
The Minimum Moving Spanning Tree Problem∗

Hugo A. Akitaya† Ahmad Biniaz‡ Prosenjit Bose† Jean-Lou De Carufel§

Anil Maheshwari† Luís Fernando Schultz Xavier da Silveira† Michiel Smid†

Abstract1

We investigate the problem of finding a spanning tree of a set of moving points in the plane2

that minimizes the maximum total weight (sum of Euclidean distances between edge endpoints)3

or the maximum bottleneck throughout the motion. The output is a single tree, i.e., it does not4

change combinatorially during the movement of the points. We call these trees the minimum5

moving spanning tree, and the minimum bottleneck moving spanning tree, respectively. We6

show that, although finding the minimum bottleneck moving spanning tree can be done in7

O(n2) time, it is NP-hard to compute the minimum moving spanning tree. We provide a simple8

O(n2)-time 2-approximation and a O(n log n)-time (2+ε)-approximation for the latter problem.9

1 Introduction10

The Euclidean minimum spanning tree (EMST) of a point set is the minimum weight graph that11

connects the given point set, where the weight of the graph is given by the sum of Euclidean12

distances between endpoints of edges. EMST is a classic data structure in computational geometry13

and it has found many uses in network design and in approximating NP-hard problems. In the14

visualization community, a series of methods generalize Euler diagrams to represent spatial data [8,15

2, 9, 16]. These approaches represent a set by a connected colored shape containing the points16

in the plane that are in the given set. In order to reduce visual clutter, approaches such as Kelp17

Diagrams [9] and colored spanning graphs [13] try to minimize the area (or “ink”) of such colored18

shapes. Each shape can be considered as a generalization of the EMST of points in the set.19

Motivated by visualizations of time-varying spatial data, we investigate a natural generalization20

of the minimum spanning tree (MST) and the minimum bottleneck spanning tree (MBST) for a21

set of moving points. In general it is desirable that visualizations are stable, i.e., small changes in22

the input should produce small changes in the output [17]. In this paper, we want to maintain all23

points connected throughout the motion by the same tree (the tree does not change topologically24

during the time frame). Consider points in the plane moving on a straight line with constant25

speed over a time interval [0, 1]. The weight of an edge pq between points p and q is defined to be26

the Euclidean distance ‖pq‖. Note that the weight of an edge changes over time. We define the27

Minimum Moving Spanning Tree (MMST) of a set of moving points to be a spanning tree that28

minimizes the maximum sum of weights of its edges during the time interval. Analogously, we29
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define Minimum Bottleneck Moving Spanning Tree (MBMST) of a set of moving points to be a30

spanning tree that minimizes the maximum individual weight of edges in the tree during the time31

interval.32

Apart from this motivation, the concepts of MMST and MBMST are relevant in the context33

of moving networks. Motivated by the increase in mobile data consumption, network architecture34

containing mobile nodes have been considered [14]. In this setting, the design of the topology of the35

networks is a challenge. Due to the mobility of the vertices, existing methods update the topology36

dynamically and the stability becomes important since there are costs associated with establishing37

new connections and handing over ongoing sessions. The MMST and MBMST offer stability in38

mobile networks.39

Results and Organization. We study the problems of finding an MMST and an MBMST of40

a set of points moving linearly, each at constant speed. Section 2 provides formal definitions and41

proves that the distance function between points is convex in this setting. We use this property in42

an exact O(n2)-time algorithm for the MBMST as shown in Section 3. Our algorithm computes43

the minimum bottleneck tree in a complete graph G on the moving points in which the weight44

of each edge is the maximum distance between the pairs of points during the time frame. In45

Section 4.1 we present an O(n2)-time 2-approximation for MMST by computing the MST of G. In46

Section 4.2 we provide an example that shows our analysis for the approximation ratio is tight. In47

Section 4.3, we show that the MMST is equal to the minimum spanning tree of a point set in R448

with a non-Euclidean metric. Since this metric space has doubling dimension O(1), we obtain an49

O(n log n)-time (2 + ε)-approximation algorithm. Finally, we show that the problem of finding the50

MMST is NP-hard in Section 4.4 by reducing from the Partition problem.51

Related work. Examples of other visualizations of time-varying spatial data are space-time52

cubes [15], that represent varying 2D data points with a third dimension, and motion rugs [6, 21],53

that reduces the dimentionality of the movement of data points to 1D, presenting a 2D static54

overview visualizations. The representation of time-varying geometric sets were also the theme of55

a recent Dagstuhl Seminar 19192 “Visual Analytics for Sets over Time and Space” [10]. In the56

context of algorithms dealing with time-varying data Meulemans et al. [17] introduces a metric for57

stability, analysing the trade-off between quality and stability of results, and applying it to the58

EMST of moving points. Monma and Suri [18] study the number of topological changes that occur59

in the EMST when one point is allowed to move.60

The problem of finding the MMST and MBMST of moving points can be seen as a bicriteria61

optimization problem if the points move linearly (as shown in Section 2.2). In this context, the62

addition of a new criterion could lead to an NP-hard problem, such as the bi-criteria shortest path63

problem in weighted graphs. Garey and Johnson show that given a source and target vertices,64

minimizing both length and weight of a path from source to target is NP-hard [11, p. 214]. Arkin65

et al. analyse other criteria combined with the shortest path problem [4], such as the total turn66

length and different norms for path length.67

Maintaining the EMST and other geometric structures of a set of moving points have been in-68

vestigated by several papers since 1985 [5]. Kinetic data structures have been proposed to maintain69

the EMST [20, 1]. Research in this area have focused on bounds on the number of combinatorial70

changes in the EMST and efficient algorithms. To the best of our knowledge, the problem of find-71

ing the MMST and MBMST (a single tree that does not change during the movement of points)72

has not been investigated.73
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2 Preliminaries74

In this section we formally define the minimum moving spanning tree and the minimum bottleneck75

moving spanning tree of a set of moving points. We then prove that, for points moving linearly,76

the distance function between a pair of points is convex.77

2.1 Definitions78

A moving point p in the plane is a continuous function p : [0, 1] → R2. We assume that p moves on79

a straight line segment in R2. We say that p is at p(t) at time t. We are given a set S = {p1, ..., pn}80

of moving points in the plane. A moving spanning tree T of S has S as its vertex set and weight81

function wT : [0, 1] → R defined as wT (t) =
∑

pq∈T ‖p(t)q(t)‖. Let T (S) denote the set of all82

moving spanning trees of S. Let w(T ) = suptwT (t) be the weight of the moving spanning tree T .83

A minimum moving spanning tree (MMST) of S is a moving spanning tree of S with minimum84

weight. In other words an MMST is in85

argmin
T∈T (S)

(w(T )) .86

Let bT (t) = suppq∈T ‖p(t)q(t)‖ denote the bottleneck of a tree T at time t. A minimum bottleneck87

moving spanning tree (MBMST) of S is a moving spanning tree of S that minimizes the bottleneck88

over all t ∈ [0, 1]. In other words an MBMST is in89

argmin
T∈T (S)

(
max

t
bT (t)

)
.90

2.2 Convexity91

Let p and q be two moving points in the plane. We assume that these points move along (possibly92

different) lines at (possibly different) constant velocities. Thus, for any real number t, we can write93

the positions of p and q at time t as94

p(t) = (ap + upt, bp + vpt)95

and96

q(t) = (aq + uqt, bq + vqt),97

where ap, up, bp, vp are constants associated with the point p. At time t = 0, p is at (ap, bp), and98

the velocity vector of p is (up, vp). Let d(t) = ‖p(t)q(t)‖ denote the Euclidean distance between p99

and q at time t. In the next lemma we prove that d is a convex function. The convexity of d is also100

implied by a result of Alt and Godau [3] that the free space diagram of any two line segments is101

convex.102

Lemma 1. The function d is convex.103

Proof. It suffices to prove that the second derivative of d is non-negative for all real numbers t. We104

can write105

d(t) =
√

At2 +Bt+ C,106
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where A, B, and C depend only on ap, up, bp, vp, aq, uq, bq, and vq. Observe that A ≥ 0. Since d(t)107

represents a distance, At2 + Bt + C ≥ 0 for all t in R. It follows that the discriminant of this108

quadratic function is non-positive, i.e.,109

B2 − 4AC ≤ 0. (1)110

Let α = −B/2A and β = C/A−B2/(4A2). Then111

d(t) =
√
A ·

√
(t− α)2 + β.112

The second derivative of the function f(t) =
√

t2 + β is given by113

f ′′(t) =
β

(t2 + β)3/2
.114

It follows from (1) that β ≥ 0. Thus, f ′′(t) ≥ 0 for all t in R. Since d(t) =
√
A · f(t− α), we have115

d′′(t) ≥ 0 for all t in R, and in particular, for t ∈ [0, 1].116

The convexity of the distance function between two moving points (Lemma 1) implies the117

following corollary.118

Corollary 2. The largest distance between two moving points is attained either at the start time119

or at the finish time.120

Let S be a set of n moving points in the plane. For two points p and q in S, we denote by121

‖p(0)q(0)‖ and ‖p(1)q(1)‖ the distances between p and q at times t = 0 and t = 1, respectively.122

Moreover, we denote by |pq|max the largest distance between p and q during time interval [0, 1]. By123

Corollary 2 we have124

|pq|max = max{‖p(0)q(0)‖, ‖p(1)q(1)‖}. (2)125

3 Minimum bottleneck moving spanning tree126

Since by Corollary 2 the largest length of an edge is attained either at time 0 or at time 1, it might127

be tempting to think that the MBMST of S is also attained at times 0 or 1. However the example128

in Figure 1(a) shows that this may not be true. In this example we have four points a, b, c, and d129

that move from time 0 to time 1 as depicted in the figure. The MBST of these points at time 0 is130

the red tree R, and their MBST at time 1 is the blue tree B. Recall that bT (t) is the bottleneck of131

tree T at time t. Let b(T ) = maxt bT (t) be the bottleneck of T . In R the weight of ab at time 0 is132

1 while its weight at time 1 is 3, and thus b(R) = 3. In B the weight of ad at time 1 is 1 while its133

weigh at time 0 is 3, and thus b(B) = 3. However, for this point set the tree T = {ac, cb, cd} has134

bottleneck 2.135

Although the above example shows that the computation of the MBMST is not straightforward,136

we present a simple algorithm for finding the MBMST. Let G be the complete graph on points of137

S where the weight w(pq) of every edge pq is the largest distance between p and q during time138

interval [0, 1], that is, w(pq) = |pq|max; see Figure 1(b).139

Lemma 3. The bottleneck of an MBMST of S is not smaller than the bottleneck of an MBST of140

G.141

4



a0 b0 c0 d0

a1 d1 c1 b1

1 1 1R

B

a b c d3 1 1

2

2

3

(a) (b)

Figure 1: Four points that move from time 0 to time 1. (a) R is the MBST at time 0, and B is the
MBST at time 1. (b) The graph G; green edges form an MBST of this graph.

Proof. Our proof is by contradiction. Let T ∗ be an MBMST of S and let T be an MBST of G.142

For the sake of contradiction assume that b(T ∗) < b(T ), where we abuse the notation for simplicity143

making b(T ) = maxpq∈T w(pq) the bottleneck of T . Let pq be a bottleneck edge of T , that is144

b(T ) = w(pq). Denote by Tp and Tq the two subtrees obtained by removing pq from T , and denote145

by Vp and Vq the vertex sets of these subtrees. Since the vertex set of T is the same as that of T ∗,146

there is an edge, say rs, in T ∗ that connects a vertex of Vp to a vertex of Vq. Since the bottleneck of147

T ∗ is its largest edge-length in time interval [0, 1], we have that |rs|max 6 b(T ∗). Since in G we have148

w(rs) = |rs|max, the following inequality is valid: w(rs) = |rs|max 6 b(T ∗) < b(T ) = w(pq). Let T ′149

be the spanning tree of G that is obtained by connecting Tp and Tq by rs. Then b(T ′) 6 b(T ∗). If150

we repeat this process for all bottleneck edges of T , then we obtain a tree T ′ whose bottleneck is151

strictly smaller than that of T . This contradicts the fact that T is an MBST of G.152

It is implied from Lemma 3 that any MBST of G is an MBMST of S. Since an MBST of a153

graph can be computed in time linear in the size of the graph [7], an MBST of G can be computed154

in O(n2) time. The following theorem summarizes our result in this section.155

Theorem 4. A minimum bottleneck moving spanning tree of n moving points in the plane can be156

computed in O(n2) time.157

4 Minimum moving spanning tree158

In this section we study the problem of computing an MMST of moving points. At the end of this159

section we prove that this problem is NP-hard. We start by proposing a 2-approximation algorithm160

for the MST problem. In Section 4.2 we show that our analysis of the approximation ratio is tight.161

4.1 A 2-approximation algorithm162

Our algorithm is very simple and just computes a MST of the graph G that is constructed in163

Section 3.164

Lemma 5. The weight of any MST of G is at most two times the weight of any MMST of S.165

Proof. Let T be any MST of G and let T ∗ be any MMST of S. Let w(T ∗) = suptwT (t) be the weight166

of the moving spanning tree T ∗. We abuse the notation for simplicity making w(T ) =
∑

pq∈T w(pq)167

the weight of the spanning tree T . We are going to show that w(T ) 6 2 · w(T ∗). Let T ′ be a tree168

that is combinatorially equivalent to T ∗, i.e., has the same topology as T ∗. Assign to each edge pq169
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of T ′ the weight w(pq) = |pq|max. After this weight assignment, T ′ is a spanning tree of G. Since170

T is a MST of G, we have w(T ) 6 w(T ′).171

By Corollary 2 the largest distance between two points is achieved either at time 0 or at time172

1. Let E∗
0 be the set of edges of T ∗ whose endpoints largest distance is achieved at time 0. Define173

E∗
1 analogously. Then w(E∗

0) 6 w(T ∗) and w(E∗
1) 6 w(T ∗). Moreover, w(T ′) = w(E∗

0) + w(E∗
1).174

By combining these inequalities we get175

w(T ) 6 w(T ′) = w(E∗
0) + w(E∗

1) 6 w(T ∗) + w(T ∗) = 2 · w(T ∗).176

177

A minimum spanning tree of G can be computed in O(n2) time using Prim’s MST algorithm.178

The following theorem summarizes our result in this section.179

Theorem 6. There is an O(n2)-time 2-approximation algorithm for computing the minimum180

moving spanning tree of n moving points in the plane.181

4.2 The approximation factor 2 is tight182

In this section, we build a set of moving points showing that the approximation factor of our183

2-approximation algorithm can be arbitrarily close to 2.184

Let ε > 0 be a real number and n be a positive integer. Consider the following point set S185

containing n points. For all 0 ≤ i ≤ k−1
2 and all 0 ≤ j ≤ n

k − 1, there is an immobile point186

pi,j = (i+ iε, j) ∈ S (in Figures 2(a) and 2(b), they correspond to the small solid disks). At time187

t = 0, for all 0 ≤ i ≤ k−3
2 and all 0 ≤ j ≤ n

k −1, there is a point p′i,j = (i+ iε, j) ∈ S (in Figures 2(a)188

and 2(b), they correspond to the small circles). All the points p′i,j move at constant speed from189

(i+ iε, j) at time t = 0 to (i+ 1 + (i+ 1)ε, j) at time t = 1.190

We now describe the moving spanning tree T produced by our 2-approximation algorithm on191

S. For all 0 ≤ i ≤ k−1
2 and all 0 ≤ j ≤ n

k − 2 the distance between pi,j and pi,j+1 is 1 at all time.192

Therefore, in Gmax, the edge {pi,j , pi,j+1} has length 1. For all 0 ≤ i ≤ k−3
2 and all 0 ≤ j ≤ n

k − 2193

the distance between p′i,j and p′i,j+1 is 1 at all time. Therefore, in Gmax, the edge {p′i,j , p′i,j+1} has194

length 1.195

For all 0 ≤ i ≤ k−3
2 and all 0 ≤ j ≤ n

k − 1 the distance between pi,j and pi+1,j is 1 + ε at196

all time. Therefore, in Gmax, the edge {pi,j , pi+1,j} has length 1 + ε. For all 0 ≤ i ≤ k−3
2 and all197

0 ≤ j ≤ n
k −1, since p′i,j is moving, the edge {pi,j , p′i,j} has length 1+ε in Gmax. For all 0 ≤ i ≤ k−3

2198

and all 0 ≤ j ≤ n
k − 1, since p′i,j is moving, the edge {p′i,j , pi+1,j} has length 1 + ε in Gmax. For199

all 0 ≤ i ≤ k−5
2 and all 0 ≤ j ≤ n

k − 1, the distance between p′i,j and p′i+1,j is 1 + ε at all time.200

Therefore, in Gmax, the edge {p′i,j , p′i+1,j} has length 1 + ε.201

All other edges in Gmax have length strictly larger than 1 + ε. Hence, if we run Kruskal’s202

algorithm to compute the MST of Gmax, we first get the equivalent of k+1
2 vertical line segments of203

length n
k − 1 that connect the k+1

2 columns of immobile points. We also get the equivalent of k−1
2204

vertical line segments of length n
k − 1 that connect the k−1

2 columns of moving points. Hence, we205

have a total of k+1
2 + k−1

2 = k vertical line segments of length n
k − 1. Then, Kruskal’s algorithm206

adds the equivalent of k−1
2 horizontal line segments of length 1+ε which connect the k vertical line207

segments. As a result, we have a tree which spans Gmax. Hence, the weight of T is208

k
(n
k
− 1

)
+

k − 1

2
(1 + ε) =

2n− k − 1

2
+

k − 1

2
ε. (3)209
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(a) The set S at time t = 0.

1

1 + ε 1 + ε 1 + ε 1 + ε

1

1

k+1
2 columns

n k
ro
w
s

(b) The set S at time t = 1.

Figure 2: Our 2-approximation algorithm has an approximation factor that is arbitrarily close to
2 on the point set S. The small solid disks are the points pi,j and the small circles are the points
p′i,j .
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We now define another moving spanning tree T ′ of S. Take n
k horizontal line segments of length210

k−1
2 (1 + ε) that connect each row of points. Then, take one vertical line segment of length n

k − 1211

that connects all points within one single column (all points pi,j for a fixed i and all 0 ≤ j ≤ n
k −1).212

We obtain a tree which connects all points of S at all time and whose total length is213

n

k

k − 1

2
(1 + ε) +

n

k
− 1 =

(k + 1)n− 2k

2k
+

(k − 1)n

2k
ε. (4)214

Since the cost of the optimal solution is at most (4), the approximation factor is at least the215

ratio between (3) and (4):216

k(2n− k − 1) + k(k − 1)ε

(k + 1)n− 2k + (k − 1)nε
.217

By taking k =
√
n, we get218

2
√
n+ 1 + ε

(1 + ε)
√
n+ 2

n→∞−→ 2

1 + ε
.219

Therefore, by taking n large enough and ε sufficiently small, we get a point set on which our220

2-approximation algorithm has an approximation ratio that is arbitrarily close to 2.221

4.3 An O(n log n)-time (2 + ε)-approximation algorithm222

Section 4.1 showed that the weight of the minimum spanning tree of the graph G, defined in223

Section 3, gives a 2-approximation to the MMST. Since G has Θ(n2) edges, it takes Θ(n2) time to224

compute its MST. In this section, we prove that a (1+ ε)-approximation to the minimum spanning225

tree of G can be computed in O(n log n) expected time. Thus, if we replace ε by ε/2, we obtain a226

(2 + ε)-approximation to computing the MMST of a set of linearly moving points S.227

For any point p in S, define the point228

P = (p(0), p(1))229

in R4. Doing this for all points in S, we obtain a set S′ of n points in R4. For any two points P230

and Q in S′, define their distance to be231

dist(P,Q) = max(‖p(0)q(0)‖, ‖p(1)q(1)‖).232

Since dist(P,Q) = w(pq), the minimum spanning tree of our graph G has the same weight as the233

minimum spanning tree (under dist) of the point set S′.234

Lemma 8 below states that dist satisfies the properties of a metric. Its proof uses the following235

lemma, which is probably well known.236

Lemma 7. Let V be an arbitrary set and let d1 : V ×V → R and d2 : V ×V → R be two functions,237

such that both (V, d1) and (V, d2) are metric spaces. Define the function d : V × V → R by238

d(a, b) = max(d1(a, b), d2(a, b))239

for all a and b in V . Then (V, d) is a metric space.240
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Proof. It is clear that, for all a and b in V , d(a, a) = 0, d(a, b) > 0 if a 6= b, and d(a, b) = d(b, a). It241

remains to prove that the triangle inequality holds.242

Let a, b, and c be elements of V . Then243

d(a, b) = max(d1(a, b), d2(a, b))244

≤ max(d1(a, c) + d1(c, b), d2(a, c) + d2(c, b)).245

Using the inequality246

max(α+ β, γ + δ) ≤ max(α, γ) + max(β, δ),247

it follows that248

d(a, b) ≤ max(d1(a, c), d2(a, c)) + max(d1(c, b), d2(c, b))249

= d(a, c) + d(c, b).250

251

Lemma 8. The pair (S′,dist) is a metric space.252

Proof. The proof follows from Lemma 7 and the definition of dist.253

The next lemma states that the metric space (S′,dist) has bounded doubling dimension. We254

recall the definition. For any point P in S′ and any real number ρ > 0, the ball with center P and255

radius ρ is the set256

balldist(P, ρ) = {Q ∈ S′ : dist(P,Q) ≤ ρ}.257

Let λ be the smallest integer such that for every real number ρ > 0, every ball of radius ρ can be258

covered by at most λ balls of radius ρ/2. The doubling dimension of (S′,dist) is defined to be log λ.259

Lemma 9. The doubling dimension of the metric space (S′,dist) is O(1).260

Proof. Recall that S′ is a set of points in R4. We denote the Euclidean distance between two points261

P and Q of S′ by ‖PQ‖. The Euclidean ball with center P and radius ρ is denoted by balle(P, ρ).262

Thus,263

balle(P, ρ) = {Q ∈ S′ : |PQ| ≤ ρ}.264

It is easy to verify that265

dist(P,Q) ≤ ‖PQ‖ ≤
√
2 · dist(P,Q). (5)266

Let P be a point in S′, let ρ > 0 be a real number, and let Bdist = balldist(P, ρ). We will prove267

that Bdist can be covered by O(1) balls of radius ρ/2.268

Let Be be the Euclidean ball with center P and radius ρ ·
√
2. It follows from (5) that269

Bdist ⊆ Be.270

It is well known that the doubling dimension of the Euclidean space R4 is bounded by a constant.271

Thus, by applying the definition of doubling dimension twice, we can cover Be by k = O(1)272

Euclidean balls Be
1, . . . , B

e
k balls, each of radius ρ ·

√
2/4 ≤ ρ/2. Let these balls have centers273

C1, . . . , Ck. For each i = 1, . . . , k, define Bdist
i = balldist(Ci, ρ/2). It follows from (5) that274

Be
i ⊆ Bdist

i .275
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Thus,276

Bdist ⊆ Be ⊆
k⋃

i=1

Be
i ⊆

k⋃
i=1

Bdist
i ,277

i.e., we have covered the ball Bdist by k = O(1) balls of radius ρ/2.278

Lemma 10. Let ε > 0 be a constant. In O(n log n) expected time, we can compute a (1 + ε)-279

approximation to the minimum spanning tree of the metric space (S′,dist).280

Proof. As (S′,dist) has a constant doubling dimension (by Lemma 9), a result of Har-Peled and281

Mendel [12] implies that a (1+ε)-spanner of (S′,dist) with O(n) edges can be computed in O(n log n)282

expected time. Their algorithm assumes that any distance in the metric space can be computed in283

O(1) time; this is the case for our distance function dist.284

It is known that a minimum spanning tree of a (1 + ε)-spanner is a (1 + ε)-approximation to285

the minimum spanning tree. (See, e.g., [19, Theorem 1.3.1].)286

Since the spanner has O(n) edges, its minimum spanning tree can be computed in O(n log n)287

time using Prim’s MST algorithm combined with a binary min-heap.288

As a consequence of Lemma 10 and the fact that dist(P,Q) = w(pq), we have the following289

theorem.290

Theorem 11. In O(n log n) expected time, we can compute a (2+ε)-approximation for the minimum291

moving spanning tree of a set of linearly moving points in the plane.292

4.4 NP-hardness of MMST293

Inspired by Arkin et. al. [4], we reduce the Partition problem, which is known to be NP-hard [11],294

to the MMST problem. In one formulation of the Partition problem, we are given n > 0 positive295

integers a0, . . . , an−1 and must decide whether there is a subset S ⊆ {0, . . . , n− 1} such that296

∑
i∈S

ai =
1

2

n−1∑
i=0

ai.297

Construction. We construct an instance of a decision version of the MMST problem defined298

as follows. First we let ` = max{a0, . . . , an−1} and then, for each i ∈ {0, . . . , n − 1}, we put the299

following points into our set P of moving points (Figure 3):300

• Ai, stationary at (i`, 0);301

• Bi, stationary at (i`, `);302

• Ci, moving from (i`, `) to (i`, `+ ai);303

• Di, stationary at (i`, `+ ai); and304

• Ei, moving from (i`, `+ ai) to (i`, `).305
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A0

B0

C0

D0
E0

A1

B1

C1

D1

E1

A2

B2

C2

E2

D2

A3

B3

C3

E3

D3

Figure 3: The positions of the points in P at time t = 1/4 when n = 4 and (a0, a1, a2, a3) =
(1, 2, 4, 3). The velocities of C2, E2, C3 and E3 are depicted.
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C1

D1

E1

B2

C2

D2

E2

B3

C3

D3

E3

Figure 4: The (topological) edges in K0 (dashed) and in K1 \K0 (solid).

We then ask whether there is a moving spanning tree T with306

w(T ) ≤ (2n− 1)`+
3

2

n−1∑
i=0

ai.307

Theorem 12. The decision version of the MMST problem is weakly NP-hard.308

Proof. Let T be a moving spanning tree on vertex set P . Recall that wT (t) denotes the weight309

of T at time t. By Lemma 1, wT is a convex function and the weight of T is indeed w(T ) =310

max
{
wT (0), wT (1)

}
.311

Let K0 be the set of edges AiBi for i ∈ {0, . . . , n − 1} and AiAi+1 for i ∈ {0, . . . , n − 2} and312

let K1 be the set of edges among Bi, Ci, Di and Ei for each i ∈ {0, . . . , n − 1} together with K0313

(Figure 4). We claim that there is a moving spanning tree T ∗ of minimum cost, i.e., an optimal314

solution to the MMST problem, whose edges are all in K1. Assume the contrary for contradiction.315

Let T be an MMST whose intersection with K1 is maximum. By assumption, T has at least an316

edge e 6∈ K1. We now consider the two components obtained from deleting e from T . There must317

be at least one edge e′ ∈ K1 between the two components, since K1 spans P . However, at any point318

in time, every edge in K1 weights at most ` while every edge outside of K1 weights at least `, so if319

we bridge the two components with e′, we will be left with a spanning tree T ′ with w(T ′) ≤ w(T )320

and with a larger intersection with K1, contradicting the definition of T .321

As every edge in K0 is a bridge in the graph (P,K1), the spanning tree T ∗ must contain K0,322

so T ∗ consists of K0 and, for each i ∈ {0, . . . , n − 1}, of a subtree Ti spanning {Bi, Ci, Di, Ei}.323

The weights wTi(0) and wTi(1) must both be a multiple of ai since so are the Euclidean distances324

between the vertices of Ti at these two times. There are two notable ways to build Ti: one is325

Ti = {BiCi, CiDi, DiEi}, which satisfies wTi(0) = ai and wTi(1) = 2ai and is thus called the (1, 2)-326

tree; and the other is Ti = {BiEi, EiDi, DiCi}, which satisfies wTi(0) = 2ai and wTi(1) = ai and is327

thus called the (2, 1)-tree.328

We shall show that the (1, 2)-tree or the (2, 1)-tree have minimum weight among all moving329

spanning trees of {Bi, Ci, Di, Ei}. Indeed, Ti is made of three edges and, since there are no three330

edges with weight zero at time 0, as can be seen in Figure 5, we must have wTi(0) ≥ ai and,331

similarly, wTi(1) ≥ ai. Furthermore, each edge between Bi, Ci, Di and Ei adds up to at least332

ai in terms of their weight at time 0 and at time 1. Therefore, wTi(0) + wTi(1) ≥ 3ai, so either333
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Bi

Ci Ei

Di

0, ai ai, 0

ai, ai

ai, 0 0, ai

ai, ai

Figure 5: Edges between Bi, Ci, Di and Ei labeled with their weights at times 0 and 1.

wTi(0) ≥ 2ai, , or wTi(1) ≥ 2ai. As a result, we may assume, without loss of generality, that Ti is334

either the (1, 2)-tree or the (2, 1)-tree.335

Let now S∗ ⊆ {0, . . . , n− 1} be the set of indices i such that Ti is the corresponding (2, 1)-tree.336

As |K0| = 2n− 1, we have337

wT ∗(0) = (2n− 1)`+
n−1∑
i=0

ai +
∑
i∈S∗

ai,338

while339

wT ∗(1) = (2n− 1)`+

n−1∑
i=0

ai +
∑

i∈{0,...,n−1}\S∗

ai.340

Therefore, the cost of T ∗ is341

(2n− 1)`+

n−1∑
i=0

ai +max

∑
i∈S∗

ai,
∑

i∈{0,...,n−1}\S∗

ai

 .342

Because343 ∑
i∈S∗

ai ≥
1

2

n−1∑
i=0

ai or
∑

i∈{0,...,n−1}\S∗

ai ≥
1

2

n−1∑
i=0

ai,344

then the following holds345

w(T ∗) ≥ (2n− 1)`+
3

2

n−1∑
i=0

ai. (6)346

We claim that (6) holds with equality if and only if our instance of the Partition problem has a347

solution, i.e., there is a set S ⊆ {0, . . . , n−1} such that the sum of ai for i ∈ S is half of a0+· · ·+an−1.348
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Indeed, if the equality holds, we can simply let S = S∗. To show the converse, we build a tree T349

from the solution S of the Partition problem. This tree contains K0, the corresponding (2, 1)-trees350

for i in S and the corresponding (1, 2)-trees for i ∈ {0, . . . , n− 1} \ S, resulting in a weight of351

w(T ) = (2n− 1)`+
3

2

n−1∑
i=0

ai.352

Because T ∗ is an MMST, w(T ∗) ≤ w(T ), so the equality holds.353
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