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Abstract

Let M be a perfect matching on a set of points in the plane where every edge is a line segment
between two points. We say that M is globally maximum if it is a maximum-length matching
on all points. We say that M is k-local maximum if for any subset M ′ = {a1b1, . . . , akbk} of k
edges of M it holds that M ′ is a maximum-length matching on points {a1, b1, . . . , ak, bk}. We
show that local maximum matchings are good approximations of global ones.

Let µk be the infimum ratio of the length of any k-local maximum matching to the length
of any global maximum matching, over all finite point sets in the Euclidean plane. It is known
that µk ⩾ k−1

k for any k ⩾ 2. We show the following improved bounds for k ∈ {2, 3}:
√

3/7 ⩽
µ2 < 0.93 and

√
3/2 ⩽ µ3 < 0.98. We also show that every pairwise crossing matching is unique

and it is globally maximum.
Towards our proof of the lower bound for µ2 we show the following result which is of inde-

pendent interest: If we increase the radii of pairwise intersecting disks by factor 2/
√
3, then the

resulting disks have a common intersection.

1 Introduction

A matching in a graph is a set of edges without a common vertex. A perfect matching is a matching
that covers every vertex of the graph. A maximum-weight matching in an edge-weighted graph is
a matching in which the sum of edge weights is maximized. Maximum-weight matching is among
well-studied structures in graph theory and combinatorial optimization. It has been studied from
both combinatorial and computational points of view in both abstract and geometric settings, see
for example [1, 3, 5, 11, 9, 12, 13, 16, 17, 19, 24, 25, 31]. Over the years, it has found applications in
several areas such as scheduling, facility location, and network switching. It has also been used as
a key subroutine in other optimization algorithms, for example, network flow algorithms [14, 26],
maximum cut in planar graphs [20], and switch scheduling algorithms [28] to name a few. In the
geometric setting, where vertices are represented by points in a Euclidean space and edges are line
segments, the maximum-weight matching is usually referred to as the maximum-length matching.

Let P be a set of 2n distinct points in the plane, and let M be a perfect matching on P where
every edge of M is a straight line segment—the underline graph is the complete geometric graph
with vertex set P . We say that M is globally maximum if it is a maximum-length matching on P .
For an integer k ⩽ n we say that M is k-local maximum if for any subset M ′ = {a1b1, . . . , akbk} of
k edges of M it holds that M ′ is a maximum-length matching on points {a1, b1, . . . , ak, bk}; in other
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words M ′ is a maximum-length matching on the endpoints of its edges. Local maximum matchings
appear in local search heuristics for approximating global maximum matchings, see e.g. [2].

It is obvious that any global maximum matching is locally maximum. On the other hand, local
maximum matchings are known to be good approximations of global ones. Let µk be the infimum
ratio of the length of any k-local maximummatching to the length of any global maximummatching,
over all finite point sets in the Euclidean plane. For k = 1, the ratio µ1 could be arbitrary small,
because any matching is 1-local maximum. For k ⩾ 2, however, it is known that µk ⩾ k−1

k (see
e.g. [2, Corollary 8]); this bound is independent of the Euclidean metric and it is valid for any
edge-weighted complete graph. A similar bound is known for matroid intersection [27, Corollary
3.1]. We present improved bounds for µ2 and µ3; this is going to be the main topic of this paper.

1.1 Our contributions

The general lower bound k−1
k implies that µ2 ⩾ 1/2 and µ3 ⩾ 2/3. To the best of our knowledge

these are the best known lower bounds. We use the geometry of the Euclidean plane and improve
these bounds to µ2 ⩾

√
3/7 ≈ 0.654 and µ3 ⩾

√
3/2 ≈ 0.866. For upper bounds, we exhibit

point sets with 2- and 3-local maximum matchings for which µ2 < 0.93 and µ3 < 0.98. In the
discussion at the end of this paper we show that analogous ratios for local minimum matchings
could be arbitrary large.

For an edge set E, we denote by w(E) the total length of its edges. First we prove a (weaker)
lower bound of 1/

√
2 for µ3. To obtain this bound we prove that for any 3-local maximum matching

M it holds that w(M) ⩾ w(M∗)/
√
2 where M∗ is a global maximum matching for the endpoints

of edges in M . To do so, we consider the set D of diametral disks of edges in M . A recent result of
Bereg et al. [5] combined with Helly’s theorem [22, 30] implies that the disks in D have a common
intersection. We take a point in this intersection and connect it to endpoints of all edges of M to
obtain a star S. Then we show that w(M∗) ⩽ w(S) ⩽

√
2 · w(M), which proves the weaker lower

bound. To achieve the lower bound
√
3/2 we follow a similar approach but employ a recent result

of Barabanshchikova and Polyanskii [4] instead of [5].
Our proof approach for showing the lower bound

√
3/7 for µ2 is similar to that of 1/

√
2 for µ3.

However, our proof consists of more technical ingredients. We show that for any 2-local maximum
matching M it holds that w(M) ⩾

√
3/7 · w(M∗) where M∗ is a global maximum matching for

the endpoints of edges of M . Again we consider the set D of diametral disks of edges of M . A
difficulty arises here because now the disks in D may not have a common intersection, although
they pairwise intersect. To overcome this issue we enlarge the disks in D to obtain a new set of
disks that have a common intersection. Then we take a point in this intersection and construct
our star S as before, and we show that w(M∗) ⩽ w(S) ⩽

√
7/3 · w(M). To obtain this result

we face two technical complications: (i) we need to show that the enlarged disks have a common
intersection, and (ii) we need to bound the distance from the center of star S to endpoints of M .
To overcome the first issue we prove that if we increase the radii of pairwise intersecting disks by
factor 2/

√
3 then the resulting disks have a common intersection; the factor 2/

√
3 is the smallest

that achieves this property. This result has the same flavor as the problem of stabbing pairwise
intersecting disks with four points [7, 8, 21, 32]. To overcome the second issue we prove a result in
distance geometry.

In a related result, which is also of independent interest, we show that every pairwise crossing
matching is unique and it is globally maximum. To show the maximality we transform our problem
into an instance of the “multicommodity flows in planar graphs” that was studied by Okamura and
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Seymour [29] in 1981.
The paper is organized as follow. In Section 2 we review the general lower bound on µk. In

Section 3 we present upper bounds for µ2 and µ3. Sections 4 and 5 present better lower bounds for
µ3 and µ2, respectively. Our result on pairwise-crossing matchings is given in Section 6.

1.2 Some related works

From the computational point of view, Edmonds [12, 13] gave a polynomial-time algorithm for com-
puting weighted matchings in general graphs (the term weighted matching refers to both minimum-
weight matching and maximum-weight matching). Edmonds’ algorithm is a generalization of the
Hungarian algorithm for weighted matching in bipartite graphs [24, 25]. There are several imple-
mentations of Edmonds’ algorithm (see e.g. [16, 18, 19, 26]) with the best known running time
O(mn+ n2 log n) [16, 17] where n and m are the number of vertices and edges of the graph. One
might expect faster algorithms for the “maximum-length matching” in the geometric setting where
vertices are points in the plane and any two points are connected by a straight line segment; we are
not aware of any such algorithm. For general graphs, there is a linear-time (1− ε)-approximation
of maximum-weight matching [9].

The analysis of maximum-length matching ratios has received attention in the past. In a
survey by Avis [3] it is shown that the matching obtained by a greedy algorithm (that picks the
largest available edge) is a 1/2-approximation of the global maximum matching (even in arbitrary
weighted graphs). Alon, Rajagopalan, Suri [1] studied non-crossing matchings, where edges are
not allowed to cross each other. They showed that the ratio of the length of a maximum-length
non-crossing matching to the length of a maximum-length matching is at least 2/π; this ratio is the
best possible. Similar ratios have been studied for non-crossing spanning trees, Hamiltonian paths
and cycles [1, 6, 10]. Bereg et al. [5] showed the following combinatorial property of maximum-
length matchings: the diametral disks, introduced by edges of a maximum-length matching, have a
common intersection. A somewhat similar property was proved by Huemer et al. [23] for bi-colored
points.

2 A lower bound for k-local maximum matchings

For the sake of completeness, and to facilitate comparisons with our improved bounds, we repeat
a proof of the general lower bound k−1

k , borrowed from [2].

Theorem 1. Every k-local maximum matching is a k−1
k -approximation of a global maximum match-

ing for any k ⩾ 2.

Proof. Consider any k-local maximum matching M and a corresponding global maximum matching
M∗. The union of M and M∗ consists of even cycles and/or single edges which belong to both
matchings. It suffices to show, for each cycle C, that the length of edges in C ∩M is at least k−1

k
times that of edges in C ∩M∗.

Let e0, e1, . . . , e|C|−1 be the edges of C that appear in this order. Observe that |C| ⩾ 4, and
that the edges of C alternate between M and M∗. Let CM and CM∗ denote the sets of edges of C
that belong to M and M∗, respectively. If |C| ⩽ 2k then w(CM ) = w(CM∗) because M is k-local
maximum, and thus we are done. Assume that |C| ⩾ 2k+2. After a suitable shifting of indices we
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may assume that CM = {ei : i is even} and CM∗ = {ei : i is odd}. Since M is k-local maximum,
for each even index i we have

w(ei) + w(ei+2) + · · ·+ w(ei+2k−2) ⩾ w(ei+1) + w(ei+3) + · · ·+ w(ei+2k−3)

where all indices are taken modulo |C|. By summing this inequality over all even indices, every
edge of CM appears exactly k times and every edge of CM∗ appears exactly k − 1 times, and thus
we get k · w(CM ) ⩾ (k − 1) · w(CM∗).

It is implied from Theorem 1 that µ2 ⩾ 1/2 and µ3 ⩾ 2/3. To establish stronger lower bounds,
we need to incorporate more powerful ingredients. We use geometry of the Euclidean plane and
improve both lower bounds.

3 Upper bounds for 2- and 3-local maximum matchings

It is somewhat challenging to find point sets for which 2-local and 3-local maximum matchings are
not globally maximum. Consider the point set P with six points {A,B,C,D,E, F} in Figure 1(a).
The edge set M1 = {AB,CD,EF} is a 2-local maximum matching for P . The length of M1 is less
than 17.76. The edge set M2 = {AF,BC,DE} is another matching for P , and its length is larger
than 19.1. This implies that µ2 < 17.76/19.1 < 0.93. In other words a 2-local maximum matching
may not approximate a global one better than ratio 0.93. The six points were found by setting up a
system of inequalities in GeoGebra1. On any set {A,B,C,D} of four points we get three different
matchings. Thus, if we want {AB,CD} to be a 2-local maximum matching we need the following
two inequalities: |AB| + |CD| ≥ |AC| + |BD| and |AB| + |CD| ≥ |AD| + |BC|. We set up these
inequalities for all pairs of edges in the matching.

Now consider the point set Q with eight points {A,B,C,D,E, F,G,H} in Figure 1(b). The
edge set M1 = {AB,CD,EF,GH} is a 3-local maximum matching for Q and its length is less than
13.235. The edge set M2 = {AH,BC,DE,FG} is another matching for Q, and its length is larger
than 13.515. This implies that µ2 < 13.235/13.515 < 0.98. To find these points in GeoGebra we
need to satisfy 14 inequalities for every three edges in the matching because on 6 points we get 15
matchings.

4 Better lower bound for 3-local maximum matchings

We give a proof of the lower bound 1/
√
2 for 3-local maximum matchings first because it is easier

to understand. Also it serves as a preliminary for our proof of the lower bound on µ2 which is given
in Section 5. Our proof benefits from the following result of Bereg et al. [5] and Helly’s theorem
[22, 30].

Theorem 2 (Bereg et al. [5]). Consider any maximum matching of any set of six points in the
plane. The diametral disks of the three edges in this matching have a nonempty intersection.

Theorem 3 (Helly’s theorem in R2). If in a family of convex sets in the plane every triple of sets
has a nonempty intersection, then the entire family has a nonempty intersection.

1www.geogebra.org
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(a) (b)

Figure 1: Illustration of upper bounds for (a) 2-local matchings and (b) 3-local matchings.

c

a

b

a∗

b∗

Figure 2: Red edges belong to M , black edges belong to S, and blue edge belongs to M∗.

Theorem 4. Every 3-local Euclidean maximum matching is a 1√
2
-approximation of a global Eu-

clidean maximum matching.

Proof. Consider any 3-local maximum matching M . Let M∗ be a global maximum matching for
the endpoints of edges of M . Consider the set D of diametral disks introduced by edges of M .
Since M is 3-local maximum, any three disks in D have a common intersection (by Theorem 2).
With this property, it is implied by Theorem 3 that the disks in D have a common intersection
(the shaded region in Figure 2). Let c be a point in this intersection. Let S be the star obtained
by connecting c to all endpoints of edges of M as in Figure 2. Since c is in the diametral disk of
every edge ab ∈ M , it is at distance at most |ab|/2 from the midpoint of ab. By an application of
the law of sines we have

|ca|+ |cb| ⩽
√
2 · |ab|; (1)

(this is also implied form Lemma 1, proved in Section 5, with c playing the role of p and r = 1).
In Inequality (1), for every edge ab ∈ M , a unique pair of edges in S is charged to ab. Therefore,
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w(S) ⩽
√
2 · w(M). Now consider any edge a∗b∗ ∈ M∗. By the triangle inequality we have that

|a∗b∗| ⩽ |ca∗|+ |cb∗|. (2)

In Inequality (2), every edge of M∗ is charged to a unique pair of edges in S. Therefore, w(M∗) ⩽
w(S). Combining the two resulting inequalities we have that w(M) ⩾ w(M∗)/

√
2.

A better lower bound. In 1995, Fingerhut [15] conjectured that for any maximum-length match-
ing {(a1, b1), . . . , (an, bn)} on any set of 2n points in the plane there exists a point c such that

|aic|+ |bic| ⩽ α · |aibi| (3)

for all i ∈ {1, . . . , n}, where α = 2/
√
3. This conjecture is recently proved by Barabanshchikova

and Polyanskii [4]. An alternative interpretation of this result is that the ellipses with foci at ai
and bi and with eccentricity

√
3/2 have a nonempty intersection. This result combined with an

argument similar to our proof of Theorem 4, imply the approximation ratio
√
3
2 for 3-local maximum

matchings. The main result of this section is summarized in the following theorem, which implies
that µ3 ⩾

√
3/2.

Theorem 5. Every 3-local Euclidean maximum matching is a
√
3
2 -approximation of a global Eu-

clidean maximum matching.

5 Better lower bound for 2-local maximum matchings

In this section we prove that µ2 ⩾
√
3/7 ≈ 0.65, that is, 2-local maximum matchings are

√
3/7

approximations of global ones. Our proof approach employs an argument similar to the proof of
the lower bound 1/

√
2 for 3-local maximum matchings. Here we are facing an obstacle because

diametral disks that are introduced by edges of a 2-local maximum matching may not have a
common intersection. To handle this issue, we require stronger tools. Our idea is to increase the
radii of disks—while preserving their centers—to obtain a new set of disks that have a common
intersection. Then we apply our argument on this new set of disks. This gives rise to somewhat
lengthier analysis. Also, two technical complications arise because now we need to show that the
new disks have a common intersection, and we need to bound the total distance from any point
in new disks to the endpoints of the corresponding matching edges. The following lemmas play
important roles in our proof.

Lemma 1. Let r > 0 be a real number. If ab is a line segment in the plane and p is a point at
distance at most r·|ab|

2 from the midpoint of ab then

|pa|+ |pb| ⩽
√
r2 + 1 · |ab|.

Proof. After scaling by factor 2/|ab| we will have |ab| = 2 and p at distance at most r from the
midpoint of ab. After a suitable rotation and translation assume that a = (−1, 0) and b = (1, 0).
Any point p = (x, y) at distance at most r from the midpoint of ab lies in the disk d of radius r that
is centered at (0, 0) as in Figure 3. Since |ab| = 2, it suffices to prove that |pa| + |pb| ⩽ 2

√
r2 + 1.

Without loss of generality we may assume that x ⩾ 0 and y ⩾ 0. Let p′ be the vertical projection
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a=(−1, 0) b=(1, 0)
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d

p

p′
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Figure 3: Illustration of the proof of Lemma 1.

of p onto the boundary of d as in Figure 3. Observe that |pa| ⩽ |p′a| and |pb| ⩽ |p′b|. Thus the
largest value of |pa| + |pb| occurs when p is on the boundary of d. Therefore, for the purpose of
this proof we assume that p is on the boundary circle of d. The circle has equation x2 + y2 = r2.
Therefore, we can define |pa| + |pb| as a function of x as follows where 0 ⩽ x ⩽ r (recall that x is
the x-coordinate of p, and y is the y-coordinate of p).

f(x) = |pa|+ |pb| =
√

(x+ 1)2 + y2 +
√

(x− 1)2 + y2

=
√

x2 + y2 + 1 + 2x+
√
x2 + y2 + 1− 2x

=
√

r2 + 1 + 2x+
√

r2 + 1− 2x.

We are interested in the largest value of f(x) on interval x ∈ [0, r]. By computing its derivative
it turns out that f(x) is decreasing on this interval. Thus the largest value of f(x) is achieved at
x = 0, and it is 2

√
r2 + 1.

C

c

p

q

a b

β

p

qq

α

2π
3

π
6
π−α
2

a b

1 1 1 1

d

p

q′

a b

1 1

q

2π
3

Figure 4: Illustration of the proof of Lemma 2.

Lemma 2. Let a, p, b, q be the vertices of a convex quadrilateral that appear in this order along the
boundary. If |pa| = |pb| and ∠aqb ⩾ 2π/3 then |pq| ⩽ 2√

3
|pa|.

Proof. After a suitable scaling, rotation, and reflection assume that |pa| = 1, ab is horizontal, and
p lies below ab as in Figure 4-left. Since |pa| = 1 in this new setting, it suffices to prove that
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|pq| ⩽ 2/
√
3. Consider the ray emanating from p and passing through q. Let q′ be the point on

this ray such that ∠aq′b = 2π/3, and observe that |pq′| ⩾ |pq|. Thus for the purpose of this proof
we can assume that ∠aqb = 2π/3. The locus of all points q, with ∠aqb = 2π/3, is a circular arc C
with endpoints a and b. See Figure 4-middle. Let c be the center of the circle that defines arc C.
Since ab is horizontal and |pa| = |pb|, the center c lies on the vertical line through p. Let d be the
disk of radius 1 centered at p. If c lies on or below p then C lies in d and consequently q is in d. In
this case |pq| ⩽ 1, and we are done. Assume that c lies above p as in Figure 4-middle. By the law
of cosines we have |pq| =

√
|pc|2 + |cq|2 − 2|pc||cq| cosβ where β is the angle between segments cp

and cq. Since |pc| and |cq| are fixed for all points q on C, the largest value of |pq| is attained at
β = π. Again for the purpose of this proof we can assume that β = π, in which case |qa| = |qb|.
Let α denote the angle between segments pa and pb. Define f(α) = |pq| where 0 ⩽ α ⩽ π. Recall
that ∠aqb = 2π/3. This setting is depicted in Figure 4-right. By the law of sines we have

f(α) = |pq| =
sin

(
π
6 + π−α

2

)
sin

(
π
3

) =
2 sin

(
4π−3α

6

)
√
3

,

where 0 ⩽ α ⩽ π. By computing the derivative of f(α) it turns out that its largest value is attained
at α = π/3, and it is 2/

√
3.

Theorem 6. Let D be a set of pairwise intersecting disks. Let D′ be the set of disks obtained by
increasing the radii of all disks in D by factor 2/

√
3 while preserving their centers. Then all disks

in D′ have a common intersection. The factor 2/
√
3 is tight.

Proof. It suffices to show that any three disks in D′ have a common intersection because afterwards
Theorem 3 implies that all disks in D′ have a common intersection. Consider any three disks d′1,
d′2, d

′
3 in D′ that are centered at c1, c2, c3, and let d1, d2, d3 be their corresponding disks in D.

If d1, d2, d3 have a common intersection, so do d′1, d
′
2, and d′3. Assume that d1, d2, d3 do not

have a common intersection, as depicted in Figure 5. Let u be the innermost intersection point of
boundaries of d1 and d2, v be the innermost intersection point of boundaries of d2 and d3, and w
be the innermost intersection point of boundaries of d3 and d1, as in Figure 5. We show that the
Fermat point of triangle △uvw lies in all disks d′1, d

′
2, and d′3. This would imply that these three

disks have a common intersection. The Fermat point of a triangle is a point that minimizes the
total distance to the three vertices of the triangle. If all angles of the triangle are less than 2π/3 the
Fermat point is inside the triangle and makes angle 2π/3 with every two vertices of the triangle. If
the triangle has a vertex of angle at least 2π/3 the Fermat point is that vertex.

Let f be the Fermat point of △uvw. First assume that all angles of △uvw are less than 2π/3,
as in Figure 5-left. In this case f is inside △uvw and ∠ufw = ∠wfv = ∠vfu = 2π/3. By Lemma 2
we have |c1f | ⩽ 2√

3
|c1u| (w, c1, u, f play the roles of a, p, b, q in the lemma, respectively). This and

the fact that the radius of d′1 is 2√
3
|c1u| imply that f lies in d′1. Analogously, we can show that f

lies in d′2 and d′3. This finishes our proof for this case.
Now assume that one of the angles of △uvw, say the angle ∠uvw at v, is at least 2π/3; see

Figure 5-right. In this case f = v. Since f is on the boundaries of d2 and d3, it lies in d′2 and d′3.
By Lemma 2 we have |c1f | ⩽ 2√

3
|c1u|. Similarly to the previous case, this implies that f lies in d′1.

This finishes our proof.
The factor 2/

√
3 in the theorem is tight in the sense that if we replace it by any smaller constant

then the disks in D′ may not have a common intersection. To verify this consider three disks of
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Figure 5: Illustration of the proof of Theorem 6

the same radius that pairwise touch (but do not properly intersect). For example assume that d1,
d2, d3 in Figure 5-left have radius 1 and pairwise touch at u, v, and w. In this case d′1, d

′
2, d

′
3 have

radius 2/
√
3. Moreover ∠wc1u = ∠uc2v = ∠vc3w = π/3 and f is inside △uvw. In this setting

|c1f | = |c2f | = |c3f | = 2/
√
3. This implies that f is the only point in the common intersection of

d′1, d
′
2 and d′3. Therefore, if the radii of these disks are less than 2/

√
3 then they wouldn’t have a

common intersection.

Theorem 7. Every 2-local Euclidean maximum matching is a
√
3/7 approximation of a global

Euclidean maximum matching.

Proof. Our proof approach is somewhat similar to that of Theorem 4. Consider any 2-local max-
imum matching M . Let M∗ be a global maximum matching for the endpoints of edges of M . It
is well known that that the two diametral disks introduced by the two edges of any maximum
matching, on any set of four points in the plane, intersect each other (see e.g. [5]). Consider the set
D of diametral disks introduced by edges of M . Since M is 2-local maximum, any two disks in D
intersect each other. However, all disks in D may not have a common intersection. We increase the
radii of all disks in D by factor 2/

√
3 while preserving their centers. Let D′ be the resulting set of

disks. By Theorem 6 the disks in D′ have a common intersection. Let c be a point in this intersec-
tion. Let S be the star obtained by connecting c to all endpoints of edges of M . Consider any edge
ab ∈ M , and let d be its diametral disk in D and d′ be the corresponding disk in D′. The radius of
d′ is 2√

3
· |ab|

2 . Since c is in d′, its distance from the center of d′ (which is the midpoint of ab) is at

most 2√
3
· |ab|

2 . By applying Lemma 1, with p = c and r = 2/
√
3, we have |ca|+ |cb| ⩽

√
7/3 · |ab|.

This implies that w(S) ⩽
√

7/3 · w(M). For any edge a∗b∗ ∈ M∗, by the triangle inequality we
have |a∗b∗| ⩽ |ca∗|+ |cb∗|, and thus w(M∗) ⩽ w(S). Therefore, w(M) ⩾

√
3/7 · w(M∗).
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6 Pairwise-crossing matchings are globally maximum

A pairwise crossing matching is a matching in which every pair of edges cross each other. It is easy
to verify that any pairwise crossing matching is 2-local maximum. We claim that such matchings
are in fact global maximum. We also claim that pairwise crossing matchings are unique. Both
claims can be easily verified for points in convex position. In this section we prove these claims for
points in general position, where no three points lie on a line.

Observation 1. Let M be a pairwise crossing perfect matching on a point set P . Then for any
edge ab ∈ M it holds that the number of points of P on each side of the line through ab is (|P |−2)/2.

Theorem 8. A pairwise crossing perfect matching on a point set is unique if it exists.

Proof. Consider any even-size point set P that has a pairwise crossing perfect matching. For the
sake of contradiction assume that P admits two different perfect matchings M1 and M2 each of
which is pairwise crossing. The union of M1 and M2 consists of connected components which are
single edges (belong to both M1 and M2) and even cycles. Since M1 ̸= M2, M1∪M2 contains some
even cycles. Consider one such cycle, say C. Let C1 and C2 be the sets of edges of C that belong
to M1 and M2 respectively. Observe that each of C1 and C2 is a pairwise crossing perfect matching
for vertices of C.

b1
b2

a

L R

Let a denote the lowest vertex of C; a is a vertex of the convex hull of
C. Let b1 and b2 be the vertices of C that are matched to a via C1 and C2

respectively. After a suitable reflection assume that b2 is to the right side
of the line through a and b1 as in the figure to the right. Let L be the set
of vertices of C that are to the left side of the line through ab1, and let R
be the set of vertices of C that are to the right side of the line through ab2.
Since C1 is pairwise crossing, by Observation 1 we have |L| = (|C| − 2)/2.
Analogously we have |R| = (|C| − 2)/2. Set C ′ = L ∪ R ∪ {a, b1, b2}, and observe that C ′ ⊆ C.
Since the sets L, R, and {a, b1, b2} are pairwise disjoint, |C ′| = |L| + |R| + 3 = |C| + 1. This is a
contradiction because C ′ is a subset of C. □

In Theorem 10 we prove that a pairwise crossing matching is globally maximum, i.e., it is a
maximum-length matching for its endpoints. The following “edge-disjoint paths problem” that is
studied by Okamura and Seymour [29] will come in handy for our proof of Theorem 10. To state
this problem in a simple way, we borrow some terminology from [33].

Let G = (V,E) be an embedded planar graph and let N = {(a1, b1), . . . , (ak, bk)} be a set of
pairs of distinct vertices of V that lie on the outerface, as in Figure 6(a). A problem instance is a
pair (G,N) where the augmented graph (V,E ∪ {a1b1, . . . , akbk}) is Eulerian (i.e. it has a closed
trail containing all edges). We note that the augmented graph may not be planar. The problem
is to decide whether there are edge-disjoint paths P1, . . . , Pk in G such that each Pi connects ai to
bi.

2 Okamura and Seymour [29] gave a necessary and sufficient condition for the existence of such
paths; this condition is stated below in Theorem 9. A cut X is a nonempty proper subset of V .
Let c(X) be the number of edges in G with one endpoint in X and the other in V \X, and let d(X)
be the number of pairs (ai, bi) with one element in X and the other in V \X. A cut X is essential
if the subgraphs of G induced by X and V \X are connected and neither set is disjoint with the
outerface of G. If X is essential then each of X and V \X shares one single connected interval with
the outerface; see Figure 6(a).

2This problem has applications in multicommodity flows in planar graphs [29].
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Theorem 9 (Okamura and Seymour, 1981). An instance (G,N) is solvable if and only if for any
essential cut X it holds that c(X)− d(X) ⩾ 0.

Wagner and Weihe [33] studied a computational version of the problem and presented a linear-
time algorithm for finding edge-disjoint paths P1, . . . , Pk.

a1 a2

a3

a4

a5

b1

b2

b3

b5

b4

X

a5

a2

b4

b2

a4

a3

b3a1

b1

b5

1 3

3
1

4
3

4

4

23

2

5

5

2 1

1
1

5
1

2

3

4

2

3
5

(a) (b)

Figure 6: (a) An essential cut X with c(X) = 4 and d(X) = 2. (b) Edge-disjoint paths between
endpoints of edges of M∗.

Theorem 10. Any pairwise crossing matching is globally maximum.

Proof. Consider any matching M with pairwise crossing segments, and let P be the set of endpoints
of edges of M . Let A be the arrangement defined by the segments of M . Notice that w(A) = w(M),
where w(A) is the total length of segments in A. This arrangement is a planar graph where every
vertex, that is a point of P , has degree 1 and every vertex, that is an intersection point of two
segments of M , has degree 4 (assuming no three segments intersect at the same point). Now
consider any perfect matching M∗ on P ; M∗ could be a global maximum matching. Denote the
edges of M∗ by a1b1, a2b2, . . . . To prove the theorem it suffices to show that w(M∗) ⩽ w(A). To
show this inequality, we prove existence of edge-disjoint paths between all pairs (ai, bi) in A, as
depicted in Figure 6(b). We may assume that M and M∗ are edge disjoint because shared edges
have the same contribution to each side of the inequality.

Observe that the pair (A,M∗) is an instance of the problem of Okamura and Seymour [29]
because the augmented graph is Eulerian (here we slightly abuse M∗ to refer to a set of pairs).
In the augmented graph, every point of P has degree 2, whereas the degree of every other vertex
is the same as its degree in A. Consider any essential cut X in A. Set XP = X ∩ P . Consider
the two sets XP and P \XP . Denote the smaller set by Y1 and the larger set by Y2. Notice that
|Y1 ∪ Y2| = |P |, |Y1| ⩽ |P |/2, and |Y2| ⩾ |P |/2. We claim that no two points of Y1 are matched to
each other by an edge of M . To verify this claim we use contradiction. Assume that for two points
a and b in Y1 we have ab ∈ M . Since X is essential, each of Y1 and Y2 consists of some points of
P that are consecutive on the outerface of A. This and the fact that M is pairwise crossing imply
that all points of Y2 lie on one side of the line through ab. This contradicts Observation 1, and
hence proves our claim.

The above claim implies that every point in Y1 is matched to a point in Y2 by an edge of M .
Any such edge of M introduces at least one edge between X and A\X in A. Therefore c(X) ⩾ |Y1|.
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Since every ai and every bi belong to P , the number of pairs (ai, bi) with one element in X and
another one in A\X is the same as the number of such pairs with one element in Y1 and the other
in Y2. The number of such pairs cannot be more than |Y1|, and thus d(X) ⩽ |Y1|. To this end we
have that c(X) ⩾ d(X). Having this constraint, Theorem 9 implies that the instance (A,M∗) is
solvable, and thus there are edge-disjoint paths between all pairs (ai, bi). By the triangle inequality,
w(M∗) is at most the total length of these edge-disjoint paths, which is at most w(A).

7 Discussion

We believe that 3-local Euclidean maximum matchings are “very good” approximations of global
Euclidean maximum matchings. In particular we think that the lower bound on the length ratio
should be closer to 0.98 than to

√
3/2. A natural open problem is to use the geometry of the

Euclidean plane and improve the lower bounds on the length ratios for 2- and 3-local maximum
matchings.

From the computational point of view, there are algorithms that compute a global maximum
matching in polynomial time [16, 17, 18, 19, 26] and there is a linear-time algorithm that gives a
(1− ε)-approximation [9]. It would be interesting to see how fast a k-local maximum matching can
be computed. Theorem 1 suggests a local search strategy where repeatedly k-subsets of the current
matching are tested for improvement. In its straightforward version this requires superlinear time.
It would be interesting to see whether geometric insights could speed up the local search, maybe not
(theoretically) matching the linear-time bound from [9], but leading to a practical and in particular
simple algorithm.

a

b
We note that analogous ratios for minimum-length matchings could be

arbitrary large. In the figure to the right 2n points are placed on a circle
such that distances between consecutive points are alternating between 1 and
arbitrary small constant ϵ. For a sufficiently large n, the red matching which
has n edges of length 1, would be 2-local minimum (the two arcs in the figure
are centered at a and b, and show that the length |ab| is larger than the total
length of two consecutive red edges). In this setting, the global minimum matching would have n
edges of length ϵ. This shows that the ratio of the length of 2-local minimum matchings to that
of global minimum matchings could be arbitrary large. By increasing the number of points (and
hence flattening the perimeter of the circle) in this example, it can be shown that the length ratio
of k-local minimum matchings could be arbitrary large, for any fixed k ⩾ 2.
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