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Abstract
We confirm the following conjecture of Fekete and Woeginger from 1997: for any sufficiently

large even number n, every set of n points in the plane can be connected by a spanning tour
(Hamiltonian cycle) consisting of straight-line edges such that the angle between any two con-
secutive edges is at most π/2. Our proof is constructive and suggests a simple O(n log n)-time
algorithm for finding such a tour. The previous best-known upper bound on the angle is 2π/3,
and it is due to Dumitrescu, Pach and Tóth (2009).

1 Introduction
The Euclidean traveling salesperson problem (TSP) is a well-studied and fundamental problem in
combinatorial optimization and computational geometry. In this problem we are given a set of
points in the plane and our goal is to find a shortest tour that visits all points. Motivated by
applications in robotics and motion planning, in recent years there has been an increased interest
in the study of tours with bounded angles at vertices, rather than bounded length of edges; see
e.g. [2, 3, 13, 14, 15] and references therein. Bounded-angle structures (tours, paths, trees) are also
desirable in the context of designing networks with directional antennas [6, 7, 11, 19]. Bounded-
angle tours (and paths), in particular, have received considerable attention following the PhD thesis
of S. Fekete [14] and the seminal work of Fekete and Woeginger [15].

Consider a set P of at least three points in the plane. A spanning tour is a directed Hamiltonian
cycle on P that is drawn with straight-line edges. When three consecutive vertices pi, pi+1, pi+2 of
the tour are traversed in this order, the rotation angle at pi+1 (denoted by ∠pipi+1pi+2) is the angle
in [0, π] that is determined by the segments pipi+1 and pi+1pi+2. If all rotation angles in a tour are
at most π/2 then it is called an acute tour.

In 1997, Fekete and Woeginger [15] raised many challenging questions about bounded-angle
tours and paths. In particular they conjectured that for any sufficiently large even number n, every
set of n points in the plane admits an acute spanning tour (a tour with rotation angles at most
π/2). They stated the conjecture specifically for n > 8. The point set illustrated in Figure 1(a)
(also described in [15]) shows that the upper bound π/2 is the best achievable. The conjecture
does not hold if n is allowed to be an odd number; for example if the n points are on a line then
in any spanning tour one of the rotation angles must be π. The conjecture also does not hold if
n is allowed to be small. For instance the 4-element point set consisting of the 3 vertices of an
equilateral triangle with its center, must have a rotation angle 2π/3 in any spanning tour. Also the
6-element point set of Figure 1(b) (also illustrated in [15] and [13]) must have a rotation angle of
at least 2π/3− ε in any spanning tour, for some arbitrary small constant ε.
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Figure 1: (a) a general lower bound example, and (b) a lower bound example for 6 points.

In 2009, Dumitrescu, Pach and Tóth [13] took the first promising steps towards proving the
conjecture. They confirmed the conjecture for points in convex position. For general point sets,
they obtained the first partial result by showing that any even size point set admits a spanning
tour in which each rotation angle is at most 2π/3.

In this paper we prove the conjecture of Fekete and Woeginger for general point sets.

Theorem 1. Let n > 20 be an even integer. Then every set of n points in the plane admits an acute
spanning tour. Such a tour can be computed in linear time after finding an equitable partitioning
of the points with two orthogonal lines.

Due to our desire of having a short proof, we prove the conjecture for n > 20. Perhaps with
some detailed case analysis one could extend the range of n to a number smaller than 20.

Difficulties towards a proof. Fekete and Woeginger [15] exhibited an arbitrary-large even-size
point set for which an algorithm (or a proof technique), that always outputs the longest tour or
includes the diameter in the solution, does not achieve an acute tour; the point set is similar to
that of Figure 1(b) but has more than 6 points. This somehow breaks the hope for finding an acute
tour by using greedy techniques. Therefore, to prove the conjecture one might need to employ some
nontrivial ideas.

1.1 Related problems

Another interesting conjecture of Fekete and Woeginger [15] is that any set of points in the plane
admits a spanning path in which all rotation angles are at least π/6.1 In 2008, Bárány, Pór, and
Valtr [8] obtained the first constant lower bound of π/9, thereby gave a partial answer to the
conjecture. The full conjecture was then proved, although not yet written in a paper format, by J.
Kynčl [16] (see also the note added in the proof of [8]).

Fekete and Woeginger [15] showed that any set of points in the plane admits an acute spanning
path (where all intermediate rotation angles are at most π/2). Such a path can be obtained simply
by starting from an arbitrary point and iteratively connecting the current point to its farthest
among the remaining points. Notice that the resulting path always contains the diameter and by
the difficulties mentioned above it cannot be completed to an acute tour. Carmi et al. [11] showed
how to construct acute paths with shorter edges; again no guarantee to be completed to an acute
tour. Aichholzer et al. [4] studied a similar problem with an additional constraint that the path
should be plane (i.e., its edges do not cross each other). Among other results, they showed that
any set of points in the plane in general position admits a plane spanning path with rotation angles
at most 3π/4. They also conjectured that this upper bound could be replaced by π/2.

1This bound is the best achievable as the three vertices of an equilateral triangle together with its center do not
admit a path with rotation angles greater than π/6.
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The bounded-angle minimum spanning tree (also known as α-MST) is a related problem that
asks for a Euclidean minimum spanning tree in which all edges incident to every vertex lie in a
cone of angle at most α. This problem is motivated by replacing omni-directional antennas—in
a wireless network—with directional antennas, which are more secure, require lower transmission
ranges, and cause less interference; see e.g. [6, 7, 9, 10, 19].

Another related problem (with an objective somewhat opposite to ours) is to minimize the
total turning angle of the tour [2].2 Similar problems are also studied under the concepts of pseudo-
convex tours and paths (which make only right turns) [15], and reflexivity of a point set (which is
the smallest number of reflex vertices in a simple polygonalization of the point set) [1, 5].

The so-called Tverberg cycle is a cycle with straight-line edges such that the diametral disks3

induced by the edges have nonempty intersection. Recently, Pirahmad et al. [17] showed how to
construct a spanning Tverberg cycle on any set of points in the plane. Although the constructed
cycle has many acute angles, it is still far from being fully acute.

Remark. It is worth mentioning that having a tour with many acute angles does not necessarily
help in getting a fully acute tour because one can simply get a tour with at least n−2 acute angles
by interconnecting the endpoints of acute paths obtained in [11, 15].

2 Preliminaries for the proof
A set of four points in the plane is called a quadruple. If the four points are in convex position then
the quadruple is called convex, otherwise it is called concave; the quadruple in Figure 2(a) is convex
while the quadruples in Figures 2(b) and 2(c) are concave. We refer to the interior point of a concave
quadruple as its center. By connecting the center of a concave quadruple to its other three points
we obtain three angles. If one of these angles is at most π/2 then the quadruple is called concave-
acute, otherwise all the angles are larger than π/2 and the quadruple is called concave-obtuse; the
quadruple in Figure 2(b) is concave-acute while the one in Figure 2(c) is concave-obtuse.

A path, that is drawn by straight-line edges, is called acute if all the angles determined by its
adjacent edges are at most π/2. For two directed paths P1 and P2, where P1 ends at the same
vertex at which P2 starts, we denote their concatenation by P1 ⊕ P2.

For two distinct points p and q in the plane, we say that p is to the left of q if the x-coordinate of
p is not larger than the x-coordinate of q. Analogously, we say that p is below q if the y-coordinate
of p is not larger than the y-coordinate of q.

It is known that any set of n points in the plane can be split into four parts of equal size using
two orthogonal lines (see e.g. [18] or [12, Section 6.6]); such two lines can be computed in Θ(n log n)
time [18]. The following is a restatement of this result which is borrowed from [13].

Lemma 1. Given a set S of n points in the plane (n even), one can always find two orthogonal
lines `1, `2 and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 with |S1| = |S3| = bn4 c and |S2| = |S4| = dn4 e
such that S1 and S3 belong to two opposite closed quadrants determined by `1 and `2, and S2 and
S4 belong to the other two opposite closed quadrants.

Our proof of Theorem 1 shares some similarities with that of Dumitrescu et al. [13] (for points
in convex position) in the sense that both proofs employ the equitable partitioning of Lemma 1.
However, there are major differences between the two proofs mainly because simple structures, that

2The turning angle at a vertex v is the change in the direction of motion at v when traveling on the tour. It is
essentially π minus the rotation angle at v.

3The diametral disk induced by an edge pq is the disk that has pq as its diameter.
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appear in points in convex position, do not necessarily appear in general point sets. Therefore one
needs to extract complex structures from general point sets and combine them to establish a proof.

3 Proof of Theorem 1
Throughout this section we assume that n is an even integer. We show how to construct an acute
tour on any set of n > 20 points in the plane, and thereby prove Theorem 1. In Subsection 3.1 we
describe the setup for our construction, and then in Subsection 3.2 we construct the tour.

3.1 The proof setup

Let S be a set of n > 20 points in the plane. Let {S1, S2, S3, S4} be an equitable partitioning of
S with two orthogonal lines `1 and `2 that satisfies the conditions of Lemma 1. After a suitable
rotation and translation we may assume that `1 and `2 coincide with the x and y coordinate axes,
respectively. Also, after a suitable relabeling we may assume that all points of Si belong the ith
quadrant determined by the axes as depicted in Figure 2(a).
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x

S2 S1

S4S3

`2

`1

S2 S1

S4S3

p1

p3

p2

p4
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(a) Convex quadruple (b) Concave-acute quadruple (c) Concave-obtuse quadruple

Figure 2: Illustration of (a) Lemma 2 where P is convex and ∠p1xp2 > π/2, (b) Lemma 2 where P
is concave-acute and ∠p1p2p4 6 π/2, and (c) Lemma 3 where all the three angles at s are obtuse.

Based on the above partitioning we introduce four types of quadruples. Let P = {p1, p2, p3, p4}
be a quadruple such that pi ∈ Si for all i = 1, 2, 3, 4. We say that P is upward if the path p2p4p3p1
(or equivalently p1p3p4p2) is acute, downward if the path p3p1p2p4 (or equivalently p4p2p1p3) is
acute, leftward if the path p2p4p1p3 (or equivalently p3p1p4p2) is acute, and rightward if the path
p1p3p2p4 (or equivalently p4p2p3p1) is acute. Such paths are referred to as “hooks” in [13]. The
following lemmas and observation, although very simple, play important roles in our proof.
Lemma 2. Let P = {p1, p2, p3, p4} be a quadruple such that pi ∈ Si for all i = 1, 2, 3, 4. If P is
convex or concave-acute then it is upward and downward or it is leftward and rightward.
Proof. First assume that P is convex. Let x denote the intersection point of the diagonals p1p3
and p2p4. If ∠p1xp2 > π/2 then the paths p2p4p3p1 and p3p1p2p4 are acute and thus P is upward
and downward; see Figure 2(a). If ∠p1xp4 > π/2 then the paths p2p4p1p3 and p1p3p2p4 are acute
and thus P is leftward and rightward.

Now assume that P is concave-acute. Without loss of generality we assume that p2 is the center
of P . Observe that in this case ∠p1p2p3 is obtuse. This and the fact that P is concave-acute
imply that one of ∠p1p2p4 and ∠p3p2p4 is acute. If ∠p1p2p4 is acute as depicted in Figure 2(b)
then the paths p2p4p3p1 and p3p1p2p4 are acute and thus P is upward and downward (observe that
∠p2p1p3 + ∠p1p3p4 + ∠p3p4p2 = ∠p1p2p4 6 π/2). Analogously, if ∠p3p2p4 is acute then the paths
p2p4p1p3 and p1p3p2p4 are acute and thus P is leftward and rightward.
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Lemma 3. Let {p, q, r, s} be a concave-obtuse quadruple with center s. Then all angles ∠pqs, ∠qps,
∠qrs, ∠rqs, ∠rps, and ∠prs are acute.

Proof. See Figure 2(c). In each of the triangles 4spq, 4sqr, and 4srp the angle at s is larger than
π/2. Thus the other two angles are acute.

Lemma 4. Let P = {p1, p2, p3, p4} be a quadruple such that pi ∈ Si for all i = 1, 2, 3, 4. If P is
concave-obtuse then it is upward, downward, leftward, or rightward.

Proof. Without loss of generality assume that p2 is the center of P . See Figure 2(c) where p2 = s.
In the triangle 4p1p3p4 the angle at p1 or the angle at p3 is acute. If the angle at p1 is acute then
the path p2p4p1p3 is acute and thus P is leftward (∠p2p4p1 is acute by Lemma 3). If the angle at p3
is acute then the path p2p4p3p1 is acute and thus P is upward (∠p2p4p3 is acute by Lemma 3).

Observation 1. Let p, q, and r be any three points in S such that q and r lie in the quadrant that
is opposite to the quadrant containing p. Then the angle ∠qpr is acute.

3.2 The tour construction

In this section we show how to construct an acute tour on S where |S| > 20. By Lemma 1 each
Si with i ∈ {1, 2, 3, 4} has at least b20/4c = 5 points. From each Si we select an arbitrary subset
of 5 points, and then we partition (the total 20) selected points into 5 quadruples such that each
quadruple contains exactly one point from each Si. Let Q denote the set of these quadruples. For
any quadruple X in Q we denote the points of X by x1, x2, x3, x4 where xi ∈ Si for all i = 1, 2, 3, 4.

Since |Q| > 5, by the pigeonhole principle Q has three quadruples that are vertical (i.e. upward,
downward, or both upward and downward) or three that are horizontal (i.e. leftward, rightward,
or both leftward and rightward). Without loss of generality assume that Q has three vertical
quadruples. If, among these vertical quadruples, we can choose two quadruples of opposite type
(i.e., one upward and one downward), then we construct a tour as in case 1 below. Otherwise, the
three quadruples are concave-obtuse and of the same type in which case we construct a tour as in
case 2 below. Our constructions take linear time in both cases.

p2
p1

p4
p3

q2

q1

q4
q3

S1S2

S3 S4

Figure 3: Illustration of Case 1.

Case 1: Q contains two quadruples such that one
is upward and the other is downward. Let P and
Q be such quadruples where P is upward and Q is
downward. Since P is upward, the path p1p3p4p2 is
acute. Since Q is downward, the path q4q2q1q3 is
acute; see Figure 3. Let S2S4 be a polygonal path
starting from p2, ending in q4, alternating between
S2 and S4, and containing all points of S2 ∪ S4 ex-
cept for q2 and p4. Let S3S1 be a polygonal path
starting from q3, ending in p1, alternating between
S3 and S1, and containing all points of S3 ∪ S1

except for p3 and q1. Such polygonal paths ex-
ist because by Lemma 1 we have |S2| = |S4| and
|S1| = |S3|. All intermediate angles of these two
polygonal paths are acute by Observation 1. Then
the tour p1p3p4p2 ⊕ S2S4 ⊕ q4q2q1q3 ⊕ S3S1 is acute,
and it spans S. Notice that the angles at p1, p2, q3
and q4 are acute by Observation 1.
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Case 2: Q contains three concave-obtuse quadruples of the same type. Let P , Q and R be such
quadruples, and without loss of generality assume that they are upward. Thus, the paths p2p4p3p1
and q2q4q3q1 and r2r4r3r1 are acute. Since P , Q and R are concave-obtuse their centers should
lie at endpoints of these paths (the centers cannot be interior vertices of acute paths). Thus the
center of P is either p1 or p2, the center of Q is either q1 or q2, and the center of R is either r1
or r2. This means that the centers lie in quadrants 1 and 2. By the pigeonhole principle, and
after a suitable reflection, we may assume that at least two of the centers lie in quadrant 2. After
a suitable relabeling assume that the centers of P and Q (i.e. p2 and q2) lie in quadrant 2. The
center of R lies either in quadrant 2 (i.e. it is r2) or in quadrant 1 (i.e. it is r1).

After a suitable relabeling assume that p2 lies below q2, as in Figure 4. Now we build our tour
as follows. First we connect p2 to p1 and q1. The point p2 is below p1 because p2 lies below the
segment p1p3. The point p2 is also below q1 because p2 is below q2 which is in turn below q1 (as
q2 lies below the segment q1q3). Thus p2 is below both p1 and q1. Also notice that p2 is to the left
of both p1 and q1. Thus, the angle ∠p1p2q1 is acute (imagine moving the origin to p2, then both
p1 and q1 would lie in the first quadrant). Then we connect q3 to q1 and q4. The angle ∠q4q3q1 is
acute because Q is upward (i.e. the path q2q4q3q1 is acute). The angle ∠p2q1q3 is acute because
both p2 and q3 lie below and to the left of q1. Therefore, the path p1p2q1q3q4 is acute; see Figure 4.
In the rest of the construction we distinguish two subcases, depending on the center of R.

r1

q1
p1

p4

r4
p3

q3

r3

S1S2

S3 S4

q2

q4

r2 S1

p2

r1

q1
p1

p4

r2

r4
p3

q3

r3

S1S2

S3 S4

q4

p2

q2

(a) (b)

Figure 4: Illustration of Case 2. Three concave-obtuse quadruples P , Q and R that are upward,
and the centers of P and Q lie in quadrant 2. (a) Subcase 2.1 where the center of R is in quadrant
1. (b) Subcase 2.2 where the center of R is in quadrant 2.

Subcase 2.1: The center of R is r1. This case is depicted in Figure 4(a). We connect r4 to r2 and
r3. The resulting path r2r4r3 is acute (because R is upward, i.e., the path r2r4r3r1 is acute). Let
S4S2 be a polygonal path starting from q4, ending in r2, alternating between S4 and S2, containing
all points of S4 ∪ S2 except for r4, p2, and having q4q2 as its first edge. Let S3S1 be a polygonal
path starting from r3, ending in p1, alternating between S3 and S1, containing all points of S3 ∪S1

except for q3, q1, and having r3r1 as its first edge and p3p1 as its last edge. All intermediate angles
of these two paths are acute by Observation 1. By interconnecting the constructed paths we obtain
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the tour p1p2q1q3q4 ⊕ S4S2 ⊕ r2r4r3 ⊕ S3S1 which is acute, and it spans S. The angles at p1, r3, q4
are acute by Lemma 3, and the angle at r2 is acute by Observation 1.

Subcase 2.2: The center of R is r2. This case is depicted in Figure 4(b). We connect r3 to r4
and r1. The resulting path r4r3r1 is acute (because R is upward, i.e. the path r2r4r3r1 is acute).
Let S4S2S4 be a polygonal path starting from q4, ending in r4, alternating between S4 and S2,
containing all points of S4 ∪ S2 except for p2, and having q4q2 as its first edge and r2r4 as its last
edge. Let S1S3S1 be a polygonal path starting from r1, ending in p1, alternating between S1 and S3,
containing all points of S1 ∪ S3 except for q1, q3, r3, and having p3p1 as its last edge. Intermediate
angles of these paths are acute by Observation 1. Thus p1p2q1q3q4 ⊕ S4S2S4 ⊕ r4r3r1 ⊕ S1S3S1 is
an acute spanning tour. The angles at q4, r4, and p1 are acute by Lemma 3, and the angle at r1 is
acute by Observation 1. This finishes our proof of Theorem 1.

4 Concluding remarks
We showed how to construct an acute tour on any set of n points in the plane, where n is even and
at least 20. Our construction uses at most 12 points in each case (namely the points of quadruples
P , Q and R). One might be interested to extend the range of n (to smaller even numbers) by
taking advantage of the 8 unused points, although this may require some case analysis.

Acknowledgement. I am very grateful to the anonymous SoCG 2022 reviewer who meticulously
verified our proof, and provided valuable feedback that reduced the number of subcases to two
(which was three in our original proof) and improved the bound on n to 20 (which was 36 originally).
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