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Abstract3

Bounded-angle spanning trees of points in the plane have received considerable attention in4

the context of wireless networks with directional antennas. For a point set P in the plane and5

an angle α, an α-spanning tree (α-ST) is a spanning tree of the complete Euclidean graph on P6

with the property that all edges incident to each point p ∈ P lie in a wedge of angle α centered7

at p. The α-minimum spanning tree (α-MST) problem asks for an α-ST of minimum total edge8

length. The seminal work of Anscher and Katz (ICALP 2014) shows the NP-hardness of the9

α-MST problem for α = 2π
3 , π and presents approximation algorithms for α = π

2 ,
2π
3 , π.10

In this paper we study the α-MST problem for α = π
2 which is also known to be NP-hard.11

We present a 10-approximation algorithm for this problem. This improves the previous best12

known approximation ratio of 16.13

1 Introduction14

Wireless antennas in a wireless network can be modeled by disks in the plane, where the centers of15

the disks represent locations of antennas and their radii represent transmission ranges of antennas.16

Two antennas can communicate if they are in each other’s transmission range. In this model17

antennas are assumed to be omni-directional which can transmit and receive signals in 360 degrees.18

Replacing omni-directional antennas with directional antennas has received considerable attention19

in recent years, see for example [1, 3, 6, 8, 9, 10, 11, 13, 14, 21]. Directional antennas can transmit20

and receive signals only in a circular wedge with some bounded-angle α. As noted in [4, 21, 23] such21

a bounded-angle communication is more secure, requires lower transmission range, and causes less22

interference. In this model two antennas can communicate if each one is inside the other’s wedge.23

This model is known as symmetric communication network [4, 5, 23].24

The network connectivity is a common problem in designing networks with directional antennas.25

Aschner and Katz [3] formulated this problem in terms of an α-spanning tree (α-ST). For a point26

set P in the plane and an angle α, an α-ST of P is a spanning tree of the complete Euclidean graph27

on P such that all edges incident to each point p ∈ P lie in a wedge of angle α centered at p (see28

Figure 1). It is known that an α-ST always exists when α > π
3 (see e.g. [1, 2, 11]) while it may not29

exists when α < π
3 , for example if P consists of the three vertices of an equilateral triangle.30

The minimum spanning tree (MST) is the shortest connected network for omni-directional an-31

tennas. For directional antennas, the shortest connected network is called the α-minimum spanning32

tree (α-MST) which is an α-ST of P with minimum total edge length. Although one can compute33
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Figure 1: A π
2 -spanning tree.

an MST of n points in the plane optimally in O(n log n) time, it is not clear how to efficiently34

compute an α-MST. Aschner and Katz [3] proved that the α-MST problem is NP-hard for α = 2π
335

and α = π. They also presented approximation algorithms with ratios 16, 6, and 2 for angles36

α = π
2 , α = 2π

3 and α = π, respectively. The approximation ratio 6 for the 2π
3 -MST has been37

successively improved to 5.34 [8] and to 4 [6]. Recently Tran et al. [23] showed that the power38

assignment problem with directional antennas (described in Section 1.2) of angle π
2 is NP-hard, by39

a reduction from the Hamilton path problem on hexagonal grid graphs. A similar reduction can40

be employed to show that the π
2 -MST problem is also NP-hard.41

The above approximation ratios are obtained by considering the weight of the MST as the lower42

bound (instead of the weight of an optimal α-MST). Of these approximation ratios, the ratio 1643

for π
2 is very interesting because for any α < π

2 there exists a point set for which the ratio of the44

weight of any α-MST to the weight of any MST is Ω(n) [5]. In other words, α = π
2 is the smallest45

angle for which one can obtain an α-ST of weight within some constant factor of the MST weight.46

However, such a factor cannot be better than 2 because for points uniformly distributed on a line47

the weight of α-MST could be arbitrary close to 2 times the weight of MST, for any α < π [3, 8].48

1.1 Our contributions49

We present an algorithm that finds a π
2 -ST of weight at most 10 times the MST weight (Theorem 4).50

Thus we obtain a 10-approximation algorithm for the π
2 -MST problem, improving upon the previous51

best known ratio of 16 due to Anscher and Katz [3]. Both our algorithm and that of [3] take linear52

time after computing an MST.53

Towards obtaining the approximation ratio 10 we extend another interesting result of As-54

chner et al. [5] which ensures the connectivity of two sets of oriented four points that are separated55

by a straight line. Our extension (which is given in Theorem 2) relaxes the linear separability56

constraint. Most of the paper is devoted to proving this theorem.57

1.2 Some related problems58

There is a relationship between bounded-angle spanning trees and bounded-degree spanning trees59

which have received a considerable attention [7, 12, 17, 19, 20, 22]. A degree-k ST is a spanning60

tree in which every vertex has degree at most k. It is easily seen that any degree-k ST is an α-ST61

with α = 2π(1 − 1/k) because in any degree-k ST all edges that are incident to each vertex lie in62

some wedge of angle 2π(1− 1/k).63

The α-bottleneck spanning tree (α-BST) is a closely related problem in which the goal is to64

compute an α-ST whose longest edge length is minimum. This problem has been studied in65

the context of designing networks with bounded-range directional antennas, see for example the66

results of Aschner et al. [3, 5] for constructing hop-spanners for unit disk graphs, Dobrev et al. [14,67

15] and Caragiannis et al. [10] for constructing bounded-degree strongly connected networks, and68
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Carmi et al. [11] for constructing bounded-angle Hamiltonian paths. Another related problem in69

this context is “power assignment with directional antennas” where the objective is to assign each70

point p ∈ P a wedge of angle α as well as a range rp to obtain a connected symmetric communication71

network of minimum total power
∑

p∈P (rp)
β where β > 1 is the distance-power gradient [3, 5, 23].72

Computing bounded-angle Hamiltonian paths and cycles on points in the plane is another73

related problem. For paths it is known that any set of points in the plane admits a Hamiltonian74

path with turning angles at most π
2 [11, 18] and this bound on the angle is tight [11, 16]. For cycles75

no tight bound on the angle is known. Dumitrescu et al. [16] proved that any even-size point set76

admits a Hamiltonian cycle with angles at most 2π
3 . The most famous conjecture in this context,77

due to Fekete and Woeginger [18], states that any even-size point set of at least 8 elements admits78

a Hamiltonian cycle with angles at most π
2 .79

1.3 Preliminaries for the algorithm80

p

wp

−→wp

←−wp

wq
q

The following notations are adopted from [8]. Let wp be a wedge in the81

plane having its apex at a point p. We denote the clockwise (right) bound-82

ary ray of wp by −→wp and its counterclockwise (left) boundary ray by ←−wp.83

Let wq be another wedge in the plane having its apex at a point q. If q lies84

in wp then we say that p sees q (or q is visible from p). We say that p and85

q are mutually visible, denoted by p↔ q, if p sees q and q sees p. In the86

figure to the right p and q are mutually visible. Let P be a set of points in87

the plane such that some wedge is placed at each point of P . The induced88

mutual visibility graph of P , denoted by G(P ), is a geometric graph with vertex set P that has a89

straight-line edge between two points p, q ∈ P if and only if p and q are mutually visible. We use90

the term “orient” to refer to placement of wedges at points. We denote the sum of edge lengths of91

a geometric graph G by w(G).92

We define the following notations to facilitate the description of our algorithm and its analysis.93

For two points p and q in the plane the slab S(p, q) is defined as the region between two lines that94

are perpendicular to the segment pq at points p and q (see Figure 2(a)). We use quadruple to95

denote a set of four points in the plane. A quadruple Q is called admissible if it has two points p96

and q such that the other two points lie in S(p, q) and both on the same side of pq. In this case97

we refer to (p, q) as an admissible pair of Q. Notice that a quadruple could have more than one98

admissible pair. For a quadruple Q with a fixed admissible pair (p, q), we define the admissible slab99

of Q, denoted by S(Q), to be the same as the slab S(p, q); see Figure 2(a). The following lemma100

(though very simple) plays an important role in our algorithm.101

Lemma 1. Any set P of five points in the plane contains an admissible quadruple Q such that all102

points of P lie in S(Q).103

Proof. Let p and q be two points that define a diameter of P , i.e., two with maximum distance. Of104

the remaining three points of P at least two of them, say r and s, lie on the same side of S(p, q).105

Therefore {p, q, r, s} is an admissible quadruple which we denote by Q. Since pq is a diameter of106

P , all points of P lie in S(p, q) and hence in S(Q).107

Our orientation of admissible quadruples in the following theorem is similar to that of Aschner,108

Katz, and Morgenstern et al. [5] for arbitrary quadruples.109

Theorem 1. Given an admissible quadruple Q, one can place at each point of Q a wedge of angle110

π/2 such that the wedges cover the plane and the induced mutual visibility graph of Q is connected.111
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Figure 2: An admissible quadruple Q = {p, q, r, s} with admissible pair (p, q). Illustrations of (a)
the slab S(p, q) which is the same as the admissible slab S(Q), (b) the proof of Theorem 1, and (c)
the visibility region V (Q) which is the region visible to both p and q.

Proof. Let Q = {p, q, r, s}. After a suitable relabeling, rotation and reflection assume that (p, q) is112

an admissible pair of Q, the line segment pq is horizontal, p is to the left of q, the points r and s113

lie above pq, and r is to the left of s as in Figure 2(b). We place four wedges at points of Q as in114

Figure 2(b). Formally, we place a wedge wp at p such that −→wp passes through q, place wq at q such115

that ←−wq passes through p, place wr at r such that q lies in wr and −→wr is vertical, and place ws at s116

such that p lies in ws and←−ws is vertical. These four wedges cover the entire plane (if we think of the117

intersection point of −→wp and −→wr as the origin of the coordinate system, then the four wedges cover118

the four quadrants). Moreover, the induced mutual visibility graph is connected because p↔ q,119

r↔q, and p↔s.120

Recall the two points p and q in the proof of Theorem 1 that make Q admissible. Notice that121

after orientation of Theorem 1 the admissible slab of Q is uniquely defined by p and q. We define122

the visibility region of Q, denoted by V (Q), as part of S(Q) that is visible to both p and q; see123

Figure 2(c) for an illustration.124

The following theorem, which will be proved in Section 3, plays a crucial role in the correctness125

of our algorithm. Most of the paper is devoted to proving this theorem.126

Theorem 2. Let Q1 and Q2 be two admissible quadruples. Assume that wedges of angle π/2 are127

placed at points of each of Q1 and Q2 according to the placement in the proof of Theorem 1. Then128

at least one of the following statements holds129

(i) The induced mutual-visibility graph of Q1 ∪Q2 is connected.130

(ii) At any point p in S(Q1) ∪ S(Q2) one can place a wedge of angle π/2 such that p is mutually131

visible from a point q1 ∈ Q1 and from a point q2 ∈ Q2. In other words the induced mutual-132

visibility graph of Q1 ∪Q2 ∪ {p} is connected.133

We note that there are admissible quadruples for which statement (i) does not hold, but (ii)134

holds for them; see for example Figure 9. Theorem 2 extends the following result of Aschner et al.[5]135

which applies only to quadruples that are separated by a line.136

Theorem 3 (Aschner, Katz, and Morgenstern [5], 2013). Let Q1 and Q2 be two quadruples. Assume137

that wedges of angle π/2 are placed at points of each of Q1 and Q2 according to the placement in the138

proof of Theorem 1. If Q1 and Q2 are separated by a straight line, then the induced mutual-visibility139

graph of Q1 ∪Q2 is connected.140
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2 The approximation algorithm141

Let P be a set of n points in the plane. In this section we present our algorithm for computing a142
π
2 -ST of P of weight at most 10 times the weight of the MST of P . In Section 2.1 we describe the143

general framework of the algorithm. In Section 2.2 we provide the details of the algorithm and its144

analysis.145

2.1 A general framework146

Our algorithm follows the same framework as previous algorithms [3, 6, 8] which is described below.147

This framework was first introduced by Aschner and Katz [3].148

Start by computing an MST of P . From the MST obtain a Hamiltonian path H of weight at149

most 2 times the weight of MST. It is well-known that such a path can be obtained by doubling150

the MST edges, computing an Euler tour, and then short-cutting repeated vertices. The constant151

2 is tight as Fekete et al. [17] showed that for any fixed ε > 0 there exist point sets for which the152

weight of any Hamiltonian path is at least 2− ε times the weight of MST.153

The next step is to partition H into n
k groups each consisting of k consecutive vertices of H for154

some constant k (assuming n is divisible by k). Then orient each group independently in such a155

way that (I) the vertices in each group are connected, and (II) there is an edge between any pair156

of consecutive groups. Thus the induced mutual visibility graph on P is connected. Moreover, as157

the vertices of the groups are connected locally (to the vertices of the same group or a neighboring158

group), the mutual visibility graph contains a spanning tree whose weight is within some constant159

factor of the weight of H. This constant depends only on k.160

The original algorithms of Aschner and Katz [3] partition H into groups of size k = 8 for α = π
2161

and k = 3 for α = 2π
3 . The improved algorithms of [8] and [6] (for α = 2π

3 ) partition H into groups162

of size k = 3 and k = 2, respectively.163

Our algorithm partitions H into groups of size k = 5 for α = π
2 . The most challenging part in164

our algorithm (and in previous algorithms) is to maintain property (II); the proof of this property165

often involves detailed case analysis. There is a main difference between our algorithm and previous166

algorithms [3, 6, 8]. Instead of orienting all five vertices in each group simultaneously, we first select167

four of them and orient only these selected vertices. The four selected vertices form an admissible168

quadruple. We refer to the non-selected vertex as a backup. We show that, except for one “special169

case”, there is always a connection between two oriented admissible quadruples. For the special170

case we use the backup vertex to make the connection between two quadruples.171

2.2 Details of our algorithm172

In this section we provide details of our algorithm and its analysis. Recall that P is a set of n173

points in the plane, and that H is a Hamiltonian path on P such that174

w(H) 6 2w(MST).

Let h1, . . . , hn−1 be the sequence of edges of H from one end to another. Partition the edges of175

H into five sets H1 = {h1, h6, . . . }, H2 = {h2, h7, . . . }, H3 = {h3, h8, . . . }, H4 = {h4, h9, . . . }, and176

H5 = {h5, h10, . . . }. Let Hk with k ∈ {1, 2, 3, 4, 5} be the edge set with the largest weight. Then177

w(Hk) >
w(H)

5
and w(H \Hk) 6

4w(H)

5
.

By removing all edges of Hk from H we obtain a sequence of sub-paths each containing five178

vertices (except possibly the first and last sub-paths). To simplify our description we assume for179
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h1
h2 h3

∈Hk

g1 g2 g3

Figure 3: Illustration of the groups and sub-paths (dashed edges belong to Hk, where k = 5).

now that all sub-paths have five vertices, later in Remark 1 we will take care of the case where the180

first and last sub-paths have less than five vertices. We refer to the five vertices of each sub-path as181

a group. Let g1, g2, . . . , gm denote the sequence of the groups that is corresponding to the sequence182

of sub-paths along H as in Figure 3.183

From each group gi we take an admissible quadruple Qi (consisting of four vertices) as in the184

proof of Lemma 1. We denote the remaining vertex of gi by bi; this is a backup vertex. By Lemma 1,185

bi lies in S(Qi). We orient each admissible quadruple Qi according to the orientation in the proof of186

Theorem 1 which ensures the connectivity of the induced mutual visibilty graph G(Qi). Consider187

any two consecutive oriented quadruples Qi and Qi+1. By Theorem 2 at least one of the following188

statements holds:189

(i) The graph G(Qi ∪Qi+1) is connected, i.e., there is an edge between Qi and Qi+1.190

(ii) Any point p in S(Qi) ∪ S(Qi+1) can be oriented so that G(Qi ∪Qi+1 ∪ {p}) is connected.191

If statement (i) holds then we orient bi towards a vertex of Qi that sees bi (such a vertex exists192

because the orientation of Theorem 1 covers the entire plane). If (i) does not hold but (ii) holds193

then we orient bi in such a way that it connects Qi and Qi+1.194

To this end all vertices are oriented except the backup vertex bm of gm. We orient bm towards195

a vertex of Qm that sees bm. Thus, we obtain a connected induced mutual visibility graph G(P ).196

Now we obtain a spanning tree T of G(P ) as follows: First we take an arbitrary spanning tree Ti197

from each G(Qi). Then we connect each pair Ti and Ti+1 either by a direct edge (if (i) holds) or via198

a backup vertex (if (ii) holds). Lastly we connect any remaining backup vertex to its corresponding199

quadruple by an edge. This gives a spanning tree T that we report as the output of our algorithm.200

Notice that the trees Ti are not necessarily minimum spanning trees of graphs G(Qi); we will use201

the triangle inequality to bound the length of T .202

Analysis of the approximation ratio. To bound the weight of T , we charge the edges of H203

for the edges of T as follows. By the triangle inequality, the weight of every edge (p, q) of T is at204

most the weight of the unique path in H between p and q. We charge the weight of the edges of205

this path for the edge (p, q). Every edge of Hk is charged only once and that is for connecting two206

consecutive trees Ti and Ti+1 (either directly or via a backup vertex). Every edge of H \Hk (i.e.,207

every edge of each sub-path) is charged at most six times: three times for the three edges of Ti,208

two times for the two edges connecting Ti to Ti+1 and to Ti−1, and once for the edge connecting209

the backup vertex bi to Ti. Therefore210

w(T ) 6 w(Hk) + 6w(H \Hk)

= w(H) + 5w(H \Hk) 6 w(H) + 5 · 4w(H)

5
= 5w(H) 6 10w(MST).

Running-time analysis. After computing an MST in O(n log n) time, the rest of the algorithm211
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(computing H, finding Hk, orienting admissible quadruples and backup vertices, and obtaining T )212

takes O(n) time.213

Remark 1. Here we handle the case where the first sub-path, denoted by δ, has less than five214

vertices (the last sub-path will be treated analogously). This case is essentially a simple version of215

Theorem 2 where fewer points are involved. We will use Theorem 2 to handle this case, however it216

could also be handled directly but with some case analysis.217

We will connect the vertices of δ to g1 (the first 5-vertex group). Let Q be g1’s admissible218

quadruple. Since the oriented points in Q cover the entire plane, it might be tempting to orient219

each point p of δ towards the point of Q that sees p. This approach may not be suitable when δ has220

more than one point because to maintain the ratio 10 we should not connect Q to its proceeding221

group (here to δ) by more than one edge. To remedy this, we use our Theorem 2.222

a b
d′ c′

As discussed above, we may assume that δ has 2, 3, or 4 points. Let223

ab be a diameter of δ. Thus, δ has points a, b, and at most two other224

“real” points. We place a “fake” point c′ in S(a, b) and very close to b225

such that both c′ and b lie on the same side of any line through boundary226

rays of wedges in Q. In the same fashion we place a fake point d′ very227

close to a, and on the same side of ab as c′. Let Q′ = {a, b, c′, d′}. Our228

placement of c′ and d′—in S(a, b) and on the same side of ab—implies that Q′ is an admissible229

quadruple with admissible pair (a, b). We orient Q′ according to Theorem 1. By Theorem 2-part230

(i), a point of Q′ and a point of Q are mutually visible (our placement of c′ and d′ together with231

Property 1 from the next section imply that part (i) of Theorem 2 holds). If the visibility is through232

a real point say b, then we reflect the orientation of a with respect to ab. After reflection, a and233

b remain mutually visible, and their wedges cover the entire region S(a, b). Then we orient every234

other real vertex of δ towards the one of a and b that sees it. If the visibility is through a fake235

point say c′ then the point of Q, say q, that sees c′ also sees b (this is implied by our placement of236

c′). In this case we reflect the orientation of b with respect to ab so that b is mutually visible with237

q, and a and b together see the entire region S(a, b). Then we orient every other real vertex of δ238

towards the one of a and b that sees it. In either case we remove fake points. Therefore the mutual239

visibility graph on points of δ is connected, and it has a connection to a point in Q via a or b.240

The following theorem summarizes our main result.241

Theorem 4. For any set of points in the plane and any angle α > π
2 , there is an α-spanning tree242

of length at most 10 times the length of the MST. Furthermore, there is an algorithm that finds243

such an α-spanning tree in linear time after construction of the MST.244

3 Proof of Theorem 2245

In this section we prove Theorem 2 which says: Let Q1 and Q2 be two admissible quadruples.246

Assume that wedges of angle π/2 are placed at points of each of Q1 and Q2 according to the247

placement in the proof of Theorem 1. Then at least one of the following statements holds248

(i) The induced mutual-visibility graph of Q1 ∪Q2 is connected.249

(ii) At any point p in S(Q1) ∪ S(Q2) we can place a wedge of angle π/2 such that p is mutually250

visible from a point q1 ∈ Q1 and from a point q2 ∈ Q2. In other words the induced mutual-251

visibility graph of Q1 ∪Q2 ∪ {p} is connected.252
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Our proof is involved. For a better understanding we split our proof into smaller pieces based on253

the relative position of admissible pairs of Q1 and Q2. Let Q1 = {a, b, c, d} and Q2 = {a′, b′, c′, d′}.254

After a suitable relabeling assume that (a, b) and (a′, b′) are the admissible pairs of Q1 and Q2,255

respectively, that are considered in the orientation of Theorem 1. Also assume that—after the256

orientation of Theorem 1—c looks towards a while d looks towards b, and similarly c′ looks towards257

a′ while d′ looks towards b′ as in Figures 4-10. We use this notation throughout our proof without258

further mentioning. Up to symmetry we have the following four cases:259

A. a′b′ intersects ab.260

B. The extension of a′b′ intersects the extension of ab.261

C. The extension of a′b′ intersects ab.262

D. a′b′ is parallel to ab.263

After a suitable rotation we assume that ab is horizontal and a is to the left of b. We denote264

by ` the line through ab and by `′ the line through a′b′ as in Figure 4(a). For a point x we denote265

by `x the line through x that is perpendicular to `, and denote by `′x the line through x that is266

perpendicular to `. For a line l in the plane we use the terms “above” and “below” to refer to the267

two half planes on the two sides of l. If l is vertical then “below” refers to the left-side half plane268

and “above” refers to the right-side half plane. Throughout our proof, we use the following obvious269

observation about mutual visibility without mentioning it in all occurrences.270

Observation 1. Assume that wedges wp and wq of angles π
2 are placed at two

points p and q. If the clockwise (resp. counterclockwise) boundary ray of wp

meets the counterclockwise (resp. clockwise) boundary ray of wq at an obtuse
or a right angle then p and q are mutually visible.

p wp qwq

271

272

Some part of our proof (where Q1 and Q2 are separated by a line) could be implied from273

Theorem 3. However, for the sake of completeness we provide our own proof. We provide the proof274

of the first cases, A and B-1, with more formal details. To simplify our description, we will refer275

to the clockwise (resp. counterclockwise) boundary ray of the wedge that is placed at a point p by276

“the clockwise (resp. counterclockwise) ray of p”.277

α

b′

a′

a b

`′

`

α

`c

`′c′

a b

d

a′

b′

d′

c

`

`′
c′

π-α

π
2
+α

(a) A-1 (b) A-2: c′ below `, c above `′

Figure 4: Illustration of the proof of case A.
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A. a′b′ intersects ab278

We denote by α the intersection angle of ab and a′b′ that lies in V (Q1) ∩ V (Q2). We say that α is279

defined by the two vertices that lie on this angle. For example in Figure 4(a) the angle α is defined280

by a and b′. Depending on the value of α we consider the following two cases.281

1. α > π
2 . After a suitable relabeling we assume that α is defined by a and b′, as in Figure 4(a).282

In this case the clockwise ray of a and the counterclockwise ray of b′ meet at angle α, and283

thus a and b′ are mutually visible by Observation 1.284

2. α < π
2 . After a suitable relabeling we assume that α is defined by b and b′, as in Figure 4(b).285

If c′ is above ` then the clockwise ray of a and the counterclockwise ray of c′ meet at angle286

π−α, and thus c′ and a are mutually visible by Observation 1. Similarly if c is below `′ then287

c and a′ are mutually visible. Assume that c′ is below ` and c is above `′ as in Figure 4(b).288

If d′ is to the left of `c then the clockwise ray of d′ and the counterclockwise ray of c meet at289

angle π
2 + α, and thus d′ and c are mutually visible by Observation 1. Similarly if d is below290

`′c′ then d and c′ are mutually visible. Assume that d′ is to the right of `c, and d is above291

`′c′ . In this setting which is depicted in Figure 4(b), d and d′ lie in opposite cones formed by292

intersection of `c and `′c′ , and thus d and d′ are mutually visible (observe that the clockwise293

ray of d and the counterclockwise ray of d′ meet at angle π − α).294

B. The extension of a′b′ intersects the extension of ab295

Let α be the angle at which the extensions of ab and a′b′ meet each other as in Figures 5 and 6.296

After a suitable reflection and relabeling we assume that a′b′ lies below `, their extensions meet297

at a point m to the right of b, and a′ is farther from m than b′. Depending on the value of α we298

consider two cases.299

α

`

a

a′

b

b′

m

α
`

a

b′

a′
c′

`′d′

d

d′

a′

b

3π
2 -α

α

α
`a

a′

d

d′

`′`′

b

a′

b′

(a) B-1-1 (b) B-1-2: d′ above `, d below `′d′ (c) B-1-3: d′ below `, d below `′

Figure 5: Illustration of the proof of case B-1.

1. α > π
2 . Depending on visibility regions of Q1 and Q2 we consider three sub-cases (up to300

symmetry).301

1. V (Q1) lies below ab and V (Q2) lies below a′b′ as in Figure 5(a). In this case the clockwise302

ray of a′ and the counterclockwise ray of a meet at angle α, and hence a ↔ a′ by303

Observation 1.304

2. V (Q1) lies below ab and V (Q2) lies above a′b′. See Figure 5(b). If d′ is below ` then305

the clockwise ray of d′ and the counterclockwise ray of a meet at angle α and hence306
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a↔ d′. Assume that d′ is above `. If d is above `′d′ then the clockwise ray of d and307

the counterclockwise ray of d′ meet at angle 3π
2 − α and thus d↔d′. Assume that d is308

below `′d′ . In this setting which is depicted in Figure 5(b) the clockwise ray of c′ and the309

counterclockwise ray of d meet at angle α and thus c′↔d .310

3. V (Q1) lies above ab and V (Q2) lies above a′b′. See Figure 5(c). If d′ is above ` then311

a ↔ d′. Similarly if d is above `′ then a′ ↔ d. Assume that d′ is below ` and d is312

below `′. In this setting which is depicted in Figure 5(c) the clockwise ray of d′ and the313

counterclockwise ray of d meet at angle α and thus d↔d′ .314

α

`d

`′a′

`c

a b

d c

a′

b′

m

a′

α

`′d′

`c

`d

a b

d

c

d′

b′

α

`′a′
`a′

a b

a′

b′

(a) B-2-1: d above `′a′ , a′ right of `d (b) B-2-2: d′ left of `d (c) B-2-3: b left of `a′

Figure 6: Illustration of the proof of case B-2.

2. α < π
2 . Similar to the previous case here we also consider three sub-cases.315

1. V (Q1) lies above ab and V (Q2) lies above a′b′. See Figure 6(a). If d is below `′a′ then d316

and b′ are mutually visible. If a′ is to the left of `d then a′ and c are mutually visible.317

Assume that d is above `′a′ and a′ is to the right of `d as in Figure 6(a). In this setting318

d and a′ are mutually visible.319

2. V (Q1) lies above ab and V (Q2) lies below a′b′. If d′ is to the left of `d then c↔d′ as in320

Figure 6(b). Analogously if d is below `′d′ then c′↔ d. Therefore assume that d′ is to321

right of `d and d is above `′d′ . In this setting d↔d′.322

3. V (Q1) lies below ab and V (Q2) lies above a′b′. See Figure 6(c). Consider `a′ , i.e., the323

line through a′ that is perpendicular to `. If b is to the right of `a′ then a′↔b. Assume324

that b is to the left of `a′ as in Figure 6(c). Now we look at `′a′ . If a is above this line325

then a↔a′, otherwise a↔b′. (Notice that when a is above `′a′ then a and b′ may not be326

mutually visible, for example when b′ is very close to a′.)327

C. The extension of a′b′ intersects ab328

We denote by m the intersection point of `′ and ab. After a suitable reflection and relabeling we329

assume that a′b′ lies below `, a′ is farther from m than b′, and angle ∠a′ma 6 π
2 , as in Figure 7.330

Depending on visibility regions of Q1 and Q2 we consider four cases.331

1. V (Q1) lies below ab and V (Q2) lies below a′b′ as in Figure 7(a). In this case a′↔b.332

2. V (Q1) lies above ab and V (Q2) lies above a′b′. If c is to the left of `a′ then so is d, as in333

Figure 7(b). In this case d sees both a′ and b′, and at least one of a′ and b′ sees d, and thus334
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m
`′

a b

b′

a′

`a′

b

d

a

c

a′

b′

`′

a b

c

b′

a′

d′ `a′

(a) C-1 (b) C-2: c left of `a′ (c) C-2: c below `′

Figure 7: Illustration of the proof of cases C-1 and C-2.

d↔ a′ or d↔ b′. Assume that c is to the right of `a′ . If c is above `′ then c↔ a′. Thus,335

assume that c is below `′ as in Figure 7(c). Recall that d′ is in slab S(a′, b′). If d′ is above336

the horizontal line through c then d′↔b, otherwise d′↔c.337

3. V (Q1) lies above ab and V (Q2) lies below a′b′. This case is depicted in Figure 8. If c is below338

`′ then c↔a′. Assume that c is above `′. If d′ is to the left of `c then c↔d′ as in Figure 8(a).339

Assume that d′ is to the right of `c (and hence to the right of `d). Now we look at d with340

respect to `′d′ . If d is above `′d′ then d↔d′. If d is below `′d′ then it is also below `′c′ and thus341

d↔c′ as in Figure 8(b).342

`′

`c

a b

c

d′

a′

b′ `c

`′d′

`′c′

a b

d

c

a′

b′

d′

c′

(a) C-3: d′ left of `c (b) C-3: d′ right of `c, d below `′d′

Figure 8: Illustration of the proof of case C-3.

4. V (Q1) lies below ab and V (Q2) lies above a′b′. This case is depicted in Figure 9. If d′ is343

below ` then d′↔ b. Assume that d′ is above `. If a is below `′b′ then a↔ b′. Assume that344

a is above `′b′ . If c is above `′d′ then c↔ d′. Assume that c is below `′d′ (which is also below345

`′c′). Notice that c′ lies in the slab bounded by `′b′ and `′d′ . If c′ is to the left of `c then c′↔c.346

Assume that c′ is to the right of `c. Notice that d lies in the vertical slab bounded by `a and347

`c. Let `1 be the line through c′ parallel to `′. If d is below `1 then d↔ c′. Assume that d348

is above `1. This configuration is depicted in Figure 9 (the caption of this figure summarizes349

the constraints). This is the configuration for which statement (i) of the theorem does not350

hold; for all other configurations statement (i) holds. We will show that statement (ii) holds351

in the current setting.352
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`′

`
`1

a′

c′

d′

d

b

c

b′

`′b′

`′d′

`c`a

a

Figure 9: Illustration of case C-4: d′ is above `, a is above `′b′ , c is below `′d′ , c′ is to the right of
`c (and in the slab defined by `′d′ and `′b′), and d is above `1 (and in the slab defined by `a and
`c). In this figure, Q1 and Q2 are oriented according to Theorem 1 but there is no mutual visibility
between points of Q1 and points of Q2 (statement (i) in Theorem 2 does not hold here).

First, we extract a property of the current setting which is used in Remark 1. See Figure 9353

for a better understanding of this property, and notice that in the current setting the points354

b, c lie on different sides of `′b′ , and the points a′, d′ lie on different sides of `.355

Property 1. If statement (i) in Theorem 2 does not hold then then the points b, c or the356

points a, d of Q1 lie on different sides of a line through boundary rays of wedges of Q2, and357

similarly the points b′, c′ or the points a′, d′ of Q2 lie on different sides of a line through358

boundary rays of wedges of Q1.359

To verify that statement (ii) holds in the current setting, let p be any point in the region360

S(Q1) ∪ S(Q2). We show how to place a wedge of angle π
2 at p so that p is mutually visible361

from a point in Q1 and a point in Q2. To simplify our description we partition S(Q1)∪S(Q2)362

into eight regions R1, . . . , R8 as in Figure 10. If p ∈ R1 then we orient p similar to d′, and363

thus p↔ b and p↔ b′. If p ∈ R2 then we orient p similar to a, and thus p↔ c and p↔ b′. If364

p ∈ R3 then we orient it similar to c′ so that p↔ c and p↔ a′. If p ∈ R4 then we orient it365

similar to b so that p↔d and p↔a′. If p ∈ R5 then we orient it similar to b′, and hence p↔d366

and p↔d′. If p ∈ R6 then we orient it similar to c, and thus p↔a and p↔d′. If p ∈ R7 then367

we orient it similar to a′ so that p↔a and p↔c′. Finally if p ∈ R8 then we orient it similar368

to d, and hence p↔b and p↔c′. Thus statement (ii) of the theorem holds.369

D. a′b′ is parallel to ab370

Assume that ab and a′b′ are horizontal, and ab lies above a′b′. Consider any horizontal line h371

between ab and a′b′. One pair of points from Q1 (either (a, b) or (c, d)) covers the half plane below372

h. Also, one pair of points from Q2 (either (a′, b′) or (c′, d′)) covers the half plane above h. One can373

simply verify that there is an edge between these two pairs in the induced mutual visibility graph.374

This is the end of our proof of Theorem 2.375

12



`′

` `1

a′

c′

d′

d

b

b′

a

p p

p

p

p

p

p

R1

R2

R3
R4

R6

R7

R8

c

p

R5

Figure 10: Partitioning S(Q1) ∪ S(Q2) into regions R1, . . . , R8.

4 Conclusions376

The obvious open problem is to improve our approximation ratio 10 which we think is not the best377

possible ratio. The use of a Hamiltonian path is a bottleneck towards our analysis as it forces a378

factor of 2 in the ratio. It might be possible to get better ratios by using the original MST instead379

of the path. Perhaps the MST may not be the best lower bound either because one may obtain a380

better ratio by considering the π
2 -MST as a lower bound.381
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