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Abstract. Let C be any family of pairwise intersecting convex shapes in
a two dimensional Euclidean space. Let τ(C) denote the piercing number
of C, that is, the minimum number of points required such that every
shape in C contains at least one of these points. Define a shape to be
α-fat when the ratio of the radius of the smallest disk that encloses the
shape over the radius of the largest disk that is enclosed in the shape
is at most α. Define α(C) to be the minimum value where each shape
in C is α(C)-fat. We prove that τ(C) ≤ 43.789α(C) = O(α(C)) for
any set C consisting of pairwise intersecting convex α-fat shapes. This
improves the previous best known upper-bound of O(α(C)2). This result
has a number of implications on other results concerning fat shapes, such
as designing data structures with less complexity for 3-D vertical ray
shooting and computing depth orders. Additionally, our results reduce
the time complexity of the query time of these data structures. We also
get better bounds for some restricted families of shapes. We show that
(5
√

2 + 2)α(C) + 25 + 5
√

2 ≤ 9.072α(C) + 32.072 = O(α(C)) piercing
points are sufficient to pierce a set of arbitrarily oriented α-fat rectangles.
We also prove that τ(C) = 2 when C is a set of pairwise intersecting
homothets of regular hexagons. We show that the piercing number of a
set of pairwise intersecting homothets of an arbitrary convex shape is at
most 15. This improves the previous best upper-bound of 16. We also
give an algorithm to calculate the exact location of the piercing points.

1 Introduction

Let H be a set of convex shapes in d−dimensions such that every subset of d+1
shapes in H has a non-empty intersection. In 1923, Helly [11] proved that the
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intersection of all shapes in H is non-empty. This result is known as the Helly’s
theorem. For example, if H is a set of convex shapes in R2 such that every three
of them have a common intersection, then by Helly’s theorem all shapes in H
have a common intersection. In the other words, all shapes in H can be pierced
with one point.

Consider the following fundamental geometric problem: What is the mini-
mum number of points that is sufficient to pierce a given set of pairwise inter-
secting shapes in the plane? In the case of homothetic triangles, three points
are sufficient, as was shown by Chakerian et al. (1967) [5]. In the case of disks,
four points are sufficient. The proof of the existence of four piercing points was
independently shown by Danzer (1956, 1986) [6] and Stacho (1981) [24, 23]. To
pierce a set of n pairwise intersecting line segments, Ω(n) points are sometimes
required. This huge gap between the number of points required, from a constant
to linear, to pierce different sets of pairwise intersecting shapes gives rise to
many interesting problems. Notice that the linear lower-bound to pierce a set of
pairwise intersecting line segments comes from the fact that line segments are
essentially “thin”. How round or fat an object is plays a vital role in the num-
ber of points needed to pierce the set. The main problem that we study in this
paper is the following: How many points are sufficient to pierce a set of pairwise
intersecting shapes in terms of their fatness parameter?

In the literature, the main approach used by researchers to pierce a set C of
pairwise intersecting α-fat shapes is by constructing a grid whose resolution is
quadratic in the fatness parameter [2, 18, 19, 14]. In this article, we are able to
reduce the number of points to linear with respect to the fatness parameter by
placing points near the perimeter of a shape that has a non-empty intersection
with every other shape in the set. In essence, we show that it is possible to pierce
the set by focusing on the perimeter of an object as opposed to filling an area
with points. The details of our approach are given in Section 2.

1.1 Preliminaries

Informally the fatness of a shape is a parameter that tries to capture how close
a shape is to a disk. There are many different definitions and variations of the
fatness of a shape [19, 17, 25, 7, 15, 20, 1]. Most of them share some similarities.
In this paper we use the following measure of fatness. The fatness of a shape c
is the ratio of the radius of the smallest disk that encloses c over the radius of
the largest disk that is enclosed in c. This measure of fatness will be denoted by
α. We say that a shape c is α-fat if its fatness is at most α. A set C of shapes
is referred to as α(C)-fat if α(C) is the smallest value such that ∀ci ∈ C, the
fatness of ci is lesser than or equal to α(C). We note that a set of disks is 1-fat,
since a disk is perfectly fat according to our fatness definition.

The piercing number of a family of sets F is the smallest integer k for which
it is possible to partition F into subfamilies F1, . . . ,Fk such that the sets in each
Fi have a non-empty intersection for every i such that 1 ≤ i ≤ k [8]. We say
that a set of points P pierces a set of shapes C if every shape in C contains at
least one point of P .
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A shape B is a homothet of a shape A if B can be obtained by scaling
and translating the shape A. Two geometric figures are homothetic if one is a
homothet of the other. If every pair of shapes in a set C is homothetic we call
the set C homothets. In this paper we only consider positive homotheties. A set
of shapes C is unit if all the shapes in C have the same area.

1.2 Our Contributions

In this paper we prove the following results in 2-dimensions:

– Any set C of pairwise intersecting arbitrary convex shapes with fatness α(C)
can be pierced with less than or equal to 43.789α(C) ∈ O(α(C)) points.

– Any set C of pairwise intersecting rectangles of arbitrary orientation with
fatness α(C), can be pierced by (5

√
2+2)α(C)+25+5

√
2 ∈ O(α(C)) points.

– Any set of pairwise intersecting convex homothets can be pierced by 15
points.

– A set of pairwise intersecting homothets of regular hexagons can be pierced
by 2 points.

Known results for piercing sets of pairwise intersecting convex sets.
Family of convex shapes Known results Our results
Homothetic Triangles 3 Points [5]
Homothetic Rectangles 1 Point [folklore]
Homothetic regular Hexagons Not known 2 Points, Theorem 4
Disks 4 Points [21, 6, 23, 24]
Centrally symmetric 7 Points[9]
Unit Shapes 3 Points [12]
Convex Homothets 16 [16] 15 Points, Theorem 3
α-fat Rectangles O(α2) [19, 2, 14, 18] ≤ 9.072α + 32.072,

Theorem 2
α-fat Convex shapes O(α2) [19, 2, 14, 18] ≤ 43.789α, Theorem 1

1.3 Previous Results

Overmars et al. (1994) [19] proved that for a set of disjoint convex α-fat objects
and a restricted range query (with diameter h× p where h is a constant and p is
the radius of the minimal enclosing hyper-sphere among the objects in the set)
in d-dimensions, O((αddh)d) points are enough to pierce all the shapes. They use
a grid of points inside and around the range query to pierce such a set. Agarwal
et al. (1995) [2], Katz (1996) [14] and Nielsen (2000) [18] among other results
proved that O(α2) points can pierce a set of pairwise intersecting α-fat shapes
in 2-dimension. The definitions of fatness that they use are similar. The unifying
theme among these proofs is to cover the area around and inside the smallest
shape with a grid of Θ(α2) piercing points. To find the piercing points Nielsen
(2000) [18] uses Fredman’s sampling technique [14]. Agarwal et al. (1995) [2],
Katz (1996) [14] use a similar gridding technique.
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Let F be a family of pairwise intersecting and centrally symmetric convex
homothets. Grünbaum (1959) [9] showed that τ(F )4 ≤ 7. He transforms all
the shapes from Euclidean space into Minkowski space. The reason behind this
transformation is that any centrally symmetric shape in Euclidean space can be
treated as a disk in Minkowski space. This transformation maintains the pairwise
intersecting property of the set. The fact that 4 points pierces a set of pairwise
intersecting disks applies [21, 6, 23, 24]. Grünbaum (1959) [9] also showed that
τ(F ) = 3 when F is a family of pairwise intersecting and centrally symmetric
convex unit-shapes. He conjectured that τ(F ) = 3 for any family of pairwise
intersecting convex unit-shapes. This conjecture was proved by Karasev (2000)
[12]. Karasev (2001) [13] subsequently showed an upper-bound of d + 1 on the
number of points sufficient to pierce a family of d-wise intersecting homothets of a
simplex in Rd. He also gave an upper-bound for a family F of d-wise intersecting
spheres which is the following: τ(F ) ≤ 3(d+ 1) when d ≥ 5 and τ(F ) ≤ 4(d+ 1)
when d ≤ 4.

In case of pairwise intersecting disks, Danzer (1956, 1986) [6] and Stacho
(1981) [24, 23] were the first to give a proof of the existence of 4 piercing points.
However, both of their proofs are essentially non-constructive. Har-Peled et al.
[10] were the first to present a deterministic and constructive algorithm. They
find 5 piercing points, in O(n) expected time, that pierces a set of n pairwise
intersecting disks. Biniaz, Bose and Wang [3] gave a linear algorithm that finds 5
piercing points given a set of pairwise intersecting disks that does not use an LP-
type framework unlike Har-Peled’s algorithm. Carmi, Katz and Morin [21] gave
a linear time algorithm to compute 4 piercing points which also uses LP-type
machinery.

2 General Convex Shapes

2.1 Piercing a Set of fat Shapes

In this section we prove the following theorem which is our main result.

Theorem 1. Any set C of pairwise intersecting arbitrary convex shapes on a
plane with fatness α(C) can be pierced with (12 + 6

√
2 + 2

15
4

√
3)α(C) + 4 ≤

43.789α(C) ∈ O(α(C)) points.

Proof (Proof of Theorem 1).
Let S = {S0, S1, . . . , Sn−1} be a set of pairwise intersecting convex shapes

with fatness at most α. For all i, let αi be the fatness of Si. Let o be the smallest
disk that has a non empty intersection with every shape in the set S. Let δ be
the radius of o. Define sq1 to be an axis-parallel square that is concentric with o.
Let the side length of sq1 be 2cδ for a constant c. And let sq2 be an axis-parallel
square concentric with o with side length 2c1δ for a constant c1 (c1 > c). We
specify the exact values of c and c1 at the end of the proof.

4 Let τ(C) denote the piercing number of C, that is, the minimum number of points
required such that every shape in C contains at least one of these points.
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If all the shapes in S have a common intersection we can pierce the whole set
with one point and as a result o will have radius zero. Otherwise, o is tangent
to at least three shapes, say S1, S2, S3. Let L1, L2, L3 be the three tangent
lines to o where S1, S2, S3 intersect o. Notice that no two tangent line can
be parallel, otherwise, either the intersection of every shape in S is non-empty
or it contradicts the fact that two corresponding shapes intersect. Moreover,
L1, L2, L3 form a triangle, otherwise it contradicts with the minimality of o (See
Figure 2).

a′ a

b
b′

p∗
δ

√
2cδ

cδ

cδ − δ

Fig. 1. outer case

δ
c · δ

c1 · δ
o

sq1
sq2

L1

L2

L3

Fig. 2. Initial setup and information
required for the proof

We partition the set S into two groups, Sgp1 and Sgp2. A shape Si ∈ S will
be in Sgp1 if the center of the largest enclosed disk in Si or at least one of the
largest enclosed disks in Si (in case Si has multiple largest enclosed disks) is
located completely outside of sq1. Otherwise, Si will be in Sgp2.

Piercing Sgp1: By the definition of o, every shape in Sgp1 intersects o. Every
shape Si in Sgp1 is convex, intersects o and has at least one of the largest disk(s)
enclosed in Si centered outside of sq1. These three facts plus the fact that sq1
encloses o implies that Si intersects a continuous portion of the boundary of sq1.
We now show how to place a set of points on the boundary of sq1 to pierce all
the shapes in Sgp1. Let Si be an arbitrary shape in Sgp1. Let p∗ be an arbitrary
point in the intersection of Si and the boundary of o. Let o′ be the largest disk
enclosed in Si and centered outside of sq1(in the case of multiple disks satisfying
these conditions, pick an arbitrary one). Without loss of generality, assume that
Si intersects the right vertical side of sq1. Let ab be the diameter of o′ parallel to
the y-axis. Since Si is convex, there exists a triangle p∗ab that is contained in Si.
Let the boundary of the triangle p∗ab cross the boundary of sq1 at points a′ and
b′. Now the minimum possible length of the segment a′b′ gives us the required
resolution of points to put on the boundary of sq1 to pierce Sgp1. Recall that αi
is the fatness of Si. The smallest disk that encloses Si has a radius greater than

or equal to |p
∗b|
2 since the segment p∗b is in Si and any disk with diameter less
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than |p∗b| cannot have a segment of length |p∗b| in it. Thus, αi ≥
|p∗b|

2
|ab|
2

= |p∗b|
|ab| .

Moreover, since the two triangles p∗ab and p∗a′b′ are similar we get following

equation: |a
′b′|
|p∗b′| = |ab|

|p∗b| =⇒ |a′b′| = |ab|·|p∗b′|
|p∗b| =⇒ |a′b′| ≥ |p

∗b′|
αi

. Furthermore,

note that (c − 1)δ ≤ |p∗b′| ≤ 2
√

2cδ and α(S) ≥ αi. Therefore, |a′b′| is at least
(c−1)δ
α(S) .

Exceptional Case: The only exceptional case in this scenario is when a′ is not
located on the same side of sq1 as b′. Considering the fact that the disk o′ is
centered outside of sq1, the convexity of Si implies that Si contains a corner of
sq1. To pierce such shapes we put points on the 4 corners of sq1.

The perimeter of sq1 is 8cδ, therefore the number of points placed on the
perimeter of sq1 to pierce all the shapes in Sgp1 is 4 + 8cδ

(c−1)δ
α(S)

= 4 + 8c
c−1α(S)

Piercing Sgp2: Let Si be an arbitrary shape in Sgp2. Let L
′

i be a line through
the center of circle o and parallel to Li for i ∈ {1, 2, 3}. We call a point p proper
with respect to Li, i ∈ [1, 3] if it is located inside sq2, and p is located on the
same side of Li and L

′

i but p is closer to L
′

i.

Lemma 1. Any point inside sq2 is proper with respect to some Li, i ∈ [1, 3].

Proof. Let Hi, i ∈ [1, 3] be the halfspace that is tangent to L
′

i and does not
contain Li. Since H1, H2, H3 intersect at a point and the union of the angle
that they cover is 2π (otherwise it contradicts with the fact L1, L2, L3 form a
triangle). Using the result of Bose et al. [4] we have that the ∪Hi, for i ∈ [1, 3]
covers the entire plane. Thus, they cover any point in sq1 as well. ut

Without loss of generality, assume that the center of at least one of the largest
disks enclosed in Si is a proper point with respect to L1. Such a disk exists, since,
at least one of the largest disks enclosed in Si is centered in sq1.

We analyze two cases, namely when Si∩L1∩sq2 6= ∅ and when Si∩L1∩sq2 = ∅

Case 1. Si has an intersection with L1 inside sq2.
Let p∗ be an arbitrary point in the intersection of L1 and Si interior to
sq2. Let o′ be a largest disk enclosed in Si centered inside sq1. Let ab be the
diameter of o′ parallel to L1. Since the center of o′ is proper point with respect
to L1, the triangle p∗ab intersects L

′

1 at two points a′ and b′. Recall that αi is
the fatness of Si, the smallest disk that encloses Si has a radius greater than

or equal to |p
∗b|
2 , since the segment p∗b is in Si and any disk with diameter

less than |p∗b| cannot have a chord of length |p∗b|. Thus, αi ≥
|p∗b|

2
|ab|
2

= |p∗b|
|ab| .

Moreover, since the triangles p∗ab and p∗a′b′ are similar we get the following

equation: |a
′b′|
|p∗b′| = |ab|

|p∗b| =⇒ |a′b′| = |ab|.|p∗b′|
|p∗b| =⇒ |a′b′| ≥ |p∗b′|

αi
. By

definition and the relation between L1 and L
′

1, δ ≤ |p∗b′| ≤ 2
√

2cδ and
α(S) ≥ αi. Therefore, |a′b′| ≥ δ

α(S) .

The length of L
′

1∩sq2 is at most 2
√

2c1δ, which is the diameter of sq2. Hence,
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we place 2
√
2c1δ
δ

α(S)

= 2
√

2c1α(S) points on L
′

1. So, in total 6
√

2c1α(S) points

on L
′

1, L
′

2, L
′

3 are sufficient to pierce shapes in this case.
Case 2. Si only intersects L1 outside of sq2.

As a result Si intersects with the boundary of sq2. Let p∗ be a point in the
intersection of Si and the boundary of sq2. Without loss of generality, assume
that p∗ is located on the right side of sq2. Let o′ be a largest disk enclosed
in Si centered inside sq1. Let ab be the diameter of o′ parallel to the y-axis.
Recall that αi is the fatness of Si. The smallest disk that encloses Si has a
radius greater than or equal to |p

∗b|
2 . By an identical argument as in Case 1,

we have |a′b′| = |ab|.|p∗b′|
|p∗b| =⇒ |a′b′| ≥ |p∗b′|

αi
. By definition of sq1, sq2 and

P ∗a′b′; (c1− c)δ ≤ |p∗b′| ≤ 2
√

2c1δ and α(S) ≥ αi. Therefore, the minimum

length of |a′b′| is (c1−c)δ
α(S) . The perimeter of sq1 is 8cδ, therefore the number

of points required to put on the perimeter of sq1 is 8cδ
(c1−c)δ
α(S)

= 8c
c1−cα(S).

L1

L2

L3

L
′
1

p∗

a b

a′ b
′

o′

Fig. 3. A convex shape with the largest en-
closed disk centered in sq1 and intersecting
L1 inside sq2

L1

L2

L3

p∗

a

b

a′

b′

o′

Fig. 4. A convex shape with the largest
enclosed disk centered in sq1 and inter-
secting L1 only outside of sq2

Let m = max( c
c1−c ,

c
c−1 ). The number of points sufficient to pierce the set S

using the placements described above is 4 + (8m + 6
√

2c1)α(S). The minimum
value is roughly 43.789 when we set c = 1.6866 and c1 = 2.3732. ut

2.2 Implications

Our result has a number of implications on other research problems concerning
sets of fat objects, such as computing depth orders, 3-D vertical ray shooting,
2-D point enclosure, range searching, and arc shooting for convex fat objects.
The following are some Corollaries where the asymptotic complexity is improved
from O(α2) to O(α) using our results:
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1. Piercing a set of pairwise intersecting c-oriented convex polygons [18]

Corollary 1. The piercing number τ(β) when β is a set of pairwise inter-
secting c-oriented α-fat polygons is O(α).

2. Computing depth order for fat objects [2]

Corollary 2. The time complexity of 2-dimensional linear-extension prob-

lem is of O(αnλ
1/2
s (n) log4 n).

3. 3-D vertical ray shooting and 2-D point enclosure, range searching,
and arc shooting amidst convex fat objects [14]

Corollary 3. For a given query point p, the object of C lying immediately
below p (if such an object exists) can be found in O(α log4 n) time.

Corollary 4. For a given query point p, the k objects of C containing p
can be reported in O(α log3 n+ k log2 n) time.

2.3 Piercing Fat Rectangles

In this section we demonstrate how to pierce a set C of pairwise intersecting
rectangles of arbitrary orientation with fatness α(C). This theorem is a general-
ization of pairwise intersecting line segments in terms of fatness.

Theorem 2. Any set C of pairwise intersecting rectangles of arbitrary ori-
entation of fatness α(C) can be pierced with (5

√
2 + 2)α(C) + 25 + 5

√
2 ≤

9.072α(C) + 32.072 = O(α(C)) points.

Lemma 2. The maximum area of a square that does not have any lattice point
in it is less than 2. A lattice point is a point with integer coordinates.

Proof (Proof of Theorem 2). Let R = {r0, r1, ..., rn−1} be a set of pairwise in-
tersecting rectangles. Denote a rectangle r of width w and height h as (w, h).
We assume that the longer side of an arbitrary oriented rectangle is the height
of the rectangle (h ≥ w). Without loss of generality, Let r1 = (w1, h1) be the
rectangle with the minimum width among all rectangles in the set R. Without
loss of generality, assume that r1 is axis parallel.

Structure of the grid points: Let ri = (wi, hi) be an arbitrary rectangle in R, let
p∗ be one of the intersection points of the boundary of r1 with ri. By definition
of r1 we have the following two inequalities: wi ≥ w1 and hi ≥ w1. For every
ri ∈ R there exists a square si located inside ri of side length w1 such that, si
contains the point p∗. Suppose that such a square does not exist. It implies that
any square of side length w1 that contains p∗ intersects with the boundary of ri.
Thus, either wi < w1 or hi < w1, both of which contradicts with the minimality
of w1.

Let G be a grid of points whose resolution is 1. Let G′ be a grid of points
whose resolution is w1√

2
. By Lemma 2 we see that any square of side length at

least w1 must contain at least one point of G′ (To see the argument simply scale
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down the squares and G′ by factor of w1√
2
). By definition, every si intersects r1,

and, the distance from any point in any si, i ∈ [0, n − 1] to the boundary of
r1 is at most

√
2w1(in the worst case the point can be on the opposite side of

the diameter of a square). Therefore, we cover an axis-parallel rectangle centered
with r1, whose distance to r1 is at most

√
2w1, with a grid of points. See Figure 5

for illustration. That rectangle has width w1 + 2
√

2w1 and height h1 + 2
√

2w1.

Therefore, The number of the grid points (w1+2
√
2w1

w1√
2

+ 1) × (h1+2
√
2w1

w1√
2

+ 1) =

(
√

2 + 5) × (
√

2 h1

w1
+ 5) ≤ (5

√
2 + 2)α(C) + 25 + 5

√
2. Therefore, the sufficient

number of points on the grid to pierce the set C is (5
√

2 + 2)α(C) + 25 + 5
√

2
that is less than or equal to 9.072α(C) + 32.072 ut

rir1
p∗ w1

Fig. 5. How an arbitrary rectangle in R gets pierced by a point on the grid.

3 Refined Results for Specific Shapes

In this section we study the number of points sufficient to pierce more specific
sets of shapes. First we study sets of pairwise intersecting homothets and design
an algorithm that computes the exact location of the points that pierce the set.
Next, we show that 2 points are sometimes necessary and always sufficient to
pierce a set of pairwise intersecting homothets of a regular hexagon.

3.1 Homothets of a convex shape

In this subsection, we show how one can pierce any set of pairwise intersecting
homothetic shapes with a constant number of points. More precisely, we give an
upper-bound of 15 piercing points. Kim et al. [16] proved that 16 points are suffi-
cient to pierce any set of pairwise intersecting homothetic convex shapes. Kim’s
proof [16][Lemmas 4,13] requires the existence of two homothetic parallelotopes
pA and PA such that pA ⊆ A ⊆ PA where A is a convex shape. In this paper,
our parallelotopes of choice are the pair of rectangles provided by Schwarzkopf
et al.’s [22] Algorithm. This pair of rectangles satisfies the required conditions
for Kim’s [16] proof. Let S be a set of pairwise intersecting homothetic shapes.
We prove that 15 points are enough by eliminating one of the 16 points. Finally,
given a set S of n k-gons, we give an algorithm of complexity O(n + log2 k) to
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find the exact location of 16 piercing points and O(n log k + log2 k) to find 15
piercing points.

Let S = {S0, S1, . . . , Sn−1} be a set of pairwise intersecting homothetic con-
vex shapes in the plane. We transform every shape Si ∈ S into a pair of ho-
mothetic orthogonal rectangles (ri, Ri), with each pair satisfying the following
three conditions: First, ri is enclosed in Si, and, Ri encloses Si. Second, the side
length of ri is at least half of the side length of Ri. Third, the vertices of ri are
located on the boundary of Si.

For a shape Si, define Ci to be a cross-shaped polygon with edges parallel
to the edges of ri, with ri ⊆ Si ⊆ Ci ⊆ Ri. Let Vi be the vertices of Ci which
include the vertices of ri.

ri

Ri
Si

Ciri
Si

Fig. 6. ri and Ci are enclosed in Si and Ri

The existence of such a pair of enclosed and enclosing rectangles for any
convex shape was shown by Schwarzkopf et al. [22]. They designed an algorithm
to compute such a pair for a convex polygon in time O(log2 k) when the k vertices
of the polygon are given in an array and sorted in a lexicographic order.

Let S∗ be the smallest shape homothetic to the shapes in S that intersects
every shape in S. Assume that ∩n−1i=0 Si = ∅. Minimality of S∗ implies that there
exist at least 3 shapes in S, say S1, S2, S3, that are tangent to S∗ at points
x1, x2, x3. Let L1, L2, L3 be the tangent lines to S∗ at x1, x2, x3. These three
lines form a triangle. For simplicity we assume that S∗ is an element of S.

Theorem 3. Any set of pairwise intersecting convex homothets can be pierced
by 15 points.

Before proving this theorem, we prove a few helper lemmas. According to
Kim et al. [16] the 16 piercing points form a grid (see Figure 7). We label the
points from 1 to 16 starting at the top left point. We show that a corner point can
be removed from this set of piercing points. Let (r∗, R∗) be the corresponding
rectangles to S∗. According to Kim et al. [16] points {6, 7, 10, 11} are vertices of
r∗.

Every shape in S contains at least one of these 16 piercing points. If there is no
shape in the set S that contains only one corner piercing point (points 1, 4, 13, 16)
we can simply remove one of the corner points and reduce the piercing number
to 15. Otherwise, without loss of generality, let S4(resp. S5, S6, S7) ∈ S be a
shape that only contains the point 13 (resp. 1, 4, 16).

Let Hk,+
i,j (resp. Hk,−

i,j ) be a halfspace defined by the line that goes through
the piercing points i, j and, contains the piercing point k (resp. does not contain
the point k).
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16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Region3
1

Region1
1

Region2
1

Region2
1

H4,+
3,8

H13,+
9,14

13 14

p′

p

Fig. 7. Dividing the space into different regions and the area that the intersection of
S4 and S6 cannot be.

Let Region1 (resp. Region2, Region3, Region4) be the area defined as H4,+
5,7 ∪

H4,+
7,15 (resp. H4,+

7,15∪H
13,+
10,12, H13,+

2,10 ∪H
13,+
10,12, H4,+

5,7 ∪H
13,+
2,10 ). Let Region11 be H4,−

1,5 ∩
H13,−

1,2 . Let Region21 be H4,−
15,16∩H

13,−
12,16. Let Region31 be Region1∩(H4,+

1,5 ∩H
4,+
15,16)

and Region32 be Region2 ∩ (H13,+
1,2 ∩H13,+

12,16).

Lemma 3. S4 ∩ S6 6⊆ Region11 ∪Region21.

Proof. Let p ∈ S4 ∩ S6. Suppose, for the sake of a contradiction, p ∈ Region21.
Let p′ ∈ S4 ∩ S∗ and let p′′ ∈ S6 ∩ S∗.

– Suppose that p is not located in Region21 ∩H
4,+
3,8 .

In this case the triangle formed by 4, p′′ and p will contain point 8, which is
a contradiction to the definition of S6.

– Suppose that p is not located in Region21 ∩H
13,+
9,14 .

Similarly, in this case the triangle formed by 13, p′ and p will contain point
14, which is a contradiction to the definition of S4.

Since H4,+
3,8 and H13,+

9,14 have an empty intersection, it implies that the point p

cannot be in Region21. The same argument holds for Region11. Thus, S4 and S6

cannot intersect in Region11 either.
ut

Lemma 4. S4 ∩Region31 = ∅.

Proof. Let p be a point on the boundary of Region31 ∩ S4. Let S
′

4 be a shape
homothetic to S4 with the following conditions:

1. S
′

4 has the same size as S∗.
2. S

′

4 has p on its boundary.
3. S

′

4 is contained in S4.
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Let C
′

4 be the cross shaped polygon corresponding to S
′

4. Let (r
′

4, R
′

4) be the
pair of enclosed and enclosing rectangle corresponding to S

′

4. Let v be the top
right vertex of r

′

4. By the definition of S
′

4, v cannot be inside of the rectangle
defined by piercing points 9, 10, 13, 14. Otherwise, it contradicts C

′

4 having an
intersection with the boundary of Region31.

– If v is below point 13 then the triangle defined by point 13, p and v contains
the piercing point 14.

– If v is to the left of point 13 then the triangle defined by point 13, p and v
contains the piercing point 9.

– If v is to the right and above the piercing point 13, then since the resolution
of the piercing points and resolution of the vertices that define r

′

4 (size of
r
′

4) are equal it implies that r
′

4 as well as S4 contains another piercing point
beside point 13.

Region3
1

p

v

pv

13
C

′

4

14 14

Region3
1

Fig. 8. S4 does not have an intersection with Region3
1

ut

A similar argument holds for S6 ∩ Region32. Lemmas 3 and 4 imply that
S4 ∩ S6 is located in the rectangle formed by piercing points 6, 7, 10, 11.

Lemma 5. S4 ∩Region1 has an empty intersection.

Proof. Let p be a point from the intersection of the boundary of Region1 and
S4. Notice that Region1 = Region31∪ (H4,+

11,15∩H
4,−
15,16)∪ (H4,−

1,5 ∩H
4,+
5,6 ). Suppose

that S4 intersects Region1. We analyze the following three cases:

1. p ∈ Region31: According to Lemma 3, p cannot be in Region31
2. p ∈ H4,+

11,15 ∩ H
4,−
15,16: Let p′ be a point from the intersection of S4 and S6.

S4 ∩S6 is located in the rectangle formed by vertices 6, 7, 10, 11. This means
that p′ is to the right of point 14. And it implies that the triangle formed by
points 13, p and p′ contains point 14 which is a contradiction to the definition
of S4.
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3. p ∈ H4,−
1,5 ∩H

4,+
5,6 : Let p′ be a point from the intersection of S4 and S6. S4∩S6

is located in the rectangle formed by vertices 6, 7, 10, 11. This means that p′

is above point 9. And it implies that the triangle formed by points 13, p and
p′ contains point 9 which is a contradiction to the definition of S4.

Thus, S4 has an empty intersection with Region1. ut

For a region Reg, let Reg be the complement of the region Reg. More pre-
cisely, Reg = {x|x /∈ Reg,∀x ∈ R2}.

Notice that S1, S2, S3 are tangent to S∗. Also, S4 intersects with S1, S2, S3

and S∗. These two facts imply that S4 intersects with L1, L2 and L3. Moreover,
Lemma 5 implies that the intersection of S4 with each L1, L2, L3 should be
located in Region1. By symmetry S5 (resp. S6, S7) intersects with L1, L2, L3.
This intersection is located in Region2 (resp. Region3, Region4).

Lemma 6. Each Regioni, i ∈ [1, 4] has a non-empty intersection with at least
one of L1, L2, L3.

Proof. Notice that the bottom-left vertex of r∗ is in Region1 and the triangle
defined by the intersection of L1, L2, L3 encloses r∗. Suppose that Region1 has
empty intersection with all L1, L2, L3. This implies that the triangle defined
by the intersection of L1, L2, L3 does not enclose r∗, which is a contradiction.
Similarly this argument can be applied for Region2, Region3 and Region4. ut

Lemma 7. At least two of the regions in {Regioni, i ∈ [1, 4]} do not have an
intersection with all three of L1, L2, L3.

Proof. Observe that each Li, i ∈ [1, 3] can intersect with at most three regions
of {Regioni|i ∈ [1, 4]}. Thus, we have at most 9 pairs of (Li, Regionj) when Li
intersects with Regionj for i ∈ [1, 3], j ∈ [1, 4]. According to Lemma 6 and the
Pigeonhole theorem at least two of the regions in {Regioni|i ∈ [1, 4]} do not
intersect with all three of L1, L2, L3. ut

Proof (Proof of Theorem 3). Lemma 7 implies that the regions corresponding
to at least two of the shapes S4, S5, S6, S7 do not intersect with all three of
L1, L2, L3. This contradicts the fact that the shapes in the set S are pairwise
intersecting. Thus, at least one piercing point can be removed from our piercing
point set. ut

Algorithm to find the exact location of the piercing points: First, we find the
smallest shape, S1, of the set in O(n). Next we apply the Schwarzkopf et al.’s [22]
algorithm on S1 to compute the vertices of r1 = (w1, h1) in O(log2 k) time. This
allows us to compute the 16 points outlined in Kim’s [16] proof in a constant
time. Thus the time complexity of finding 16 piercing points is O(n + log2 k).
Next, we can determine in O(n log k) time which of the 4 corner points can be
removed. Thus, we can find 15 piercing points in O(n log k + log2 k) time.



14 S. Bazargani et al.

3.2 Hexagons

In this subsection we determine the piercing number of a set of pairwise inter-
secting homothets of a regular hexagon. We show that two points are always
sufficient and sometimes necessary to pierce such a set. For a hexagon s with
an edge parallel to the x-axis, we refer to its edges by Bottom, BottomRight,
TopRight, Top, TopLeft, BottomLeft edges. We denote the Bottom edge of s by
sB . Respectively we refer to BottomRight, TopRight, Top, TopLeft, BottomLeft
edges of s by sBR, sTR, sT , sTL, sBL.

Theorem 4. Any set of pairwise intersecting homothets of a regular hexagon
can be pierced by two points.

Proof (Proof of Theorem 4). Let C = {C0, C1, . . . Cn−1} be a set of pairwise
intersecting homothets of a regular hexagon. Without loss of generality, assume
that the bottom edge of every hexagon in C is parallel with the x-axis. Let
TL = {CTLi |∀Ci ∈ C}, and TR = {CTRi |∀Ci ∈ C}, and BE = {CBi |∀Ci ∈ C}.
Each element of these sets is a line segment. Segments of each set are associated
with the same side of hexagons in C. ∀CTLi ∈ TL let TL+

i be the halfspace
defined by CTLi that does not contain the corresponding hexagon to CTLi . Let
TL+ = {TL+

0 , TL
+
1 . . . , TL

+
n−1}. ∀CTRi ∈ TR let TR+

i be the halfspace defined
by CTRi that does not contain the corresponding hexagon to CTRi . Let TR+ =
{TR+

0 , TR
+
1 . . . , TR

+
n−1}. Let tl∗ be the halfspace in TL+ that contains all other

halfspaces in TL+. Such a halfspace exists since all of the halfspaces in TL+ are
parallel. Let tr∗ be the halfspace in TR+ that contains all other halfspaces in
TR+. Such a halfspace exists since all of the halfspaces in TR+ are parallel.

Let tl be the corresponding segment in TL to tl∗. Let tr be the corresponding
segment in TR to tr∗. Let be be the top most segment in BE.

Define L1 the line that is parallel to and goes through tl. Similarly, define
R1 to be the line that is parallel to and goes through tr, and B1 to be the line
that is parallel to and goes through be.

Assume that L1, R1, B1 do not intersect at a point p. Otherwise, the two
piercing points will be on top of each other at p, thus, p pierces the whole set.
Observe that, the intersection points of L1, R1, B1 form a equilateral triangle
Th = ABD. Let point B be the intersection point of lines L1 and R1. Let point
D be the intersection point of lines L1 and B1 and let point A be the intersection
point of lines B1 and R1. This triangle can have one of the two following possible
shapes.

Case 1. In the first case, the point B is located above the segment AD. There-
fore, the left top side of any hexagon in C is to the left of L1. Similarly, the
right top side of any hexagon in C is to the right of R1 and any bottom side
of any hexagon in the set is below B1.

Case 2. In the second case, the point B is located below the segment AD.
Therefore, the bottom right side of any hexagon in C is to the right of L1

since, each pair of hexagons have to intersect. The top side of any hexagon
in C is above B1 and, the bottom left side of any hexagon is to the left of
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R1, otherwise it contradicts the fact that each pair of hexagons intersects.
Observe that this case is symmetric to the first case. Therefore, giving the
proof for the first case is sufficient.

Proof for the case 1: Let ML, MR and MB be the mid points corresponding to
sides AB,BD and AD of the triangle Th = ABD. We prove that every hexagon
in C contains either MB or B.

Take an arbitrary hexagon s from C. If s contains MB then we are done.
Suppose that s does not contain the point MB . The point MB can be either to
the right of sBR or to the left of sBL and both cases are symmetric. Without loss
of generality, assume that the point MB is to right of the sBR. By the definition
of R1 the top right edge of any hexagon in C is to the right of R1. Similarly, the
bottom edge of any hexagon in C is to the bottom of B1. This implies that the
right bottom side of s should cross the lines B1 and R1. Let i1 be the intersection
point of sBR and B1, and i2 be the intersection point of sBR and R1.

The point i1 is to the left of MB and i2 is to the left of MR. Observe that
the triangle i1i2D is similar to MBMRD and |Di2| > |DMB |. Therefore, the
segment i1i2 is greater than MRMB . Moreover, the side length of s is greater
than or equal to the length of the segment i1i2, and it is greater than MBMR

(|sB | = |sBR| ≥ |i1i2| > |MRMB | = |MRB| = |MBA|). Considering the facts
that the side length of s is greater than |MRMB |, and sTR is parallel to R1 and
to the right of R1. Thus, by convexity of s, sTR crosses L1, and similarly sB

crosses L1. Thus s contains the segment AB and in particular the point B.
ut

4 Conclusion

In this paper we showed that pairwise intersecting convex shapes of fatness α
with arbitrary orientation can be pierced by a linear number of points with
respect to the fatness parameter of the shapes in the set. The main idea to
achieve our results is to avoid covering an area with a grid of high resolution but
rather focusing on the perimeter of a specific shape. By using this idea we reduce
the number of points sufficient to pierce any pairwise intersecting convex α-fat
shapes from O(α2) to O(α). Our theorem is an improvement over Fredman’s
sampling algorithm to find piercing points.

Moreover, for a set of pairwise intersecting homothets we showed that the
piercing number is at most 15 points. The piercing number of a set of pairwise
intersecting set of homothets of regular hexagons is 2 which is tight. We leave
as an open problem to improve our upper bounds.
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11. Ed. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahres-
bericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.

12. R. N. Karasev. Transversals for families of translates of a two-dimensional convex
compact set. Discrete & Computational Geometry, 24(2):345–354, 2000.

13. R. N. Karasev. Piercing families of convex sets with the d-intersection property in
Rd. Discrete Comput. Geom., 39(4):766–777, June 2008.

14. Matthew J. Katz. 3-d vertical ray shooting and 2-d point enclosure, range
searching, and arc shooting amidst convex fat objects. Computational Geometry,
8(6):299–316, 1997.

15. Matthew J. Katz, Mark H. Overmars, and Micha Sharir. Efficient hidden surface
removal for objects with small union size. Computational Geometry, 2(4):223–234,
1992.

16. Seog-Jin Kim, Kittikorn Nakprasit, Michael J. Pelsmajer, and Jozef Skokan.
Transversal numbers of translates of a convex body. Discrete Math.,
306(18):2166–2173, sep 2006.
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