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Abstract

A covering path for a planar point set is a path drawn in the plane with straight-line edges
such that every point lies at a vertex or on an edge of the path. A covering tree is defined
analogously. Let π(n) be the minimum number such that every set of n points in the plane
can be covered by a noncrossing path with at most π(n) edges. Let τ(n) be the analogous
number for noncrossing covering trees. Dumitrescu, Gerbner, Keszegh, and Tóth (Discrete &
Computational Geometry, 2014) established the following inequalities:
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We report the following improved upper bounds:
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In the same context we study rainbow polygons. For a set of colored points in the plane,
a perfect rainbow polygon is a simple polygon that contains exactly one point of each color in
its interior or on its boundary. Let ρ(k) be the minimum number such that every k-colored
point set in the plane admits a perfect rainbow polygon of size ρ(k). Flores-Peñaloza, Kano,
Martínez-Sandoval, Orden, Tejel, Tóth, Urrutia, and Vogtenhuber (Discrete Mathematics, 2021)
proved that 20k/19 − O(1) < ρ(k) < 10k/7 + O(1). We report the improved upper bound of
ρ(k) < 7k/5 +O(1).

To obtain the improved bounds we present simple O(n log n)-time algorithms that achieve
paths, trees, and polygons with our desired number of edges.

1 Introduction
Traversing a set of points in the plane by a polygonal path possessing some
desired properties has a rich background. For example the famous traveling
salesperson path problem asks for a polygonal path with minimum total edge
length [6, 29]. In recent years there has been an increased interest in paths with
properties such as being noncrossing [2, 9], minimizing the longest edge length
[8], maximizing the shortest edge length [4], minimizing the total or the largest
turning angle [1, 18], and minimizing the number of turns (which is the same as minimizing the
number of edges) [15, 30] to name a few.

This research is supported by NSERC.
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The main focus of this paper is polygonal paths with a small number of edges. It is related to
the classical nine dots puzzle which asks for covering the vertices of a 3×3 grid by a polygonal path
with no more than 4 segments. It appears in Sam Loyd’s Cyclopedia of Puzzles from 1914 [27].

Let P be a set of n points in the plane. A spanning path for P is a path drawn in the plane
with straight-line edges such that every point of P lies at a vertex of the path and every vertex of
the path lies at a point of P . In other words, it is a Hamiltonian path which has exactly n − 1
edges. The path in the figure above is not a spanning path because two of its vertices do not lie
on given points. A covering path for P is a path drawn in the plane with straight-line edges such
that every point of P lies at a vertex or on an edge of the path. A vertex of a covering path can be
any point in the plane (not necessarily in P ). The path in the figure above is a covering path with
4 edges. With these definitions, any spanning path is also a covering path, but a covering path
may not be a spanning path. A covering tree for P is defined analogously as a tree drawn in the
plane with straight-line edges such that every point of P lies at a vertex or on an edge of the tree.
A covering path or a tree is called noncrossing if its edges do not cross each other. The edges of
covering paths and trees are also referred to as links in the literature [5].

Covering paths and trees have received considerable attention in recent years, see e.g. [5, 15, 25].
In particular covering paths with a small number of edges find applications in robotics and heavy
machinery for which turning is an expensive operation [30]. Covering trees with a small number
of edges are useful in red-blue separation [20] and in constructing rainbow polygons [19]. In 2010
F. Morić [14] and later Dumitrescu, Gerbner, Keszegh, and Tóth [15] raised many challenging
questions about covering paths and trees. Specifically they asked the following two questions which
are the main topics of this paper. As noted in [14], analogous questions were asked by E. Welzl in
Gremo’s Workshop on Open Problems 2011.

1. What is the minimum number π(n) such that every set of n points in the plane can be covered
by a noncrossing path with at most π(n) edges?

2. What is the minimum number τ(n) such that every set of n points in the plane can be covered
by a noncrossing tree with at most τ(n) edges?

For both π(n) and τ(n), a trivial upper bound is n − 1 (which comes from the existence of a
noncrossing spanning path) and a trivial lower bound is dn2 e (because if no three points are collinear
then each edge covers at most two points). In 2014, Dumitrescu et al. [15] established, among other
interesting results, the following nontrivial bounds:
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The following is a related question that has recently been raised by Flores-Peñaloza, Kano,
Martínez-Sandoval, Orden, Tejel, Tóth, Urrutia, and Vogtenhuber [19] in the context of rainbow
polygons. For a set of colored points in the plane, a rainbow polygon is a simple polygon that
contains at most one point of each color in its interior or on its boundary. A rainbow polygon is
called perfect if it contains exactly one point of each color. The size of a polygon is the number of
its edges (which is the same as the number of its vertices).

3. What is the minimum number ρ(k) (known as the rainbow index) such that every k-colored
point set in the plane, with no three collinear points, admits a perfect rainbow polygon of
size ρ(k)?
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Question 3 is related to covering trees in the sense that (as we will see later in Section 4)
particular covering trees could lead to better upper bounds for ρ(k). Flores-Peñaloza et al. [19]
established the following inequalities:

20k

19
−O(1) < ρ(k) <

10k

7
+O(1).

The upper bounds on π(n), τ(n), and ρ(n) are universal (i.e., any point set admits these bounds)
and they are obtained by algorithms that achieve paths, trees, and polygons of certain size [15, 19].
The lower bounds, however, are existential (i.e., there exist point sets that achieve these bounds)
and they are obtained by the same point set that is exhibited in [15]. Perhaps there should be
configurations of points that achieve better lower bounds for each specific number.

1.1 Our Contributions

Narrowing the gaps between the lower and upper bounds for π(n), τ(n), and ρ(n) are open problems
which are explicitly mentioned in [15, 19]. In this paper we report the following improved upper
bounds for the three numbers:
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The new bounds for π(n) and τ(n) are the first improvements in 8 years. To obtain these bounds we
present algorithms that achieve noncrossing covering paths, noncrossing covering trees, and rainbow
polygons with our desired number of edges. The algorithms are simple and run in O(n log n) time
where n is the number of input points. The running time is optimal for paths because computing
a noncrossing covering path has an Ω(n log n) lower bound [15]. A noncrossing covering tree,
however, can be computed in O(n) time by taking a spanning star. We extend our path algorithm
and achieve an upper bound of (1 − 1

22)n + 2 for noncrossing covering cycles. This is a natural
variant of the traveling salesperson tour problem with the objective of minimizing the number of
links, which is NP-hard [5].

Our algorithms share some similarities with previous algorithms in the sense that both are
iterative and use the standard plane sweep technique which scans the points from left to right.
However, to achieve the new bounds we employ new geometric insights and make use of convex
layers and the Erdős-Szekeres theorem [16].

Regardless of algorithmic implications, our results are important because they provide new
information on universal numbers π(n), τ(n), and ρ(n) similar to the crossing numbers [3, 13, 22],
the size of crossing families (pairwise crossing edges) [28], the Steiner ratio [6, 23], and other
numbers and constants studied in discrete geometry (such as [8, 10, 17]).

An assumption. Collinear points are beneficial for covering paths and trees as they usually lead to
paths and trees with fewer edges. In our algorithms (which consider constant number of points in
each iteration), collinear points could be simply handled by considering more cases. Therefore, to
avoid the interruption of our arguments we assume that no three points are collinear.

1.2 Related Problems and Results

If we drop the noncrossing property, Dumitrescu et al. [15] showed that every set of n points in
the plane admits a (possibly self-crossing) covering path with n/2 + O(n/ log n) edges. Covering
paths have also been studied from the optimization point of view. The problem of computing a
covering path with minimum number of edges for a set of points in the plane (also known as the
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minimum-link covering path problem and the minimum-bend covering path problem) is shown to be
NP-hard by Arkin et al. [5]. Stein and Wagner [30] presented an O(log z)-approximation algorithm
where z is the maximum number of collinear points.

Keszegh [25] determined exact values of π(n) and τ(n) for vertices of square grids. The axis-
aligned version of covering paths is also well-studied and various lower bounds, upper bounds, and
approximation algorithms are presented to minimize the number of edges of such paths; see e.g.
[7, 12, 24]. Covering trees are studied also in the context of separating red and blue points in the
plane [20]. The problem of covering points in the plane with minimum number of lines is another
related problem which is also well-studied, see e.g. [11, 21, 26].

For problems and results related to rainbow polygons we refer the reader to the paper of Flores-
Peñaloza et al. [19]. In particular, they determine the exact rainbow indices for small values of k
by showing that ρ(k) = k for k ∈ {3, 4, 5, 6} and ρ(7) = 8.

1.3 Preliminaries

For two points p and q in the plane we denote by `(p, q) the line through p and q, and by pq the
line segment with endpoints p and q. For two paths δ1 and δ2, where δ1 ends at the same vertex at
which δ2 starts, we denote their concatenation by δ1 ⊕ δ2.

A point set P is said to be in general position if no three points of P are collinear. We denote
the convex hull of P by CH(P ). A set K of k points in the plane in convex position, with no two
points on a vertical line, is a k-cap (resp. a k-cup) if all points of K lie on or above (resp. below)
the line through the leftmost and rightmost points of K. A classical result of Erdős and Szekeres
[16] implies that every set of at least

(
2k−4
k−2

)
+1 points in the plane in general position, with no two

points on a vertical line, contains a k-cap or a k-cup. This bound is tight in the sense that there
are point sets of size

(
2k−4
k−2

)
that do not contain any k-cap or k-cup [16].

2 Noncrossing Covering Paths
In this section we prove that π(n) 6 (1− 1/22)n. We start by the following folklore result on the
existence of noncrossing polygonal paths among points in the plane; see e.g. [15, 20].

Lemma 1. Let P be a set of points in the plane in the interior of a convex region C, and let p and
q be two points on the boundary of C. Then P ∪ {p, q} admits a noncrossing spanning path with
|P |+ 1 edges such that its endpoints are p and q, and its relative interior lies in the interior of C.

In fact the spanning path that is obtained by Lemma 1 is a noncrossing covering path for
P ∪ {p, q} and it lies in the convex hull of P ∪ {p, q}. The following lemma shows that any set of
23 points can be covered by a noncrossing path with 21 edges.

Lemma 2. Let P be a set of at least 23 points in the plane in a vertical strip H that is bounded
by vertical lines through the leftmost and rightmost points of P . Then there exists a noncrossing
covering path for P with |P |− 2 edges that is contained in H and its endpoints are the leftmost and
rightmost points of P .

Proof. Our proof is constructive. Let l and r be the leftmost and rightmost points of P , respectively.
Let P ′ = P \ {l, r}, and notice that |P ′| > 21. By the result of [16] the set P ′ has a 5-cap or a
5-cup. After a suitable reflection we may assume that it has a 5-cup K with points p1, p2, p3, p4, p5
from left to right, as in Figure 1(a). Among all 5-cups in P ′ we may assume that K is one for
which p1 is the leftmost possible point. Also among all such 5-cups (with leftmost point p1) we may
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assume that K is the one for which p5 is the rightmost possible point. This choice of K implies
that the region that is the intersection of H with the halfplane above `(p1, p2) and the halfplane
to the left of the vertical line through p1 is empty of points of P ′; this region is denoted by E1 in
Figure 1(a). Similarly the region that is the intersection of H with the halfplane above `(p4, p5)
and the halfplane to the right of the vertical line through p5 is empty of points of P ′; this region is
denoted by E2 in Figure 1(a).

For brevity let `12 = `(p1, p2) and `45 = `(p4, p5). We distinguish two cases: (i) l lies below `12
or r lies below `45, and (ii) l lies above `12 and r lies above `45.

(i) In this case we may assume, up to symmetry, that l lies below `12 as in Figure 1. Let c be the
intersection point of `12 with `45, and d be the intersection point of `45 with the right boundary
of H. Since K is a cup, c lies below K and hence in H. Consider the ray emanating from p4 and
passing through c. Rotate this ray clockwise around p4 and stop as soon as hitting a point in the
triangle 4p2cp4; see Figure 1(a). Notice that such a point exists because p3 is in 4p2cp4. Denote
this first hit by p′3 (it might be the case that p′3 = p3). Then p1, p2, p

′
3, p4, p5 is a 5-cup which we

denote by K ′ (again, it might be the case that K ′ = K). Let c′ be the intersection point of the
rotated ray with `12. Our choice of p′3 implies that the triangle 4cp4c

′ is empty, i.e. its interior has
no points of P ; this triangle is denoted by E3 in Figure 1(a).

p2
p4

p′3

p1

p3

`12
c

c′

C1 C3

E3

d

δ1

δ2

δ3

l

r
p5

C2E1 E2

p2

p′3

p1

`12

d

p5

p3

r

p4

C1

C2

C3

δ1

δ2

δ3

l

E1 E2

(a) (b)

Figure 1: Illustration of the proof of Lemma 2. (a) l lies below `12 and r lies below `45. (b) l lies
below `12 and r lies above `45.

The points of P ′ lie in the interior or on the boundary of three convex regions C1, C2, C3 as
depicted in Figures 1(a) and 1(b). The region C1 is the intersection of H and the halfplane below
`12. The region C3 is the intersection of H and the halfplane above `12 and the halfplane below `45.
The region C2 is the intersection of H and five halfplanes (the halfplanes above the lines `12, `45,
`(c′, p4), the halfplane to the right of the vertical line through p1, and the halfplane to the left of the
vertical line through p5). Let Pi be the set of points of P in the interior (but not on the boundary)
of each Ci. Then P1 ∪ P2 ∪ P3 = P \ {l, p1, p2, p′3, p4, p5, r}, and thus |P1|+ |P2|+ |P3| = |P | − 7.

We construct a covering path for P as follows. The four points p1, p2, p
′
3, p4 can be covered by

the path (p1, c
′, p4) which has two edges p1c

′ and c′p4. Let δ1 be the noncrossing path with |P1|+1
edges that is obtained by applying Lemma 1 on (P1, C1, l, p1) where l and p1 play the roles of p
and q in the lemma. We now consider two subcases.
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• r lies below `45. In this case r is on the boundary of C3, as in Figure 1(a). Let δ2 and δ3 be
the noncrossing paths with |P2|+1 and |P3|+1 edges that are obtained by applying Lemma 1
on (P2, C2, p4, p5) and (P3, C3, p5, r), respectively. By interconnecting these paths we obtain
a noncrossing covering path δ1 ⊕ (p1, c

′, p4) ⊕ δ2 ⊕ δ3 for P . This path has (|P1| + 1) + 2 +
(|P2|+ 1) + (|P3|+ 1) = |P | − 2 edges, and it lies in H.

• r lies above `45. In this case r is on the boundary of the convex region C2∪E2, as in Figure 1(b).
Let δ2 and δ3 be the noncrossing paths obtained by applying Lemma 1 on (P2, C2 ∪E2, p5, r)
and (P3, C3, p4, p5), respectively. Then δ1⊕ (p1, c

′, p4)⊕ δ3⊕ δ2 is a noncrossing covering path
for P . This path has |P | − 2 edges, and it lies in H.

p′3

`12

p2

C2

cc′

L
C3

p4

C1

p1

d
l

δ1

δ2

δ3l′

p5

r

p3

E1 E2

q1

`(q1, q2)
`(q3, q4)

q3

q2

l

q4

qk r

C1

c

δ1

l′

(a) (b)

Figure 2: Illustration of the proof of Lemma 2 where l lies above `12 and r lies above `45. (a)
l′ 6= p1, and (b) l′ = p1 and r′ = p5 (here p1 = q2 and p5 = qk−1).

(ii) In this case l lies above `12 and r lies above `45. Let L and R be the downward rays emanating
from l and r, respectively. Rotate L counterclockwise around l and stop as soon as hitting a point
l′ of P . Since E1 is empty, l′ is either p1 or a point below `12; see Figure 2(a). Rotate R clockwise
around r and stop as soon as hitting a point r′ of P . Since E2 is empty, r′ is either p5 or a point
below `45. We distinguish two subcases.

• l′ 6= p1 or r′ 6= p5. Up to symmetry we assume that l′ 6= p1 as depicted in Figure 2(a).
Define c, c′, d, p′3 and the 5-cup K ′ as in case (i), and recall that the triangle 4cp4c

′ is empty.
The points of P ′ lie in the interior or on the boundary of three convex regions C1, C2, C3

as depicted in Figures 2(a). The region C1 is the intersection of H and the halfplane below
`12 and the halfplane above `(l, l′). The regions C2 and C3 are defined as in case (i). Let
Pi be the set of points of P in the interior (but not on the boundary) of each Ci. Then
P1 ∪ P2 ∪ P3 = P \ {l, l′, p1, p2, p′3, p4, p5, r}, and thus |P1|+ |P2|+ |P3| = |P | − 8.
We cover l and l′ by the edge (l, l′) and cover the four points p1, p2, p′3, p4 by the path (p1, c

′, p4)
which has two edges. Let δ1, δ2, and δ3 be the noncrossing paths with |P1|+ 1, |P2|+ 1, and
|P3| + 1 edges obtained by applying Lemma 1 on (P1, C1, l

′, p1), (P2, C2 ∪ E2, p5, r), and
(P3, C3, p4, p5), respectively; see Figures 2(a). By interconnecting these paths we obtain a
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noncrossing covering path (l, l′) ⊕ δ1 ⊕ (p1, c
′, p4) ⊕ δ3 ⊕ δ2 for P . This path has 1 + (|P1| +

1) + 2 + (|P3|+ 1) + (|P2|+ 1) = |P | − 2 edges, and it lies in H.

• l′ = p1 and r′ = p5. In this case the lower chain on the boundary of CH(P ) has at least 5
vertices, including l, l′, r, r′, and a point in the triangle formed by L, R, and `(p1, p5). Let
k > 5 be the number of vertices of this chain. Let q1, q2, . . . , qk denote the vertices of this
chain that appear in this order from left to right, as in Figure 2(b). Then q1 = l, q2 = l′ = p1,
qk = r, and qk−1 = r′ = p5.
Let c be the intersection point of `(q1, q2) and `(q3, q4), which lies in H. Then, the four points
q1, q2, q3, q4 can be covered by the path (q1, c, q4). All points of P lie in the interior or on
the boundary of a convex region C1 that is the intersection of H with the halfplanes above
`(q1, q2) and `(q3, q4); this region is shaded in Figure 2(b). Let P1 be the points of P that
lie in the interior (but not on the boundary) of C1. Then P1 = P \ {q1, q2, q3, q4, qk} and
|P1| = |P | − 5. Let δ1 be the covering path with |P1|+ 1 edges that is obtained by applying
Lemma 1 on (P1, C1, q4, qk) where q4 and qk play the roles of p and q in the lemma. Then
(q1, c, q4) ⊕ δ1 is a noncrossing covering path for P . This path has 2 + (|P1| + 1) = |P | − 2
edges, and it lies in H.

The following corollary, although very simple, will be helpful in the analysis of our algorithm.

Corollary 1. Let Q be a set of at least 22 points in the plane and let l be its leftmost point. Then
there exists a noncrossing covering path for Q with |Q|− 2 edges that lies to the right of the vertical
line through l and has l as an endpoint.

Proof. We add a dummy point r to the right of all points in Q. Let P = Q ∪ {r}. We obtain a
noncrossing covering path δ for P with |P | − 2 edges by Lemma 2. Recall that r is an endpoint of
δ. Also recall from the proof of Lemma 2 that only the edges p1c, cp4 (in the first case) and p1c

′,
c′p4 (in the second case) have points of P in their interior. Thus, the edge of δ that covers r has
no point in its interior. Therefore, by removing r and its incident edge from δ we obtain a covering
path with |Q| − 2 edges for Q that satisfies the conditions of the corollary.

Theorem 1. Every set of n points in the plane admits a noncrossing covering path with at most
d21n/22e − 1 edges. Thus, π(n) 6 (1− 1/22)n. Such a path can be computed in O(n log n) time.

Proof. Let P be a set of n points in the plane. After a suitable rotation we may assume that no
two points of P have the same x-coordinate. Draw vertical lines in the plane such that each line
goes through a point of P , there are exactly 21 points of P between any pair of consecutive lines,
no point of P lies to the left of the leftmost line, and at most 21 points of P lie to the right of
the rightmost line; see Figure 3. Each pair of consecutive lines defines a vertical strip containing
23 points; 21 points in its interior and 2 points on its boundary (the point on the boundary of
two consecutive strips is counted for both strips). For the 23 points in each strip we obtain a
noncrossing covering path with 21 edges using Lemma 2. Each path lies in its corresponding strip
and its endpoints are the two points on the boundary of the strip. By assigning to each strip the
point on its left boundary, it turns out that for every 22 points we get a path with 21 edges.

Let m be the number of points on or to the right of the rightmost line, and notice that m 6 22.
We distinguish between two cases m = 22 and m < 22.

If m = 22 (in this case n is divisible by 22) then we cover these 22 points by a noncrossing
path with 20 edges using Corollary 1. The union of this path and the paths constructed within the
strips is a noncrossing covering path for P . The total number of edges in this path is 21n/22− 1.
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21 21 21 ≤ 21

23 m ≤ 22

Figure 3: Illustration of the proof of Theorem 1.

If m < 22 then m = n− 22bn/22c. In this case we cover the m points by an x-monotone path
with m − 1 edges (dashed segments in Figure 3). Again, the union of this path and the paths
constructed within the strips is a noncrossing covering path for P . The total number of edges in
this path is 21bn/22c+m− 1 = n− bn/22c − 1 = d21n/22e − 1.

Each call to Lemma 2 and Corollary 1 takes constant time. Therefore, after rotating and sorting
the points in O(n log n) time, the rest of the algorithm takes linear time.

Our path construction in Theorem 1 achieves a similar bound for covering cycles.

Corollary 2. Every set of n points in the plane admits a noncrossing covering cycle with at most
d21n/22e+ 1 edges. Such a cycle can be computed in O(n log n) time.

Proof. Let δ be the path constructed by Theorem 1 on a point set P of size n. Recall m from the
proof of this theorem. If m < 22 then the two endpoints of δ are the leftmost and rightmost points
of P . Thus, by introducing a new point p with a sufficiently large y-coordinate and connecting it
to the two endpoints of δ, we obtain a noncrossing covering cycle for P . If m = 22 then the dummy
point that was introduced in Corollary 1 could be chosen suitably to play the role of p.

3 Noncrossing Covering Trees
In this section we prove the following theorem which gives an algorithm for computing a noncrossing
covering tree with roughly 4n/5 edges. We should clarify that the number of edges of a tree is
different from the number of its segments (where each segment is either a single edge or a chain
of several collinear edges of the tree). For example the tree in Figure 5(b) has 10 edges and 7
segments, where the segments p1p7 and p5p8 consist of 3 and 2 collinear edges, respectively.

Theorem 2. Every set of n points in the plane admits a noncrossing covering tree with at most
d4n/5e edges. Thus, τ(n) 6 d4n/5e. Such a tree can be computed in O(n log n) time.

Proof. Let P be a set of n points in the plane. After a suitable rotation we may assume that
no two points of P have the same x-coordinate. We present an iterative algorithm to compute a
noncrossing covering tree for P that consists of at most d4n/5e edges. In a nutshell, the algorithm
scans the points from left to right and in every iteration (except possibly the last iteration) it
considers 4 or 5 new points and covers them with 3 or 4 new edges, respectively. Thus the ratio
of the number of new edges to the number of covered points would be at most 4/5. We begin by
describing an intermediate iteration of the algorithm; the first and last iterations will be described
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later. Let m be the number of points that have been scanned so far and let l be the rightmost
scanned point (our choice of the letter l will become clear shortly). We maintain the following
invariant at the beginning of every intermediate iteration.

Invariant. All the m points that have been scanned so far, are covered by a noncrossing
tree T with at most 4bm/5c edges. The tree T lies to the left of the vertical line through l
and the degree of l in T is one.

In the current (intermediate) iteration we scan four new points, namely a, b, c, and r where r
is the rightmost point. Let H be the vertical strip bounded by the vertical lines through l and r (l
is the leftmost point and r is the rightmost point in H); see Figure 4(a). Let Q = {l, a, b, c, r}. We
consider three cases depending on the number of vertices of CH(Q). Notice that r and l are two
vertices of CH(Q).

• CH(Q) has three vertices. Let a be the third vertex of CH(Q). Then b and c lie in the interior
of CH(Q), as in Figure 4(a). In this case two vertices of CH(Q), say l and r, lie on the same
side of `(b, c). Thus l, b, c, and r form a convex quadrilateral. After a suitable relabeling
assume that l, b, c, r appear in this order along the boundary of the quadrilateral. Let x be
the intersection point of `(l, b) and `(r, c), which lies in the triangle 4lra. We cover the four
scanned points a, b, c, and r by three edges xl, xr, and xa which lie in H. We add these
edges to T . The degree of r is one in the new tree (no matter which two vertices of CH(Q)
lay on the same side of `(b, c)). The invariant holds and we proceed to the next iteration.

l

r

a

b
c

x

H

l

r

a

b

c

x

l
r

c

b

a

`′

x

l′

l
r

c

b

a

`′

x

l′
l

r

r′

c

b

a

x
`′

(a) (b) (c) (d) (e)

Figure 4: Illustration of the proof of Theorem 2. (a) CH(Q) has three vertices. (b) CH(Q) has five
vertices. (c)-(e) CH(Q) has four vertices.

• CH(Q) has five vertices. We explain this case first as our argument is shorter, and also it will
be used for the next case. In this case Q contains a 4-cap or a 4-cup with endpoints l and r.
After a suitable reflection and relabeling assume it has the 4-cup l, b, c, r as in Figure 4(b).
Let x be the intersection point of `(l, b) and `(r, c), and observe that it lies in H. We cover
a, b, c, and r by three edges xl, xr, and xa which lie in H. We add these edges to T . The
degree of r is one in the new tree. The invariant holds for the next iteration.

• CH(Q) has four vertices. After a suitable relabeling assume that b and c are two vertices of
CH(Q) (other than l and r). Thus a lies in the interior of CH(Q). If both b and c lie above
or below `(l, r) then l, b, c, r form a 4-cap or a 4-cup, in which case we cover the points as in
the previous case. Therefore we may assume that one point, say b, lies below `(l, r) and c lies
above `(l, r) as in Figures 4(c)-(e). We consider two subcases.
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– a lies in the triangle 4lbc. By the invariant, l has degree one in T . Let l′ be the
neighboring vertex of l in T . Let `′ be the ray emanating from l′ and passing through l.
We consider two subcases: (i) the segment bc does not intersect `′ and (ii) the segment
bc intersects `′.
In case (i) the segment bc lies below or above `′. By symmetry assume that it lies below
`′. Then a and r also lie below `′, as in Figure 4(c). In this case `(r, c) intersects `′. Let
x be their intersection point, and observe that it lies in H. We replace the edge l′l of T
by l′x (this does not increase the number of edges because l has degree one). Notice that
l′x contains l. Then we cover a, b, c, and r by adding three edges xr, xb, and xa to T .
Therefore the number of edges of T is increased by 3. Moreover, r has degree one in the
new tree, and all the newly introduced edges lie to the left of the vertical line through
r. Thus the invariant holds for the next iteration.
In case (ii) the ray `′ goes through 4lbc. The point a lies below or above `′. By symmetry
assume that it lies below `′, as in Figure 4(d). Let x be the intersection point of `(a, b)
and `′, which lies in 4lbc. We replace the edge l′l of T by l′x. Then we cover a, b, c,
and r by adding three edges xr, xb, and xc to T . Thus, the number of edges of T is
increased by 3, the vertex r has degree one in the new tree, and all new edges lie to the
left of the vertical line through r. The invariant holds for the next iteration.

– a lies in the triangle 4rbc. Here is the place where we use four new edges to cover five
vertices. In fact the ratio 4/5 comes from this case (In previous cases we were able to
cover four points by three new edges). In this case we scan the next point after r which
we denote by r′, as in Figure 4(e). Now let `′ be the ray emanating from r′ and passing
through r. The current setting is essentially the vertical reflection of the previous case
where r and r′ play the roles of l and l′, respectively. We handle this case analogous to
the previous case. Our analysis is also analogous except that now we consider the edge
r′x as a new edge. Thus we use four new edges to cover five points a, b, c, r, and r′. All
new edges lie to the left of the vertical line through r′, and the degree of r′ is one in the
new tree. Thus the invariant holds for the next iteration.

This is the end of an intermediate iteration. The noncrossing property of the resulting tree follows
from our construction. This iteration suggests a covering tree with roughly 4n/5 edges. To get the
exact claimed bound we need to have a closer look at the first and last iterations of the algorithm.

For the first iteration of the algorithm we scan only the leftmost input point. This point will
play the role of l for the second iteration (which is the first intermediate iteration). The invariant
holds for the second iteration because the tree has no edges at this point. If we happen to use the
edge l′l in the second iteration, then we take l′ = l and give the ray `′ an arbitrary direction to the
right. Based on the above construction this could happen only when we scan four points (a, b, c,
r) in the second iteration. In this case the first five points (l, a, b, c, r) are covered by four edges,
and thus the invariant holds for the following iteration. In the last iteration of the algorithm we
are left with w 6 4 points that are not being scanned. We connect these w points by w edges to
the rightmost scanned point. Therefore, the algorithm covers all points by a noncrossing tree with
at most d4n/5e edges.

Each iteration takes constant time. Therefore, after rotating and sorting the points in O(n log n)
time, the rest of the algorithm takes linear time.
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4 Perfect Rainbow Polygons
Recall that a perfect rainbow polygon for a set of colored points, is a simple polygon that contains
exactly one point of each color in its interior or on its boundary. Figure 5(a) shows a perfect
rainbow polygon of size 9 (nine edges) for an 8-colored point set (i.e. colored by 8 different colors).
There is a relation (as described below) between rainbow polygons and noncrossing covering trees.
We employ this relation (similar to [19]) and present an algorithm that achieves a perfect rainbow
polygon of size at most 7k/5 +O(1) for any k-colored point set.

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11
p9 ⇒

(a) (b)

Figure 5: (a) A perfect rainbow polygon of size 9 for an 8-colored point set. (b) Left: A noncrossing
tree with ten edges that can be partitioned into seven segments {p1p7, p2p9, p3p8, p4p6, p5p8, p10p11,
p11p9}; p6 and p8 are two forks with multiplicity 1 and p9 is a fork with multiplicity 2. Right:
Obtaining a simple enclosing polygon from the tree.

We adopt the following notation and definitions from [19]. Let T be a noncrossing geometric
tree. Recall that a segment of T is a chain of collinear edges in T . Let M be a partition of the
edges of T into a minimal number of pairwise noncrossing segments. Let s denote the number of
segments in M . A fork of T (with respect to M) is a vertex f that lies in the interior of a segment
ab ∈ M and it is an endpoint of another segment of M . The multiplicity of f is a number in {1, 2}
that is determined as follows. If the segments that have f as an endpoint lie on both sides of `(a, b)
then f has multiplicity 2, otherwise (the segments lie on one side of the line) f has multiplicity 1.
See the tree in Figure 5(b) for an example. Let t denote the sum of multiplicities of all forks in T .
The following lemma expresses the size of a polygon enclosing T in terms of s and t.

Lemma 3 (Flores-Peñaloza et al. [19]). Let T be a noncrossing geometric tree and M be a partition
of its edges into a minimal number of pairwise noncrossing segments. Let s be the number of
segments in M and t be the total multiplicity of forks in T . If s > 2 and t > 0, then for every ε > 0
there exists a simple polygon of size 2s+ t and of area at most ε that encloses T .

There are simple intuitions behind Lemma 3. For example if we cut out the tree T from the
plane, then the resulting hole could be expressed as a desired polygon. Alternatively, if we start
from a vertex of T and walk around T (arbitrary close to its edges) until we come back to the
starting vertex, then the traversed tour could be represented as a desired polygon. See Figure 5(b).

In view of Lemma 3, a better covering tree (i.e. for which 2s + t is smaller) leads to a better
polygon (i.e. with fewer edges). In Theorem 4 (proven in Section 4.1) we show that any set of k
points in the plane in general position admits a noncrossing covering tree for which s 6 d3k5 e + 2

and t 6 dk5e. With this lemma and theorem in hand, we present our algorithm for computing a
perfect rainbow polygon.

11



Algorithm (in a nutshell). Let P be a set of n points in the plane in general position that are
colored by k distinct colors. The algorithm picks one point from each color (arbitrarily), covers the
chosen points by a noncrossing tree (using Theorem 4), and then obtains a perfect rainbow polygon
from the tree (using Lemma 3).

Analysis. Let K be the set of k chosen points, and let T be the covering tree for K obtained
by Theorem 4. Then s 6 d3k5 e + 2 and t 6 dk5e. Thus, the perfect rainbow polygon obtained by
Lemma 3 has size

2s+ t 6 2

(⌈
3k

5

⌉
+ 2

)
+

⌈
k

5

⌉
6

⌈
7k

5

⌉
+ 6.

The tree T can be obtained in O(k log k) time, by Theorem 4. To obtain a polygon (avoiding
points of P \K) from T we need to choose a suitable ε in Lemma 3. As noted in [19], half of the
minimum distance between the edges of T and the points of P \ K is a suitable ε, which can be
found in O(n log n) time by computing the Voronoi diagram of the edges of T together with the
points of P \K. Thus the total running time of the algorithm is O(n log n). The following theorem
summarizes our result in this section.

Theorem 3. Every k-colored point set of size n in the plane in general position admits a perfect
rainbow polygon of size at most d7k/5e + 6. Thus, ρ(k) 6 d7k/5e + 6. Such a polygon can be
computed in O(n log n) time.

Remark. The general position assumption is necessary for our algorithm because if a non-selected
point (i.e. a point of P \K) lies on a segment of T then the resulting polygon is not a valid rainbow
polygon as it contains two or more points of the same color.

4.1 A Better Covering Tree

Recall parameters s and t from the previous section. In this section we construct a covering tree
for which 2s + t is smaller (compared to that of [19]). During the construction we will illustrate
(in Figure 6) the structure of the polygon that is being obtained from the tree; this helps the
reader to see that the polygon obtains 7 edges for every 5 points, and thus verify the bound
7k/5 + O(1) intuitively. Our construction shares some similarities with the construction in our
proof of Theorem 2. However, the details of the two constructions are different because they have
different objectives. We describe the shared parts briefly.

Theorem 4. Let K be a set of k points in the plane in general position. Then, in O(k log k)
time, one can construct a noncrossing covering tree for K consisting of at most d3k5 e+ 2 pairwise
noncrossing segments with at most dk5e forks of multiplicity 1.

Proof. After a suitable rotation assume that no two points of K have the same x-coordinate. We
present an iterative algorithm that scans the points from left to right. In every iteration (except
possibly the last iteration) we scan 5 new points and cover them with 3 new segments and 1 new fork
with multiplicity 1. As before, we start by describing an intermediate iteration of the algorithm;
the first and last iterations will be described later. Let m be the number of points scanned so far
and let l′ be the rightmost scanned point. We maintain the following invariant at the beginning of
every intermediate iteration.

Invariant. All the m points that have been scanned so far, are covered by a noncrossing
tree T with at most 3b(m− 2)/5c+2 segments with b(m− 2)/5c+1 forks of multiplicity 1.
The tree T lies to the left of the vertical line through l′ and the degree of l′ in T is one.
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In the first iteration, which will be described later, we add to T a long vertical segment through
the leftmost point of K such that the extension of any other segment of T hits this segment.

In the current (intermediate) iteration we scan the next five points, namely l, a, b, c, and r
where among them l is the leftmost and r is the rightmost. Let H be the vertical strip bounded
by the vertical lines through l and r. Let Q = {l, a, b, c, r}. We consider three cases.

l

r
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b
c

x

f

l

r

a

b

c

x

f

l

r

b

a

`′

x

l′

c
f

l

r

c

b

a

x
l′

f

p

q

f

r rf

r r

(a) (b) (c) (d)

Figure 6: Illustration of the proof of Theorem 4. (a) CH(Q) has three vertices. (b) CH(Q) has five
vertices. (c)-(d) CH(Q) has four vertices.

• CH(Q) has three vertices. Let l, r, a be the vertices of CH(Q). Let l, b, c, r be the four points
that form a convex quadrilateral, and appear in this order along its boundary. Let x be the
intersection point of `(l, b) and `(r, c) which lies in 4lra. Let f be the first intersection point
of T with the ray emanating from x and passing through l, as in Figure 6(a). We cover the
points by adding three segments xf , xr, and xa to T . This generates only one new fork which
is f and it has multiplicity 1. Thus the invariant holds for the next iteration.

• CH(Q) has five vertices. In this case Q has a 4-cap or a 4-cup with endpoints l and r. Let
l, b, c, r be such a cap or cup, as in Figure 6(b). We define x and f as in the previous case,
and then cover the points by adding three segments xf , xr, and xa to T . This generates one
new fork which is f and it has multiplicity 1. Thus the invariant holds for the next iteration.

• CH(Q) has four vertices. After a suitable relabeling assume that b and c are on CH(Q). If
both b and c lie above or below `(l, r) then l, b, c, r form a 4-cap or a 4-cup, in which case
we cover the points as in the previous case. Thus we may assume b lies below `(l, r) and c
lies above `(l, r). The lines `(b, l) and `(c, l) partition the halfplane to the left of l into three
regions (shaded regions in Figures 6(c) and 6(d)). We distinguish two cases depending on the
containment of l′ in these regions (recall that l′ is the rightmost scanned point in the previous
iteration).
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– l′ lies above `(b, l) or below `(c, l). Up to symmetry assume that l′ lies below `(c, l);
see Figure 6(c). Let `′ be the ray emanating from l′ and passing through l. Then a, b,
c, and r lie below `′. Let x be the intersection point of `(r, c) with `′ which lies in H.
Consider the ray emanating from b and passing through a. This ray hits lx or rx at a
point which we denote by f . We cover the points by adding three segments xr, xl′, and
bf to T . This generates only one new fork which is f and it has multiplicity 1. Thus
the invariant holds for the next iteration.

– l′ lies below `(b, l) and above `(c, l). This case is depicted in Figure 6(d). By the invariant,
l′ has degree one in T , i.e. it is incident to exactly one segment in T . We extend this
segment to the right until it intersects `(b, l) or `(c, l) for the first time. Up to symmetry
we assume that the extension hits `(c, l); we denote the intersection point by x. Among
a and b, let p denote the one with a larger x-coordinate and q denote the other one.
Then the ray emanating from p and passing through q intersects a segment of T or the
segment xc. Consider the first such segment, and let f denote the intersection point. We
cover the points by adding three segments xc, rp, and pf to T . (The segment incident
to l′ was just extended to x.) Only one new fork is generated which is f and it has
multiplicity 1. Thus the invariant holds for the next iteration.

This is the end of an intermediate iteration. The noncrossing property of the resulting tree
follows from our construction.

For the first iteration of the algorithm we scan the two leftmost points of K, namely p1 and
p2 where p1 is to the left of p2. We add to T (which is initially empty) a long vertical segment s1
that goes through p1. Then we add to T a second segment s2 that connects p2 to the midpoint of
s1. This midpoint is a fork with multiplicity 1. The point p2 will play the role of l′ for the second
iteration (which is the first intermediate iteration). Notice that the invariant holds at this point as
we have covered the m = 2 scanned points by 2 segments and 1 fork. In the last iteration of the
algorithm we are left with w = (k− 2)− 5b(k− 2)/5c 6 4 points. We connect these w points by an
x-monotone path with w segments to the rightmost scanned point. Therefore, the final tree has at
most 3b(k − 2)/5c + 2 + w 6 d3k/5e + 2 segments with at most b(k − 2)/5c + 1 6 dk/5e forks of
multiplicity 1.

Each iteration takes constant time. Therefore, after rotating and sorting the points in O(k log k)
time, the rest of the algorithm takes linear time.

5 Concluding Remarks
A natural open problem is to improve the presented upper bounds or the known lower bounds for
π(n), τ(n), and ρ(k). Here are some directions for further improvements on π(n) and τ(n):

• For the proof of Lemma 2 we used a 5-cap or a 5-cup which forced us to scan 21 points in
each iteration (due to the result of Erdős and Szekeres). If one could manage to use a 4-cap
or a 4-cup instead, then it could improve the upper bound for π(n) further.

• Our iterative algorithm in the proof of Theorem 2, covers 4 points by 3 edges in all cases
except in the last case (where CH(Q) has four vertices and a lies in 4rbc) for which it covers
5 points by 4 edges. The upper bound 4n/5 for τ(n) comes from this case. If one could argue
that this case won’t happen often (for example by showing that it won’t happen in three
consecutive iterations or by choosing a different ordering for points), then it would lead to a
slightly improved upper bound for τ(n).
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