings of length n that start with c.

If we delete the first letter, then we obtain an awesome string of length n − 1
(without any restriction on the first letter). The number of such strings is equal
to Sn−1.

From this, (3) follows.

• Let n ≥ 3 be an integer. Prove that

Sn = 2 · Sn−1 + Sn−2.

Solution: We have

Sn = (Sn−1 −Bn−1) + (Sn−1 − An−1) + Sn−1 (from (3))

= 2 · Sn−1 + (Sn−1 − An−1 −Bn−1) (basic algebra)

= 2 · Sn−1 + Cn−1 (from (1))

= 2 · Sn−1 + Sn−2. (from (2))

• Prove that for every integer n ≥ 1,

Sn =
1

2

(
1 +
√

2
)n+1

+
1

2

(
1−
√

2
)n+1

.

Hint: What are the solutions of the equation x2 = 2x + 1? Using these solutions will
simplify the proof.

Solution:

The equation x2 = 2x+ 1 has two solutions: α = 1 +
√

2 and β = 1−
√

2. Note that

α2 = 2α + 1,

β2 = 2β + 1,

and
α + β = 2.

10



We have to show that for all n ≥ 1,

Sn =
1

2

(
αn+1 + βn+1

)
.

The first base case is when n = 1. Since S1 = 3 and

1

2

(
α2 + β2

)
=

1

2
(2α + 1 + 2β + 1)

=
1

2
· 6

= 3,

the first base case holds.

The second base case is when n = 2. We know that S2 = 7. Thus, we have to show
that

1

2

(
α3 + β3

)
= 7.

Note that

α3 = α · α2

= α (2α + 1)

= 2α2 + α

= 2 (2α + 1) + α

= 5α + 2.

By the same algebra, we get
β3 = 5β + 2.

It follows that

1

2

(
α3 + β3

)
=

1

2
(5α + 2 + 5β + 2)

=
1

2
· 14

= 7.

This proves the second base case.

For the induction step, let n ≥ 3 and assume that the claim is true for n−1 and n−2.
Thus, we assume that

Sn−1 =
1

2
(αn + βn)

and

Sn−2 =
1

2

(
αn−1 + βn−1) .

11



By applying the recurrence and the induction hypothesis, we get

Sn = 2 · Sn−1 + Sn−2

= (αn + βn) +
1

2

(
αn−1 + βn−1)

=
1

2

(
2αn + 2βn + αn−1 + βn−1)

=
1

2

(
αn−1 (2α + 1) + βn−1 (2β + 1)

)
=

1

2

(
αn−1 (α2

)
+ βn−1 (β2

))
=

1

2

(
αn+1 + βn+1

)
.

This proves the induction step.

Question 8: Consider the following recursive algorithm, which takes as input a sequence
(a1, a2, . . . , an) of n numbers, where n is a power of two, i.e., n = 2k for some integer k ≥ 0:

Algorithm Mystery(a1, a2, . . . , an):

if n = 1
then return a1
else for i = 1 to n/2

do bi = min(a2i−1, a2i) (∗)
endfor;
Mystery(b1, b2, . . . , bn/2)

endif

• Determine the output of algorithm Mystery(a1, a2, . . . , an). As always, justify your
answer.

• For any integer n ≥ 1 that is a power of two, let T (n) be the number of times that line
(∗) is executed when running algorithm Mystery(a1, a2, . . . , an). Derive a recurrence
for T (n) and use it to prove that for any integer n ≥ 1 that is a power of two,

T (n) = n− 1.

Solution: The output of algorithm Mystery(a1, a2, . . . , an) is the minimum of the input
numbers a1, a2, . . . , an. The proof is by induction on n (which are powers of two).

The base case is when n = 1. In this case, the output of algorithm Mystery(a1) is a1,
which is the minimum of the length-one sequence a1.

12



For the induction step, let n ≥ 2 be a power of two, and assume that the claim is
true for the previous power of two, which is n/2. Thus, we assume that for any sequence
c1, c2, . . . , cn/2, algorithm Mystery(c1, c2, . . . , cn/2) returns the minimum of the sequence
c1, c2, . . . , cn/2.

Consider an input sequence a1, a2, . . . , an of length n.

1. We see from the pseudocode that the output of algorithm Mystery(a1, a2, . . . , an) is
the same as the output of algorithm Mystery(b1, b2, . . . , bn/2), where bi = min(a2i−1, a2i).

2. By the induction hypothesis, the output of algorithm Mystery(b1, b2, . . . , bn/2) is equal
to

min(b1, b2, . . . , bn/2).

3. From the way the values bi are chosen, it is clear that

min(b1, b2, . . . , bn/2) = min(a1, a2, . . . , an).

4. It follows that the output of algorithm Mystery(a1, a2, . . . , an) is equal to

min(a1, a2, . . . , an).

This proves the induction step.

Next we consider the function T (n). It follows from the pseudocode that T (1) = 0. Let
n ≥ 2 be a power of two. Then T (n) is equal to the sum of

1. n/2, which is the number of times that line (∗) is executed during the for-loop, before
the recursive call, and

2. T (n/2), which is the number of times that line (∗) is executed during the recursive
call.

Thus, we get the recurrence

T (n) =

{
0 if n = 1,
n/2 + T (n/2) if n ≥ 2 and n is a power of two.

We prove by induction that T (n) = n− 1 for any integer n ≥ 1 that is a power of two: For
the base case, i.e., when n = 1, we have

T (1) = 0 = 1− 1.

For the induction step, if T (n/2) = n/2− 1, then

T (n) = n/2 + T (n/2) = n/2 + (n/2− 1) = n− 1.

13


