
COMP 2804 — Solutions Assignment 3

Question 1: Write your name and student number.

Solution:

• Name: Johan Cruijff

• Student number: 14

Question 2: Consider five people, each of which has a uniformly random birthday. (We
ignore leap years.) Consider the event

A = “at least three people have the same birthday”.

Determine Pr(A).

Solution: We denote the five people by P1, P2, P3, P4, P5. The sample space is the set

S = {(b1, . . . , b5) : each bi ∈ {1, . . . , 365}}.

Here, bi denotes the birthday of Pi. Note that |S| = 3655.
The event A corresponds to the subset

A = {(b1, . . . , b5) ∈ S : at least three birthdays are equal}.

Since birthdays are uniformly at random, we have

Pr(A) = |A|/|S|.

To determine the size of the set A, we consider the different possibilities:

1. All five have the same birthday. There are 365 ways this can happen.

2. Exactly four have the same birthday, and the other person has a different birthday.
The number of ways this can happen is(

5

4

)
· 365 · 364 = 664300.

3. Exactly three have the same birthday, and the other two have the same birthday (but
different from the three). The number of ways this can happen is(

5

3

)
· 365 · 364 = 1328600.
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4. Exactly three have the same birthday, and the other two persons have different birth-
days. The number of ways this can happen is(

5

3

)
· 365 · 364 · 363 = 482281800.

Based on this, we have

|A| = 365 + 664300 + 1328600 + 482281800 = 484275065

and, thus,

Pr(A) =
|A|
|S|

=
484275065

3655
≈ 0.00007475.

We can also look at the complement

A = {(b1, . . . , b5) ∈ S : at most two birthdays are equal}.

Again, we consider the different possibilities:

1. All five birthdays are different. The number of ways this can happen is

365 · 364 · 363 · 362 · 361 = 6302555018760.

2. Two people have the same birthday, and the other three have different birthdays. The
number of ways this can happen is(

5

2

)
· 365 · 364 · 363 · 362 = 174586011600.

3. One pair has the same birthday, one other pair has the same birthday (but different
from the first pair), and the other person has a different birthday.

For this case, we have to be careful to avoid double counting:

(a) Choose a subset of size four: There are
(
5
4

)
ways to do this.

(b) Divide the chosen subset into two pairs (the people in the same pair will get the
same birthday). We do this as follows: Sort the chosen subset by name. For
example, if the chosen subset consists of Zoltan, Alexa, Michiel, and Julia, then
we get the ordered sequence

Alexa, Julia, Michiel, Zoltan.

Put Alexa in one pair. There are 3 ways to do this. Once this is done, the
remaining two people form one pair.
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(c) Choose a birthday for the first pair, then choose a different birthday for the
second pair, and finally choose a birthday for the remaining person. There are
365 · 364 · 363 ways to do this.

Conclusion: the number of ways this third case can happen is(
5

4

)
· 3 · 365 · 364 · 363 = 723422700.

Based on this, we have

|A| = 6302555018760 + 174586011600 + 723422700 = 6477864453060.

This gives

Pr(A) = 1− Pr
(
A
)

= 1− 6477864453060

3655
= 0.00007475.

Question 3: Consider a box that contains four beer bottles b1, b2, b3, b4 and two cider bottles
c1, c2. You choose a uniformly random bottle from the box (and do not put it back), after
which you again choose a uniformly random bottle from the box.

Consider the events

A = “the first bottle chosen is a beer bottle”,

B = “the second bottle chosen is a beer bottle”.

• What is the sample space?

• For each element ω in your sample space, determine Pr(ω).

• Determine Pr(A).

• Determine Pr(B).

• Are the events A and B independent?

Solution: Let
X = {b1, b2, b3, b4, c1, c2}.

Then the sample space is the set

S = {(x, y) : x ∈ X, y ∈ X, x 6= y}.

Here, x is the first bottle that is chosen, and y is the second bottle. Note that |S| = 6·5 = 30.
Consider one element (x, y) in S. We have to determine Pr(x, y). The probability of

choosing x is 1/6. After x has been chosen, we choose y with probability 1/5. Therefore,
Pr(x, y) = 1/6 · 1/3 = 1/30. Thus, we have a uniform distribution.
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Here is a more formal argument to do this: Consider the events

Ax = “the first bottle chosen is x”

and
By = “the second bottle chosen is y”.

Then
Pr(x, y) = Pr (Ax ∧By) = Pr (By | Ax) · Pr (Ax) = 1/5 · 1/6 = 1/30.

Next, we determine Pr(A): Note that

A = {(x, y) ∈ S : x = beer, y 6= x}.

There are 4 choices for x and 5 choices for y. Thus, |A| = 4 · 5 = 20 and we get

Pr(A) =
|A|
|S|

=
20

30
= 2/3.

Next, we determine Pr(B): Note that

B = {(x, y) ∈ S : y = beer, x 6= y}.

There are 4 choices for y and 5 choices for x. Thus, |B| = 4 · 5 = 20 and we get

Pr(B) =
|B|
|S|

=
20

30
= 2/3.

To determine if A and B are independent events, we compute Pr(A ∩B): Note that

A ∩B = {(x, y) ∈ S : x = beer, y = beer, x 6= y}.

There are 4 choices for x and 3 choices for y. Thus, |A ∩B| = 4 · 3 = 12 and we get

Pr(A ∩B) =
|A ∩B|
|S|

=
12

30
= 2/5.

Since
Pr(A ∩B) 6= Pr(A) · Pr(B),

the events A and B are not independent.

Question 4: A standard deck of 52 cards contains 13 spades (♠), 13 hearts (♥), 13 clubs
(♣), and 13 diamonds (♦). You choose a uniformly random card from this deck. Consider
the events

A = “the chosen card is a clubs or a diamonds card”,

B = “the chosen card is a clubs or a hearts card”,

C = “the chosen card is a clubs or a spades card”.
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• Are the events A, B, and C pairwise independent?

• Are the events A, B, and C mutually independent?

Solution: The sample space is the set S consisting of the 52 cards in the deck.
Since there are 13 clubs and 13 diamonds, we have

Pr(A) =
13 + 13

52
= 1/2.

By the same reasoning, we have

Pr(B) = Pr(C) =
13 + 13

52
= 1/2.

The event A ∩B corresponds to chosing a clubs. Since there are 13 clubs, we have

Pr(A ∩B) =
13

52
= 1/4.

By the same reasoning, we have

Pr(A ∩ C) = Pr(B ∩ C) =
13

52
= 1/4.

We conclude that
Pr(A ∩B) = Pr(A) · Pr(B),

Pr(A ∩ C) = Pr(A) · Pr(C),

Pr(B ∩ C) = Pr(B) · Pr(C).

Thus, the events A, B, and C are pairwise independent.
The event A ∩B ∩ C corresponds to chosing a clubs. Since there are 13 clubs, we have

Pr(A ∩B ∩ C) =
13

52
= 1/4.

Thus,
Pr(A ∩B ∩ C) 6= Pr(A) · Pr(B) · Pr(C).

Thus, the events A, B, and C are not mutually independent.

Question 5: Consider three events A1, A2, and A3 in some probability space (S,Pr), and
assume that Pr (A1 ∩ A2) > 0 and Pr (A1) > 0. Prove that

Pr (A1 ∩ A2 ∩ A3) = Pr (A3 | A1 ∩ A2) · Pr (A2 | A1) · Pr (A1) .
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Solution: The claim follows by using the definition of conditional probability:

Pr (A3 | A1 ∩ A2) · Pr (A2 | A1) · Pr (A1)

=
Pr(A1 ∩ A2 ∩ A3)

Pr(A1 ∩ A2)
· Pr(A1 ∩ A2)

Pr(A1)
· Pr(A1)

= Pr (A1 ∩ A2 ∩ A3) .

Question 6: A standard deck of 52 cards has four Aces.

• You get a uniformly random hand of three cards. Consider the event

A = “the hand consists of three Aces”.

Determine Pr(A).

Solution: The sample space is the set S consisting of all hands (i.e., subsets) of three
cards. Note that |S| =

(
52
3

)
.

Since there are 4 Aces, the number of hands of three cards that are all Aces is equal
to
(
4
3

)
= 4. Thus,

Pr(A) =
|A|
|S|

=
4(
52
3

) =
1

13 · 17 · 25
.

• You get three cards, which are chosen one after another. Each of these three cards is
chosen uniformly at random from the current deck of cards. (When a card has been
chosen, it is removed from the current deck.) Consider the events

B = “all three cards are Aces”

and, for i = 1, 2, 3,
Bi = “the i-th card is an Ace.”

Express the event B in terms of B1, B2, and B3, and use this expression, together with
Question 5, to determine Pr(B).

Solution: It should be obvious that

B = B1 ∩B2 ∩B3.

Using Question 5, we get

Pr(B) = Pr (B1 ∩B2 ∩B3)

= Pr (B3 | B1 ∩B2) · Pr (B2 | B1) · Pr (B1) .

We determine the terms on the right-hand side:

1. It is clear that

Pr(B1) =
4

52
=

1

13
.
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2. To determine Pr (B2 | B1), we assume that the event B1 occurs. Thus, the first
card is an Ace. For the second card, there are 3 Aces left, out of 51 cards. This
gives

Pr (B2 | B1) =
3

51
=

1

17
.

3. To determine Pr (B3 | B1 ∩B2), we assume that both the events B1 and B2 occur.
Thus, the first two cards are Aces. For the third card, there are 2 Aces left, out
of 50 cards. This gives

Pr (B3 | B1 ∩B2) =
2

50
=

1

25
.

We conclude that

Pr(B) =
1

25
· 1

17
· 1

13
=

1

13 · 17 · 25
.

Question 7: Let S be a sample space consisting of 100 elements. Consider three events A,
B, and C as indicated in the figure below. For example, the event A consists of 50 elements,
20 of which are only in A, 20 of which are only in A ∩B, 5 of which are only in A ∩ C, and
5 of which are in A ∩B ∩ C.

20 20

10

20

5
5

5

15

A
B

C

S

Consider the uniform probability function on this sample space.

• Are the events A and B independent? As always, justify your answer.

• Determine whether or not

Pr(A ∩B | C) = Pr(A | C) · Pr(B | C).

Again, justify your answer.
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Solution: From the Venn diagram, we see that |A| = 50, |B| = 50, and |A ∩ B| = 25.
Therefore,

Pr(A) =
50

100
=

1

2
,

Pr(B) =
50

100
=

1

2
,

and

Pr(A ∩B) =
25

100
=

1

4
.

Since
Pr(A ∩B) = Pr(A) · Pr(B),

the events A and B are independent.
Next, we determine the conditional probabilities: From the Venn diagram, we see that

|C| = 25, |A ∩ C| = 10, |B ∩ C| = 10, and |A ∩B ∩ C| = 5. Therefore,

Pr(A | C) =
Pr(A ∩ C)

Pr(C)
=

10/100

25/100
=

2

5
,

Pr(B | C) =
Pr(B ∩ C)

Pr(C)
=

10/100

25/100
=

2

5
,

and

Pr(A ∩B | C) =
Pr(A ∩B ∩ C)

Pr(C)
=

5/100

25/100
=

1

5
.

We conclude that
Pr(A ∩B | C) 6= Pr(A | C) · Pr(B | C).

Remark: Even though A and B are independent, the “multiplication rule” for independent
events does not apply to conditional probabilities.

Question 8: Alexa1 and Zoltan2 play the following game:

AZ-game:

Step 1: Alexa chooses a uniformly random element from the set {1, 2, 3}. Let a
denote the element that Alexa chooses.
Step 2: Zoltan chooses a uniformly random element from the set {1, 2, 3}. Let z
denote the element that Zoltan chooses.
Step 3: Using one of the three strategies mentioned below, Alexa chooses an
element from the set {1, 2, 3} \ {a}. Let a′ denote the element that Alexa chooses.
Step 4: Using one of the three strategies mentioned below, Zoltan chooses an
element from the set {1, 2, 3} \ {z}. Let z′ denote the element that Alexa chooses.

The AZ-game is a success if a′ 6= z′.

1your friendly TA
2another friendly TA

8



• MinMin Strategy: In Step 3, Alexa chooses the smallest element in the set {1, 2, 3}\{a},
and Zoltan chooses the smallest element in the set {1, 2, 3} \ {z}.

– Describe the sample space for this strategy.

– For this strategy, determine the probability that the AZ-game is a success.

• MinMax Strategy: In Step 3, Alexa chooses the smallest element in the set {1, 2, 3}\{a},
and Zoltan chooses the largest element in the set {1, 2, 3} \ {z}.

– Describe the sample space for this strategy.

– For this strategy, determine the probability that the AZ-game is a success.

• Random Strategy: In Step 3, Alexa chooses a uniformly random element in the set
{1, 2, 3}\{a}, and Zoltan chooses a uniformly random element in the set {1, 2, 3}\{z}.

– Describe the sample space for this strategy.

– For this strategy, determine the probability that the AZ-game is a success.

Solution: We start with the MinMin Strategy: The only places where random choices are
made is in Steps 1 and 2. Therefore, the sample space is the set

S = {(a, z) : a, z ∈ {1, 2, 3}}.

Note that |S| = 3 · 3 = 9 and we have a uniform probability.
The following table gives all possibilities for a, z, a′, and z′, and whether or not the game

is a success (s) or failure (f):

a z a′ z′ s/f

1 1 2 2 f
1 2 2 1 s
1 3 2 1 s
2 1 1 2 s
2 2 1 1 f
2 3 1 1 f
3 1 1 2 s
3 2 1 1 f
3 3 1 1 f

We see that, out of the 9 possibilities, 4 are successful. Therefore, the probability that the
AZ-game is a success is equal to 4/9.

Next we do the MinMax Strategy: The only places where random choices are made is in
Steps 1 and 2. Therefore, the sample space is the set

S = {(a, z) : a, z ∈ {1, 2, 3}}.
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Note that |S| = 3 · 3 = 9 and we have a uniform probability.
The following table gives all possibilities for a, z, a′, and z′, and whether or not the game

is a success (s) or failure (f):

a z a′ z′ s/f

1 1 2 3 s
1 2 2 3 s
1 3 2 2 f
2 1 1 3 s
2 2 1 3 s
2 3 1 2 s
3 1 1 3 s
3 2 1 3 s
3 3 1 2 s

We see that, out of the 9 possibilities, 8 are successful. Therefore, the probability that the
AZ-game is a success is equal to 8/9.

Finally we do the Random Strategy: Since a random choice is made in each of the four
steps, the sample space is the set

S = {(a, a′, z, z′) : a, a′, z, z′ ∈ {1, 2, 3}, a′ 6= a, z′ 6= z}.

Note that |S| = 3 · 2 · 3 · 2 = 36 and we have a uniform probability.
How many elements in the sample space lead to a success:

1. Consider elements (a, a′, z, z′) for which z = a′ and z′ 6= a′.

There are 3 choices for a, 2 choices for a′, 1 choice for z, and 2 choices for z′.

Thus, the number of elements for this case is 3 · 2 · 1 · 2 = 12.

2. Consider elements (a, a′, z, z′) for which z 6= a′ and z′ 6= a′.

There are 3 choices for a, 2 choices for a′, 2 choices for z, and 1 choice for z′.

Thus, the number of elements for this case is 3 · 2 · 2 · 1 = 12.

We see that, out of the 36 possibilities, 12 + 12 = 24 are successful. Therefore, the
probability that the AZ-game is a success is equal to 24/36 = 2/3.
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Question 9: You are given a box that contains one red ball and one blue ball. Consider
the following algorithm RandomRedBlue(n) that takes as input an integer n ≥ 3:

Algorithm RandomRedBlue(n):

// n ≥ 3
// initially, the box contains one red ball and one blue ball
// all random choices are mutually independent
for k = 1 to n− 2
do choose a uniformly random ball in the box;

if the chosen ball is red
then put the chosen ball back in the box;

add one red ball to the box
else put the chosen ball back in the box;

add one blue ball to the box
endif

endfor

For any integers n ≥ 3 and i with 1 ≤ i ≤ n− 1, consider the event

An
i = “at the end of algorithm RandomRedBlue(n),

the number of red balls in the box is equal to i”.

In this exercise, you will prove that for any integers n ≥ 3 and i with 1 ≤ i ≤ n− 1,

Pr (An
i ) =

1

n− 1
. (1)

• Let n ≥ 3 and k be integers with 1 ≤ k ≤ n−2. When running algorithm RandomRedBlue(n),

– how many balls does the box contain at the start of the k-th iteration,

– how many balls does the box contain at the end of the k-th iteration?

• Let n ≥ 3 be an integer. After algorithm RandomRedBlue(n) has terminated, how
many balls does the box contain?

• For any integer n ≥ 3, prove that

Pr (An
1 ) =

1

n− 1
.

• For any integer n ≥ 3, prove that

Pr
(
An

n−1
)

=
1

n− 1
.
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• Let n = 3. Prove that (1) holds for all values of i in the indicated range.

• Let n ≥ 4. Consider the event

A = “in the (n− 2)-th iteration of algorithm RandomRedBlue(n),

a red ball is chosen”.

For any integer i with 2 ≤ i ≤ n− 2, express the event An
i in terms of the events An−1

i−1 ,
An−1

i , and A.

• Let n ≥ 4. For any integer i with 2 ≤ i ≤ n− 2, prove that

Pr (An
i ) = Pr

(
A | An−1

i−1
)
· Pr

(
An−1

i−1
)

+ Pr
(
A | An−1

i

)
· Pr

(
An−1

i

)
.

• Let n ≥ 4. Prove that (1) holds for all values of i in the indicated range.

Solution:
First part:

• At the start of the 1-st iteration, the box contains 2 balls.

• In one iteration, the number of balls increases by 1.

• From this, it follows that

– at the start of the k-th iteration, the box contains k + 1 balls,

– at the end of the k-th iteration, the box contains k + 2 balls.

Second part: When algorithm RandomRedBlue(n) terminates, we are at the end of
the (n− 2)-th iteration. From the previous part, the box contains n balls.

Third part: the event An
1 says that at the end of algorithm RandomRedBlue(n), the

box contains exactly 1 red ball. This means that in each iteration, a blue ball is chosen (and
one blue ball is added to the box).

Consider the k-th iteration. At the start of this iteration, the box contains k + 1 balls.
Assuming that so far, we always chose a blue ball, this means that the box contains 1 red
ball and k blue balls. The probability that we choose a blue ball in the k-th iteration is
equal to k/(k + 1).

Since this must happen for all k = 1, 2, . . . , n− 2, we get

Pr (An
1 ) =

n−2∏
k=1

k

k + 1

=
1

2
· 2

3
· 3

4
· 4

5
· · · n− 2

n− 1

=
1

n− 1
.

12



Fourth part: the event An
n−1 says that at the end of algorithm RandomRedBlue(n),

the box contains exactly n − 1 red balls. This means that in each iteration, a red ball is
chosen (and one red ball is added to the box). By exactly the same computation as for the
third part, we get

Pr
(
An

n−1
)

=
1

n− 1
.

Fifth part: Let n = 3. We have to show that (1) holds for all values of i in the indicated
range. Thus, we copy (1) and replace n by 3: We have to prove that for all i with 1 ≤ i ≤ 2,

Pr
(
A3

i

)
=

1

2
.

We just proved this in the third and fourth parts.

Sixth part: We first oberve that

RandomRedBlue(n) is the same as RandomRedBlue(n−1) plus the (n− 2)-th iteration.

The event An
i says that after RandomRedBlue(n) has terminated, the box contains i red

balls. There are two possibilities for this to happen:

1. After RandomRedBlue(n− 1) has terminated, the box contains i− 1 red balls and
a red ball is chosen in the (n− 2)-th iteration.

2. After RandomRedBlue(n − 1) has terminated, the box contains i red balls and a
blue ball is chosen in the (n− 2)-th iteration.

Based on this, we get
An

i ⇐⇒
(
An−1

i−1 ∧ A
)
∨
(
An−1

i ∧ A
)
.

Seventh part: Using the previous part, the fact that the two events An−1
i−1 ∧ A and

An−1
i ∧ A are disjoint, and the definition of conditional probability, we get

Pr (An
i ) = Pr

((
An−1

i−1 ∧ A
)
∨
(
An−1

i ∧ A
))

= Pr
(
An−1

i−1 ∧ A
)

+ Pr
(
An−1

i ∧ A
)

= Pr
(
A | An−1

i−1
)
· Pr

(
An−1

i−1
)

+ Pr
(
A | An−1

i

)
· Pr

(
An−1

i

)
.

Eighth part: The proof is by induction on n. We have already proved that (1) holds
for n = 3. Let n ≥ 4, and assume that (1) is true for n − 1. Let i be an integer with
1 ≤ i ≤ n− 1. We are going to prove that (1) holds for i and n.

In the third and fourth parts, we have shown that (1) holds for cases when i = 1 and
i = n.

From now on, we assume that 2 ≤ i ≤ n− 2. We have seen above that

Pr (An
i ) = Pr

(
A | An−1

i−1
)
· Pr

(
An−1

i−1
)

+ Pr
(
A | An−1

i

)
· Pr

(
An−1

i

)
.

We have to show that the left-hand side is equal to 1/(n − 1). We do this by determining
the four terms on the right-hand side:
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1. Pr
(
An−1

i−1
)

= 1/(n− 2); this follows by induction.

2. Pr
(
An−1

i

)
= 1/(n− 2); this follows by induction.

3. What is Pr
(
A | An−1

i−1
)
?

We are given that the event An−1
i−1 occurs. Thus, at the end of the (n− 3)-th iteration,

the box contains n− 1 balls, i− 1 of which are red. Given this, the event A says that
we choose a red ball. Thus,

Pr
(
A | An−1

i−1
)

=
i− 1

n− 1
.

4. What is Pr
(
A | An−1

i

)
?

We are given that the event An−1
i occurs. Thus, at the end of the (n− 3)-th iteration,

the box contains n− 1 balls, i of which are red. Given this, the event A says that we
choose a blue ball. Thus,

Pr
(
A | An−1

i

)
=

n− 1− i

n− 1
.

By putting everything together, we get

Pr (An
i ) =

i− 1

n− 1
· 1

n− 2
+

n− 1− i

n− 1
· 1

n− 2

=
n− 2

(n− 1)(n− 2)

=
1

n− 1
.

This was awesome eh?
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