Piercing Pairwise Intersecting Convex Shapes in the Plane ${ }^{\star}$

Saman Bazargani ${ }^{1}$, Ahmad Biniaz ${ }^{2}$, and Prosenjit Bose ${ }^{3}$
${ }^{1}$ Department of Computer Science and Electrical Engineering, University of Ottawa, Canada
https://cglab.ca/~saman/
sbaza033@uottawa.ca
${ }^{2}$ School of Computer Science, University of Windsor, Canada
https://cglab.ca/~biniaz/
abiniaz@uwindsor.ca
${ }^{3}$ School of Computer Science, Carleton University, Canada
https://cglab.ca/~jit/
jit@scs.carleton.ca

Abstract

Let C be any family of pairwise intersecting convex shapes in a two dimensional Euclidean space. Let $\tau(C)$ denote the piercing number of C, that is, the minimum number of points required such that every shape in C contains at least one of these points. Define a shape to be α-fat when the ratio of the radius of the smallest disk that encloses the shape over the radius of the largest disk that is enclosed in the shape is at most α. Define $\alpha(C)$ to be the minimum value where each shape in C is $\alpha(C)$-fat. We prove that $\tau(C) \leq 43.789 \alpha(C)=O(\alpha(C))$ for any set C consisting of pairwise intersecting convex α-fat shapes. This improves the previous best known upper-bound of $O\left(\alpha(C)^{2}\right)$. This result has a number of implications on other results concerning fat shapes, such as designing data structures with less complexity for 3-D vertical ray shooting and computing depth orders. Additionally, our results reduce the time complexity of the query time of these data structures. We also get better bounds for some restricted families of shapes. We show that $(5 \sqrt{2}+2) \alpha(C)+25+5 \sqrt{2} \leq 9.072 \alpha(C)+32.072=O(\alpha(C))$ piercing points are sufficient to pierce a set of arbitrarily oriented α-fat rectangles. We also prove that $\tau(C)=2$ when C is a set of pairwise intersecting homothets of regular hexagons. We show that the piercing number of a set of pairwise intersecting homothets of an arbitrary convex shape is at most 15 . This improves the previous best upper-bound of 16 . We also give an algorithm to calculate the exact location of the piercing points.

1 Introduction

Let H be a set of convex shapes in d-dimensions such that every subset of $d+1$ shapes in H has a non-empty intersection. In 1923, Helly [11] proved that the

[^0]intersection of all shapes in H is non-empty. This result is known as the Helly's theorem. For example, if H is a set of convex shapes in \mathbb{R}^{2} such that every three of them have a common intersection, then by Helly's theorem all shapes in H have a common intersection. In the other words, all shapes in H can be pierced with one point.

Consider the following fundamental geometric problem: What is the minimum number of points that is sufficient to pierce a given set of pairwise intersecting shapes in the plane? In the case of homothetic triangles, three points are sufficient, as was shown by Chakerian et al. (1967) [5]. In the case of disks, four points are sufficient. The proof of the existence of four piercing points was independently shown by Danzer $(1956,1986)[6]$ and Stacho (1981) [24, 23]. To pierce a set of n pairwise intersecting line segments, $\Omega(n)$ points are sometimes required. This huge gap between the number of points required, from a constant to linear, to pierce different sets of pairwise intersecting shapes gives rise to many interesting problems. Notice that the linear lower-bound to pierce a set of pairwise intersecting line segments comes from the fact that line segments are essentially "thin". How round or fat an object is plays a vital role in the number of points needed to pierce the set. The main problem that we study in this paper is the following: How many points are sufficient to pierce a set of pairwise intersecting shapes in terms of their fatness parameter?

In the literature, the main approach used by researchers to pierce a set C of pairwise intersecting α-fat shapes is by constructing a grid whose resolution is quadratic in the fatness parameter $[2,18,19,14]$. In this article, we are able to reduce the number of points to linear with respect to the fatness parameter by placing points near the perimeter of a shape that has a non-empty intersection with every other shape in the set. In essence, we show that it is possible to pierce the set by focusing on the perimeter of an object as opposed to filling an area with points. The details of our approach are given in Section 2.

1.1 Preliminaries

Informally the fatness of a shape is a parameter that tries to capture how close a shape is to a disk. There are many different definitions and variations of the fatness of a shape $[19,17,25,7,15,20,1]$. Most of them share some similarities. In this paper we use the following measure of fatness. The fatness of a shape c is the ratio of the radius of the smallest disk that encloses c over the radius of the largest disk that is enclosed in c. This measure of fatness will be denoted by α. We say that a shape c is α-fat if its fatness is at most α. A set C of shapes is referred to as $\alpha(C)$-fat if $\alpha(C)$ is the smallest value such that $\forall c_{i} \in C$, the fatness of c_{i} is lesser than or equal to $\alpha(C)$. We note that a set of disks is 1-fat, since a disk is perfectly fat according to our fatness definition.

The piercing number of a family of sets \mathcal{F} is the smallest integer k for which it is possible to partition \mathcal{F} into subfamilies $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ such that the sets in each \mathcal{F}_{i} have a non-empty intersection for every i such that $1 \leq i \leq k[8]$. We say that a set of points P pierces a set of shapes C if every shape in C contains at least one point of P.

A shape B is a homothet of a shape A if B can be obtained by scaling and translating the shape A. Two geometric figures are homothetic if one is a homothet of the other. If every pair of shapes in a set C is homothetic we call the set C homothets. In this paper we only consider positive homotheties. A set of shapes C is unit if all the shapes in C have the same area.

1.2 Our Contributions

In this paper we prove the following results in 2-dimensions:

- Any set C of pairwise intersecting arbitrary convex shapes with fatness $\alpha(C)$ can be pierced with less than or equal to $43.789 \alpha(C) \in O(\alpha(C))$ points.
- Any set C of pairwise intersecting rectangles of arbitrary orientation with fatness $\alpha(C)$, can be pierced by $(5 \sqrt{2}+2) \alpha(C)+25+5 \sqrt{2} \in O(\alpha(C))$ points.
- Any set of pairwise intersecting convex homothets can be pierced by 15 points.
- A set of pairwise intersecting homothets of regular hexagons can be pierced by 2 points.

Known results for piercing sets of pairwise intersecting convex sets.		
Family of convex shapes	Known results	Our results
Homothetic Triangles	3 Points [5]	-
Homothetic Rectangles	1 Point [folklore]	-
Homothetic regular Hexagons	Not known	2 Points, Theorem 4
Disks	4 Points [21, 6, 23, 24]	-
Centrally symmetric	7 Points[9]	-
Unit Shapes	3 Points [12]	-
Convex Homothets	16 [16]	15 Points, Theorem 3
α-fat Rectangles	$O\left(\alpha^{2}\right)[19,2,14,18]$	$\begin{aligned} & \leq \quad 9.072 \alpha+32.072, \\ & \text { Theorem } 2 \end{aligned}$
α-fat Convex shapes	$O\left(\alpha^{2}\right)[19,2,14,18]$	$\leq 43.789 \alpha$, Theorem 1

1.3 Previous Results

Overmars et al. (1994) [19] proved that for a set of disjoint convex α-fat objects and a restricted range query (with diameter $h \times p$ where h is a constant and p is the radius of the minimal enclosing hyper-sphere among the objects in the set) in d-dimensions, $O\left(\left(\alpha d^{d} h\right)^{d}\right)$ points are enough to pierce all the shapes. They use a grid of points inside and around the range query to pierce such a set. Agarwal et al. (1995) [2], Katz (1996) [14] and Nielsen (2000) [18] among other results proved that $O\left(\alpha^{2}\right)$ points can pierce a set of pairwise intersecting α-fat shapes in 2-dimension. The definitions of fatness that they use are similar. The unifying theme among these proofs is to cover the area around and inside the smallest shape with a grid of $\Theta\left(\alpha^{2}\right)$ piercing points. To find the piercing points Nielsen (2000) [18] uses Fredman's sampling technique [14]. Agarwal et al. (1995) [2], Katz (1996) [14] use a similar gridding technique.

Let F be a family of pairwise intersecting and centrally symmetric convex homothets. Grünbaum (1959) [9] showed that $\tau(F)^{4} \leq 7$. He transforms all the shapes from Euclidean space into Minkowski space. The reason behind this transformation is that any centrally symmetric shape in Euclidean space can be treated as a disk in Minkowski space. This transformation maintains the pairwise intersecting property of the set. The fact that 4 points pierces a set of pairwise intersecting disks applies [21, $6,23,24]$. Grünbaum (1959) [9] also showed that $\tau(F)=3$ when F is a family of pairwise intersecting and centrally symmetric convex unit-shapes. He conjectured that $\tau(F)=3$ for any family of pairwise intersecting convex unit-shapes. This conjecture was proved by Karasev (2000) [12]. Karasev (2001) [13] subsequently showed an upper-bound of $d+1$ on the number of points sufficient to pierce a family of d-wise intersecting homothets of a simplex in \mathbb{R}^{d}. He also gave an upper-bound for a family F of d-wise intersecting spheres which is the following: $\tau(F) \leq 3(d+1)$ when $d \geq 5$ and $\tau(F) \leq 4(d+1)$ when $d \leq 4$.

In case of pairwise intersecting disks, Danzer $(1956,1986)$ [6] and Stacho (1981) [24, 23] were the first to give a proof of the existence of 4 piercing points. However, both of their proofs are essentially non-constructive. Har-Peled et al. [10] were the first to present a deterministic and constructive algorithm. They find 5 piercing points, in $O(n)$ expected time, that pierces a set of n pairwise intersecting disks. Biniaz, Bose and Wang [3] gave a linear algorithm that finds 5 piercing points given a set of pairwise intersecting disks that does not use an LPtype framework unlike Har-Peled's algorithm. Carmi, Katz and Morin [21] gave a linear time algorithm to compute 4 piercing points which also uses LP-type machinery.

2 General Convex Shapes

2.1 Piercing a Set of fat Shapes

In this section we prove the following theorem which is our main result.
Theorem 1. Any set C of pairwise intersecting arbitrary convex shapes on a plane with fatness $\alpha(C)$ can be pierced with $\left(12+6 \sqrt{2}+2^{\frac{15}{4}} \sqrt{3}\right) \alpha(C)+4 \leq$ $43.789 \alpha(C) \in O(\alpha(C))$ points.

Proof (Proof of Theorem 1).
Let $S=\left\{S_{0}, S_{1}, \ldots, S_{n-1}\right\}$ be a set of pairwise intersecting convex shapes with fatness at most α. For all i, let α_{i} be the fatness of S_{i}. Let o be the smallest disk that has a non empty intersection with every shape in the set S. Let δ be the radius of o. Define $s q_{1}$ to be an axis-parallel square that is concentric with o. Let the side length of $s q_{1}$ be $2 c \delta$ for a constant c. And let $s q_{2}$ be an axis-parallel square concentric with o with side length $2 c_{1} \delta$ for a constant $c_{1}\left(c_{1}>c\right)$. We specify the exact values of c and c_{1} at the end of the proof.

[^1]If all the shapes in S have a common intersection we can pierce the whole set with one point and as a result o will have radius zero. Otherwise, o is tangent to at least three shapes, say S_{1}, S_{2}, S_{3}. Let L_{1}, L_{2}, L_{3} be the three tangent lines to o where S_{1}, S_{2}, S_{3} intersect o. Notice that no two tangent line can be parallel, otherwise, either the intersection of every shape in S is non-empty or it contradicts the fact that two corresponding shapes intersect. Moreover, L_{1}, L_{2}, L_{3} form a triangle, otherwise it contradicts with the minimality of o (See Figure 2).

Fig. 2. Initial setup and information
Fig. 1. outer case

We partition the set S into two groups, $S^{g p 1}$ and $S^{g p 2}$. A shape $S_{i} \in S$ will be in $S^{g p 1}$ if the center of the largest enclosed disk in S_{i} or at least one of the largest enclosed disks in S_{i} (in case S_{i} has multiple largest enclosed disks) is located completely outside of $s q_{1}$. Otherwise, S_{i} will be in $S^{g p 2}$.

Piercing $S^{g p 1}$: By the definition of o, every shape in $S^{g p 1}$ intersects o. Every shape S_{i} in $S^{g p 1}$ is convex, intersects o and has at least one of the largest disk(s) enclosed in S_{i} centered outside of $s q_{1}$. These three facts plus the fact that $s q_{1}$ encloses o implies that S_{i} intersects a continuous portion of the boundary of $s q_{1}$. We now show how to place a set of points on the boundary of $s q_{1}$ to pierce all the shapes in $S^{g p 1}$. Let S_{i} be an arbitrary shape in $S^{g p 1}$. Let p^{*} be an arbitrary point in the intersection of S_{i} and the boundary of o. Let o^{\prime} be the largest disk enclosed in S_{i} and centered outside of $s q_{1}$ (in the case of multiple disks satisfying these conditions, pick an arbitrary one). Without loss of generality, assume that S_{i} intersects the right vertical side of $s q_{1}$. Let $a b$ be the diameter of o^{\prime} parallel to the y-axis. Since S_{i} is convex, there exists a triangle $p^{*} a b$ that is contained in S_{i}. Let the boundary of the triangle $p^{*} a b$ cross the boundary of $s q_{1}$ at points a^{\prime} and b^{\prime}. Now the minimum possible length of the segment $a^{\prime} b^{\prime}$ gives us the required resolution of points to put on the boundary of $s q_{1}$ to pierce $S^{g p 1}$. Recall that α_{i} is the fatness of S_{i}. The smallest disk that encloses S_{i} has a radius greater than or equal to $\frac{\left|p^{*} b\right|}{2}$ since the segment $p^{*} b$ is in S_{i} and any disk with diameter less
than $\left|p^{*} b\right|$ cannot have a segment of length $\left|p^{*} b\right|$ in it. Thus, $\alpha_{i} \geq \frac{\frac{\left|p^{*} b\right|}{2}}{\frac{|a b|}{2}}=\frac{\left|p^{*} b\right|}{|a b|}$. Moreover, since the two triangles $p^{*} a b$ and $p^{*} a^{\prime} b^{\prime}$ are similar we get following equation: $\frac{\left|a^{\prime} b^{\prime}\right|}{\left|p^{*} b^{\prime}\right|}=\frac{|a b|}{\left|p^{*} b\right|} \Longrightarrow\left|a^{\prime} b^{\prime}\right|=\frac{|a b| \cdot\left|p^{*} b^{\prime}\right|}{\left|p^{*} b\right|} \Longrightarrow\left|a^{\prime} b^{\prime}\right| \geq \frac{\left|p^{*} b^{\prime}\right|}{\alpha_{i}}$. Furthermore, note that $(c-1) \delta \leq\left|p^{*} b^{\prime}\right| \leq 2 \sqrt{2} c \delta$ and $\alpha(S) \geq \alpha_{i}$. Therefore, $\left|a^{\prime} b^{\prime}\right|$ is at least $\frac{(c-1) \delta}{\alpha(S)}$.

Exceptional Case: The only exceptional case in this scenario is when a^{\prime} is not located on the same side of $s q_{1}$ as b^{\prime}. Considering the fact that the disk o^{\prime} is centered outside of $s q_{1}$, the convexity of S_{i} implies that S_{i} contains a corner of $s q_{1}$. To pierce such shapes we put points on the 4 corners of $s q_{1}$.

The perimeter of $s q_{1}$ is $8 c \delta$, therefore the number of points placed on the perimeter of $s q_{1}$ to pierce all the shapes in $S^{g p 1}$ is $4+\frac{8 c \delta}{\frac{(c-1) \delta}{\alpha(S)}}=4+\frac{8 c}{c-1} \alpha(S)$

Piercing $S^{g p 2}$: Let S_{i} be an arbitrary shape in $S^{g p 2}$. Let L_{i}^{\prime} be a line through the center of circle o and parallel to L_{i} for $i \in\{1,2,3\}$. We call a point p proper with respect to $L_{i}, i \in[1,3]$ if it is located inside $s q_{2}$, and p is located on the same side of L_{i} and L_{i}^{\prime} but p is closer to L_{i}^{\prime}.

Lemma 1. Any point inside $s q_{2}$ is proper with respect to some $L_{i}, i \in[1,3]$.
Proof. Let $H_{i}, i \in[1,3]$ be the halfspace that is tangent to L_{i}^{\prime} and does not contain L_{i}. Since H_{1}, H_{2}, H_{3} intersect at a point and the union of the angle that they cover is 2π (otherwise it contradicts with the fact L_{1}, L_{2}, L_{3} form a triangle). Using the result of Bose et al. [4] we have that the $\cup H_{i}$, for $i \in[1,3]$ covers the entire plane. Thus, they cover any point in $s q_{1}$ as well.

Without loss of generality, assume that the center of at least one of the largest disks enclosed in S_{i} is a proper point with respect to L_{1}. Such a disk exists, since, at least one of the largest disks enclosed in S_{i} is centered in $s q_{1}$.

We analyze two cases, namely when $S_{i} \cap L_{1} \cap s q_{2} \neq \emptyset$ and when $S_{i} \cap L_{1} \cap s q_{2}=\emptyset$
Case 1. S_{i} has an intersection with L_{1} inside $s q_{2}$.
Let p^{*} be an arbitrary point in the intersection of L_{1} and S_{i} interior to $s q_{2}$. Let o^{\prime} be a largest disk enclosed in S_{i} centered inside $s q_{1}$. Let $a b$ be the diameter of o^{\prime} parallel to L_{1}. Since the center of o^{\prime} is proper point with respect to L_{1}, the triangle $p^{*} a b$ intersects L_{1}^{\prime} at two points a^{\prime} and b^{\prime}. Recall that α_{i} is the fatness of S_{i}, the smallest disk that encloses S_{i} has a radius greater than or equal to $\frac{\left|p^{*} b\right|}{2}$, since the segment $p^{*} b$ is in S_{i} and any disk with diameter less than $\left|p^{*} b\right|$ cannot have a chord of length $\left|p^{*} b\right|$. Thus, $\alpha_{i} \geq \frac{\frac{\left|p^{*} b\right|}{2 b \mid}}{\frac{|a|}{2}}=\frac{\left|p^{*} b\right|}{|a b|}$. Moreover, since the triangles $p^{*} a b$ and $p^{*} a^{\prime} b^{\prime}$ are similar we get the following equation: $\frac{\left|a^{\prime} b^{\prime}\right|}{\left|p^{*} b^{\prime}\right|}=\frac{|a b|}{\left|p^{*} b\right|} \Longrightarrow\left|a^{\prime} b^{\prime}\right|=\frac{|a b| \cdot\left|p^{*} b^{\prime}\right|}{\left|p^{*} b\right|} \Longrightarrow\left|a^{\prime} b^{\prime}\right| \geq \frac{\left|p^{*} b^{\prime}\right|}{\alpha_{i}}$. By definition and the relation between L_{1} and $L_{1}^{\prime}, \delta \leq\left|p^{*} b^{\prime}\right| \leq 2 \sqrt{2} c \delta$ and $\alpha(S) \geq \alpha_{i}$. Therefore, $\left|a^{\prime} b^{\prime}\right| \geq \frac{\delta}{\alpha(S)}$.
The length of $L_{1}^{\prime} \cap s q_{2}$ is at most $2 \sqrt{2} c_{1} \delta$, which is the diameter of $s q_{2}$. Hence,
we place $\frac{2 \sqrt{2} c_{1} \delta}{\frac{\sigma}{(S)}}=2 \sqrt{2} c_{1} \alpha(S)$ points on L_{1}^{\prime}. So, in total $6 \sqrt{2} c_{1} \alpha(S)$ points on $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are sufficient to pierce shapes in this case.
Case 2. S_{i} only intersects L_{1} outside of $s q_{2}$.
As a result S_{i} intersects with the boundary of $s q_{2}$. Let p^{*} be a point in the intersection of S_{i} and the boundary of $s q_{2}$. Without loss of generality, assume that p^{*} is located on the right side of $s q_{2}$. Let o^{\prime} be a largest disk enclosed in S_{i} centered inside $s q_{1}$. Let $a b$ be the diameter of o^{\prime} parallel to the y -axis. Recall that α_{i} is the fatness of S_{i}. The smallest disk that encloses S_{i} has a radius greater than or equal to $\frac{\left|p^{*} b\right|}{2}$. By an identical argument as in Case 1, we have $\left|a^{\prime} b^{\prime}\right|=\frac{|a b| \cdot\left|p^{*} b^{\prime}\right|}{\left|p^{*} b\right|} \Longrightarrow\left|a^{\prime} b^{\prime}\right| \geq \frac{\left|p^{*} b^{\prime}\right|}{\alpha_{i}}$. By definition of $s q_{1}, s q_{2}$ and $P^{*} a^{\prime} b^{\prime} ;\left(c_{1}-c\right) \delta \leq\left|p^{*} b^{\prime}\right| \leq 2 \sqrt{2} c_{1} \delta$ and $\alpha(S) \geq \alpha_{i}$. Therefore, the minimum length of $\left|a^{\prime} b^{\prime}\right|$ is $\frac{\left(c_{1}-c\right) \delta}{\alpha(S)}$. The perimeter of $s q_{1}$ is $8 c \delta$, therefore the number of points required to put on the perimeter of $s q_{1}$ is $\frac{8 c \delta}{\frac{\left(c_{1}-c\right) \delta}{\alpha(S)}}=\frac{8 c}{c_{1}-c} \alpha(S)$.

Fig. 3. A convex shape with the largest en- Fig. 4. A convex shape with the largest closed disk centered in $s q_{1}$ and intersecting enclosed disk centered in $s q_{1}$ and interL_{1} inside $s q_{2}$ secting L_{1} only outside of $s q_{2}$

Let $m=\max \left(\frac{c}{c_{1}-c}, \frac{c}{c-1}\right)$. The number of points sufficient to pierce the set S using the placements described above is $4+\left(8 m+6 \sqrt{2} c_{1}\right) \alpha(S)$. The minimum value is roughly 43.789 when we set $c=1.6866$ and $c_{1}=2.3732$.

2.2 Implications

Our result has a number of implications on other research problems concerning sets of fat objects, such as computing depth orders, 3-D vertical ray shooting, 2-D point enclosure, range searching, and arc shooting for convex fat objects. The following are some Corollaries where the asymptotic complexity is improved from $O\left(\alpha^{2}\right)$ to $O(\alpha)$ using our results:

1. Piercing a set of pairwise intersecting c-oriented convex polygons [18]

Corollary 1. The piercing number $\tau(\beta)$ when β is a set of pairwise intersecting c-oriented α-fat polygons is $O(\alpha)$.

2. Computing depth order for fat objects [2]

Corollary 2. The time complexity of 2-dimensional linear-extension problem is of $O\left(\alpha n \lambda_{s}^{1 / 2}(n) \log ^{4} n\right)$.
3. 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects [14]
Corollary 3. For a given query point p, the object of C lying immediately below p (if such an object exists) can be found in $O\left(\alpha \log ^{4} n\right)$ time.
Corollary 4. For a given query point p, the k objects of C containing p can be reported in $O\left(\alpha \log ^{3} n+k \log ^{2} n\right)$ time.

2.3 Piercing Fat Rectangles

In this section we demonstrate how to pierce a set C of pairwise intersecting rectangles of arbitrary orientation with fatness $\alpha(C)$. This theorem is a generalization of pairwise intersecting line segments in terms of fatness.

Theorem 2. Any set C of pairwise intersecting rectangles of arbitrary orientation of fatness $\alpha(C)$ can be pierced with $(5 \sqrt{2}+2) \alpha(C)+25+5 \sqrt{2} \leq$ $9.072 \alpha(C)+32.072=O(\alpha(C))$ points.

Lemma 2. The maximum area of a square that does not have any lattice point in it is less than 2. A lattice point is a point with integer coordinates.

Proof (Proof of Theorem 2). Let $R=\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ be a set of pairwise intersecting rectangles. Denote a rectangle r of width w and height h as (w, h). We assume that the longer side of an arbitrary oriented rectangle is the height of the rectangle $(h \geq w)$. Without loss of generality, Let $r_{1}=\left(w_{1}, h_{1}\right)$ be the rectangle with the minimum width among all rectangles in the set R. Without loss of generality, assume that r_{1} is axis parallel.

Structure of the grid points: Let $r_{i}=\left(w_{i}, h_{i}\right)$ be an arbitrary rectangle in R, let p^{*} be one of the intersection points of the boundary of r_{1} with r_{i}. By definition of r_{1} we have the following two inequalities: $w_{i} \geq w_{1}$ and $h_{i} \geq w_{1}$. For every $r_{i} \in R$ there exists a square s_{i} located inside r_{i} of side length w_{1} such that, s_{i} contains the point p^{*}. Suppose that such a square does not exist. It implies that any square of side length w_{1} that contains p^{*} intersects with the boundary of r_{i}. Thus, either $w_{i}<w_{1}$ or $h_{i}<w_{1}$, both of which contradicts with the minimality of w_{1}.

Let G be a grid of points whose resolution is 1 . Let G^{\prime} be a grid of points whose resolution is $\frac{w_{1}}{\sqrt{2}}$. By Lemma 2 we see that any square of side length at least w_{1} must contain at least one point of G^{\prime} (To see the argument simply scale
down the squares and G^{\prime} by factor of $\frac{w_{1}}{\sqrt{2}}$. By definition, every s_{i} intersects r_{1}, and, the distance from any point in any $s_{i}, i \in[0, n-1]$ to the boundary of r_{1} is at most $\sqrt{2} w_{1}$ (in the worst case the point can be on the opposite side of the diameter of a square). Therefore, we cover an axis-parallel rectangle centered with r_{1}, whose distance to r_{1} is at most $\sqrt{2} w_{1}$, with a grid of points. See Figure 5 for illustration. That rectangle has width $w_{1}+2 \sqrt{2} w_{1}$ and height $h_{1}+2 \sqrt{2} w_{1}$. Therefore, The number of the grid points $\left(\frac{w_{1}+2 \sqrt{2} w_{1}}{\frac{\omega_{1}}{\sqrt{2}}}+1\right) \times\left(\frac{h_{1}+2 \sqrt{2} w_{1}}{\frac{w_{1}}{\sqrt{2}}}+1\right)=$ $(\sqrt{2}+5) \times\left(\sqrt{2} \frac{h_{1}}{w_{1}}+5\right) \leq(5 \sqrt{2}+2) \alpha(C)+25+5 \sqrt{2}$. Therefore, the sufficient number of points on the grid to pierce the set C is $(5 \sqrt{2}+2) \alpha(C)+25+5 \sqrt{2}$ that is less than or equal to $9.072 \alpha(C)+32.072$

Fig. 5. How an arbitrary rectangle in R gets pierced by a point on the grid.

3 Refined Results for Specific Shapes

In this section we study the number of points sufficient to pierce more specific sets of shapes. First we study sets of pairwise intersecting homothets and design an algorithm that computes the exact location of the points that pierce the set. Next, we show that 2 points are sometimes necessary and always sufficient to pierce a set of pairwise intersecting homothets of a regular hexagon.

3.1 Homothets of a convex shape

In this subsection, we show how one can pierce any set of pairwise intersecting homothetic shapes with a constant number of points. More precisely, we give an upper-bound of 15 piercing points. Kim et al. [16] proved that 16 points are sufficient to pierce any set of pairwise intersecting homothetic convex shapes. Kim's proof [16][Lemmas 4,13] requires the existence of two homothetic parallelotopes p_{A} and P_{A} such that $p_{A} \subseteq A \subseteq P_{A}$ where A is a convex shape. In this paper, our parallelotopes of choice are the pair of rectangles provided by Schwarzkopf et al.'s [22] Algorithm. This pair of rectangles satisfies the required conditions for Kim's [16] proof. Let S be a set of pairwise intersecting homothetic shapes. We prove that 15 points are enough by eliminating one of the 16 points. Finally, given a set S of $n k$-gons, we give an algorithm of complexity $O\left(n+\log ^{2} k\right)$ to
find the exact location of 16 piercing points and $O\left(n \log k+\log ^{2} k\right)$ to find 15 piercing points.

Let $S=\left\{S_{0}, S_{1}, \ldots, S_{n-1}\right\}$ be a set of pairwise intersecting homothetic convex shapes in the plane. We transform every shape $S_{i} \in S$ into a pair of homothetic orthogonal rectangles $\left(r_{i}, R_{i}\right)$, with each pair satisfying the following three conditions: First, r_{i} is enclosed in S_{i}, and, R_{i} encloses S_{i}. Second, the side length of r_{i} is at least half of the side length of R_{i}. Third, the vertices of r_{i} are located on the boundary of S_{i}.

For a shape S_{i}, define C_{i} to be a cross-shaped polygon with edges parallel to the edges of r_{i}, with $r_{i} \subseteq S_{i} \subseteq C_{i} \subseteq R_{i}$. Let V_{i} be the vertices of C_{i} which include the vertices of r_{i}.

Fig. 6. r_{i} and C_{i} are enclosed in S_{i} and R_{i}

The existence of such a pair of enclosed and enclosing rectangles for any convex shape was shown by Schwarzkopf et al. [22]. They designed an algorithm to compute such a pair for a convex polygon in time $O\left(\log ^{2} k\right)$ when the k vertices of the polygon are given in an array and sorted in a lexicographic order.

Let S^{*} be the smallest shape homothetic to the shapes in S that intersects every shape in S. Assume that $\cap_{i=0}^{n-1} S_{i}=\emptyset$. Minimality of S^{*} implies that there exist at least 3 shapes in S, say S_{1}, S_{2}, S_{3}, that are tangent to S^{*} at points x_{1}, x_{2}, x_{3}. Let L_{1}, L_{2}, L_{3} be the tangent lines to S^{*} at x_{1}, x_{2}, x_{3}. These three lines form a triangle. For simplicity we assume that S^{*} is an element of S.

Theorem 3. Any set of pairwise intersecting convex homothets can be pierced by 15 points.

Before proving this theorem, we prove a few helper lemmas. According to Kim et al. [16] the 16 piercing points form a grid (see Figure 7). We label the points from 1 to 16 starting at the top left point. We show that a corner point can be removed from this set of piercing points. Let $\left(r^{*}, R^{*}\right)$ be the corresponding rectangles to S^{*}. According to Kim et al. [16] points $\{6,7,10,11\}$ are vertices of r^{*}.

Every shape in S contains at least one of these 16 piercing points. If there is no shape in the set S that contains only one corner piercing point (points $1,4,13,16$) we can simply remove one of the corner points and reduce the piercing number to 15 . Otherwise, without loss of generality, let $S_{4}\left(\right.$ resp. $\left.S_{5}, S_{6}, S_{7}\right) \in S$ be a shape that only contains the point 13 (resp. 1, 4, 16).

Let $H_{i, j}^{k,+}$ (resp. $H_{i, j}^{k,-}$) be a halfspace defined by the line that goes through the piercing points i, j and, contains the piercing point k (resp. does not contain the point k).

Fig. 7. Dividing the space into different regions and the area that the intersection of S_{4} and S_{6} cannot be.

Let Region $_{1}$ (resp. Region ${ }_{2}$, Region $_{3}$, Region $_{4}$) be the area defined as $H_{5,7}^{4,+} \cup$ $H_{7,15}^{4,+}$ (resp. $H_{7,15}^{4,+} \cup H_{10,12}^{13,+}, H_{2,10}^{13,+} \cup H_{10,12}^{13,+}, H_{5,7}^{4,+} \cup H_{2,10}^{13,+}$). Let Region ${ }_{1}^{1}$ be $H_{1,5}^{4,-} \cap$ $H_{1,2}^{13,-}$. Let Region ${ }_{1}^{2}$ be $H_{15,16}^{4,-} \cap H_{12,16}^{13,-}$. Let Region ${ }_{1}^{3}$ be Region ${ }_{1} \cap\left(H_{1,5}^{4,+} \cap H_{15,16}^{4,+}\right)$ and Region ${ }_{2}^{3}$ be Region ${ }_{2} \cap\left(H_{1,2}^{13,+} \cap H_{12,16}^{13,+}\right)$.

Lemma 3. $S_{4} \cap S_{6} \nsubseteq$ Region $_{1}^{1} \cup$ Region $_{1}^{2}$.
Proof. Let $p \in S_{4} \cap S_{6}$. Suppose, for the sake of a contradiction, $p \in \operatorname{Region}_{1}^{2}$. Let $p^{\prime} \in S_{4} \cap S^{*}$ and let $p^{\prime \prime} \in S_{6} \cap S^{*}$.

- Suppose that p is not located in Region ${ }_{1}^{2} \cap H_{3,8}^{4,+}$.

In this case the triangle formed by $4, p^{\prime \prime}$ and p will contain point 8 , which is a contradiction to the definition of S_{6}.

- Suppose that p is not located in Region ${ }_{1}^{2} \cap H_{9,14}^{13,+}$.

Similarly, in this case the triangle formed by $13, p^{\prime}$ and p will contain point 14 , which is a contradiction to the definition of S_{4}.

Since $H_{3,8}^{4,+}$ and $H_{9,14}^{13,+}$ have an empty intersection, it implies that the point p cannot be in Region ${ }_{1}^{2}$. The same argument holds for Region ${ }_{1}^{1}$. Thus, S_{4} and S_{6} cannot intersect in Region 1 either.

Lemma 4. $S_{4} \cap$ Region $_{1}^{3}=\emptyset$.
Proof. Let p be a point on the boundary of $\operatorname{Region}_{1}^{3} \cap S_{4}$. Let S_{4}^{\prime} be a shape homothetic to S_{4} with the following conditions:

1. S_{4}^{\prime} has the same size as S^{*}.
2. S_{4}^{\prime} has p on its boundary.
3. S_{4}^{\prime} is contained in S_{4}.

Let C_{4}^{\prime} be the cross shaped polygon corresponding to S_{4}^{\prime}. Let $\left(r_{4}^{\prime}, R_{4}^{\prime}\right)$ be the pair of enclosed and enclosing rectangle corresponding to S_{4}^{\prime}. Let v be the top right vertex of r_{4}^{\prime}. By the definition of S_{4}^{\prime}, v cannot be inside of the rectangle defined by piercing points $9,10,13,14$. Otherwise, it contradicts C_{4}^{\prime} having an intersection with the boundary of Region ${ }_{1}^{3}$.

- If v is below point 13 then the triangle defined by point $13, p$ and v contains the piercing point 14 .
- If v is to the left of point 13 then the triangle defined by point $13, p$ and v contains the piercing point 9 .
- If v is to the right and above the piercing point 13 , then since the resolution of the piercing points and resolution of the vertices that define r_{4}^{\prime} (size of $\left.r_{4}^{\prime}\right)$ are equal it implies that r_{4}^{\prime} as well as S_{4} contains another piercing point beside point 13 .

Fig. 8. S_{4} does not have an intersection with Region ${ }_{1}^{3}$

A similar argument holds for $S_{6} \cap$ Region $_{2}^{3}$. Lemmas 3 and 4 imply that $S_{4} \cap S_{6}$ is located in the rectangle formed by piercing points $6,7,10,11$.

Lemma 5. $S_{4} \cap$ Region $_{1}$ has an empty intersection.
Proof. Let p be a point from the intersection of the boundary of Region n_{1} and S_{4}. Notice that Region $_{1}=$ Region $_{1}^{3} \cup\left(H_{11,15}^{4,+} \cap H_{15,16}^{4,-}\right) \cup\left(H_{1,5}^{4,-} \cap H_{5,6}^{4,+}\right)$. Suppose that S_{4} intersects Region $_{1}$. We analyze the following three cases:

1. $p \in$ Region $_{1}^{3}$: According to Lemma 3, p cannot be in Region $_{1}^{3}$
2. $p \in H_{11,15}^{4,+} \cap H_{15,16}^{4,-}$: Let p^{\prime} be a point from the intersection of S_{4} and S_{6}. $S_{4} \cap S_{6}$ is located in the rectangle formed by vertices $6,7,10,11$. This means that p^{\prime} is to the right of point 14 . And it implies that the triangle formed by points $13, p$ and p^{\prime} contains point 14 which is a contradiction to the definition of S_{4}.
3. $p \in H_{1,5}^{4,-} \cap H_{5,6}^{4,+}$: Let p^{\prime} be a point from the intersection of S_{4} and $S_{6} . S_{4} \cap S_{6}$ is located in the rectangle formed by vertices $6,7,10,11$. This means that p^{\prime} is above point 9 . And it implies that the triangle formed by points $13, p$ and p^{\prime} contains point 9 which is a contradiction to the definition of S_{4}.

Thus, S_{4} has an empty intersection with Region $_{1}$.
For a region Reg, let $\overline{R e g}$ be the complement of the region Reg. More precisely, $\overline{R e g}=\left\{x \mid x \notin R e g, \forall x \in \mathbb{R}^{2}\right\}$.

Notice that S_{1}, S_{2}, S_{3} are tangent to S^{*}. Also, S_{4} intersects with S_{1}, S_{2}, S_{3} and S^{*}. These two facts imply that S_{4} intersects with L_{1}, L_{2} and L_{3}. Moreover, Lemma 5 implies that the intersection of S_{4} with each L_{1}, L_{2}, L_{3} should be located in $\overline{\text { Region }}$. By symmetry S_{5} (resp. S_{6}, S_{7}) intersects with L_{1}, L_{2}, L_{3}. This intersection is located in $\overline{\text { Region }_{2}}$ (resp. $\overline{\text { Region }_{3}}, \overline{\text { Region }_{4}}$).

Lemma 6. Each $\overline{\text { Region }_{i}}, i \in[1,4]$ has a non-empty intersection with at least one of L_{1}, L_{2}, L_{3}.

Proof. Notice that the bottom-left vertex of r^{*} is in $\overline{\text { Region }_{1}}$ and the triangle defined by the intersection of L_{1}, L_{2}, L_{3} encloses r^{*}. Suppose that $\overline{\text { Region }}$ has empty intersection with all L_{1}, L_{2}, L_{3}. This implies that the triangle defined by the intersection of L_{1}, L_{2}, L_{3} does not enclose r^{*}, which is a contradiction. Similarly this argument can be applied for $\overline{\text { Region }_{2}}, \overline{\text { Region }_{3}}$ and $\overline{\text { Region }_{4}}$.

Lemma 7. At least two of the regions in $\left\{\overline{\text { Region }_{i}}, i \in[1,4]\right\}$ do not have an intersection with all three of L_{1}, L_{2}, L_{3}.

Proof. Observe that each $L_{i}, i \in[1,3]$ can intersect with at most three regions of $\left\{\overline{\text { Region }_{i}} \mid i \in[1,4]\right\}$. Thus, we have at most 9 pairs of $\left(L_{i}\right.$, Region $\left._{j}\right)$ when L_{i} intersects with Region for $i \in[1,3], j \in[1,4]$. According to Lemma 6 and the Pigeonhole theorem at least two of the regions in $\left\{\overline{\text { Region }_{i}} \mid i \in[1,4]\right\}$ do not intersect with all three of L_{1}, L_{2}, L_{3}.

Proof (Proof of Theorem 3). Lemma 7 implies that the regions corresponding to at least two of the shapes $S_{4}, S_{5}, S_{6}, S_{7}$ do not intersect with all three of L_{1}, L_{2}, L_{3}. This contradicts the fact that the shapes in the set S are pairwise intersecting. Thus, at least one piercing point can be removed from our piercing point set.

Algorithm to find the exact location of the piercing points: First, we find the smallest shape, S_{1}, of the set in $O(n)$. Next we apply the Schwarzkopf et al.'s [22] algorithm on S_{1} to compute the vertices of $r_{1}=\left(w_{1}, h_{1}\right)$ in $O\left(\log ^{2} k\right)$ time. This allows us to compute the 16 points outlined in Kim's [16] proof in a constant time. Thus the time complexity of finding 16 piercing points is $O\left(n+\log ^{2} k\right)$. Next, we can determine in $O(n \log k)$ time which of the 4 corner points can be removed. Thus, we can find 15 piercing points in $O\left(n \log k+\log ^{2} k\right)$ time.

3.2 Hexagons

In this subsection we determine the piercing number of a set of pairwise intersecting homothets of a regular hexagon. We show that two points are always sufficient and sometimes necessary to pierce such a set. For a hexagon s with an edge parallel to the x-axis, we refer to its edges by Bottom, BottomRight, TopRight, Top, TopLeft, BottomLeft edges. We denote the Bottom edge of s by s^{B}. Respectively we refer to BottomRight, TopRight, Top, TopLeft, BottomLeft edges of s by $s^{B R}, s^{T R}, s^{T}, s^{T L}, s^{B L}$.

Theorem 4. Any set of pairwise intersecting homothets of a regular hexagon can be pierced by two points.

Proof (Proof of Theorem 4). Let $C=\left\{C_{0}, C_{1}, \ldots C_{n-1}\right\}$ be a set of pairwise intersecting homothets of a regular hexagon. Without loss of generality, assume that the bottom edge of every hexagon in C is parallel with the x-axis. Let $T L=\left\{C_{i}^{T L} \mid \forall C_{i} \in C\right\}$, and $T R=\left\{C_{i}^{T R} \mid \forall C_{i} \in C\right\}$, and $B E=\left\{C_{i}^{B} \mid \forall C_{i} \in C\right\}$. Each element of these sets is a line segment. Segments of each set are associated with the same side of hexagons in $C . \forall C_{i}^{T L} \in T L$ let $T L_{i}^{+}$be the halfspace defined by $C_{i}^{T L}$ that does not contain the corresponding hexagon to $C_{i}^{T L}$. Let $T L^{+}=\left\{T L_{0}^{+}, T L_{1}^{+} \ldots, T L_{n-1}^{+}\right\} . \forall C_{i}^{T R} \in T R$ let $T R_{i}^{+}$be the halfspace defined by $C_{i}^{T R}$ that does not contain the corresponding hexagon to $C_{i}^{T R}$. Let $T R^{+}=$ $\left\{T R_{0}^{+}, T R_{1}^{+} \ldots, T R_{n-1}^{+}\right\}$. Let $t l^{*}$ be the halfspace in $T L^{+}$that contains all other halfspaces in $T L^{+}$. Such a halfspace exists since all of the halfspaces in $T L^{+}$are parallel. Let $t r^{*}$ be the halfspace in $T R^{+}$that contains all other halfspaces in $T R^{+}$. Such a halfspace exists since all of the halfspaces in $T R^{+}$are parallel.

Let $t l$ be the corresponding segment in $T L$ to $t l^{*}$. Let $t r$ be the corresponding segment in $T R$ to $t r^{*}$. Let be be the top most segment in $B E$.

Define L_{1} the line that is parallel to and goes through $t l$. Similarly, define R_{1} to be the line that is parallel to and goes through $t r$, and B_{1} to be the line that is parallel to and goes through be.

Assume that L_{1}, R_{1}, B_{1} do not intersect at a point p. Otherwise, the two piercing points will be on top of each other at p, thus, p pierces the whole set. Observe that, the intersection points of L_{1}, R_{1}, B_{1} form a equilateral triangle $T_{h}=A B D$. Let point B be the intersection point of lines L_{1} and R_{1}. Let point D be the intersection point of lines L_{1} and B_{1} and let point A be the intersection point of lines B_{1} and R_{1}. This triangle can have one of the two following possible shapes.

Case 1. In the first case, the point B is located above the segment $A D$. Therefore, the left top side of any hexagon in C is to the left of L_{1}. Similarly, the right top side of any hexagon in C is to the right of R_{1} and any bottom side of any hexagon in the set is below B_{1}.
Case 2. In the second case, the point B is located below the segment $A D$. Therefore, the bottom right side of any hexagon in C is to the right of L_{1} since, each pair of hexagons have to intersect. The top side of any hexagon in C is above B_{1} and, the bottom left side of any hexagon is to the left of
R_{1}, otherwise it contradicts the fact that each pair of hexagons intersects. Observe that this case is symmetric to the first case. Therefore, giving the proof for the first case is sufficient.

Proof for the case 1: Let M_{L}, M_{R} and M_{B} be the mid points corresponding to sides $A B, B D$ and $A D$ of the triangle $T_{h}=A B D$. We prove that every hexagon in C contains either M_{B} or B.

Take an arbitrary hexagon s from C. If s contains M_{B} then we are done. Suppose that s does not contain the point M_{B}. The point M_{B} can be either to the right of $s^{B R}$ or to the left of $s^{B L}$ and both cases are symmetric. Without loss of generality, assume that the point M_{B} is to right of the $s^{B R}$. By the definition of R_{1} the top right edge of any hexagon in C is to the right of R_{1}. Similarly, the bottom edge of any hexagon in C is to the bottom of B_{1}. This implies that the right bottom side of s should cross the lines B_{1} and R_{1}. Let i_{1} be the intersection point of $s^{B R}$ and B_{1}, and i_{2} be the intersection point of $s^{B R}$ and R_{1}.

The point i_{1} is to the left of M_{B} and i_{2} is to the left of M_{R}. Observe that the triangle $i_{1} i_{2} D$ is similar to $M_{B} M_{R} D$ and $\left|D i_{2}\right|>\left|D M_{B}\right|$. Therefore, the segment $i_{1} i_{2}$ is greater than $M_{R} M_{B}$. Moreover, the side length of s is greater than or equal to the length of the segment $i_{1} i_{2}$, and it is greater than $M_{B} M_{R}$ $\left(\left|s^{B}\right|=\left|s^{B R}\right| \geq\left|i_{1} i_{2}\right|>\left|M_{R} M_{B}\right|=\left|M_{R} B\right|=\left|M_{B} A\right|\right)$. Considering the facts that the side length of s is greater than $\left|M_{R} M_{B}\right|$, and $s^{T R}$ is parallel to R_{1} and to the right of R_{1}. Thus, by convexity of $s, s^{T R}$ crosses L_{1}, and similarly s^{B} crosses L_{1}. Thus s contains the segment $A B$ and in particular the point B.

4 Conclusion

In this paper we showed that pairwise intersecting convex shapes of fatness α with arbitrary orientation can be pierced by a linear number of points with respect to the fatness parameter of the shapes in the set. The main idea to achieve our results is to avoid covering an area with a grid of high resolution but rather focusing on the perimeter of a specific shape. By using this idea we reduce the number of points sufficient to pierce any pairwise intersecting convex α-fat shapes from $O\left(\alpha^{2}\right)$ to $O(\alpha)$. Our theorem is an improvement over Fredman's sampling algorithm to find piercing points.

Moreover, for a set of pairwise intersecting homothets we showed that the piercing number is at most 15 points. The piercing number of a set of pairwise intersecting set of homothets of regular hexagons is 2 which is tight. We leave as an open problem to improve our upper bounds.

References

1. Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir. Computing depth orders and related problems. In Proceedings of the 4 th Scandinavian Workshop on Algorithm Theory, SWAT '94, page 1-12, Berlin, Heidelberg, 1994. Springer-Verlag.
2. Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir. Computing depth orders for fat objects and related problems. Computational Geometry: Theory and Applications, 5(4):187-206, 1995.
3. Ahmad Biniaz, Prosenjit Bose, and Yunkai Wang. Simple linear time algorithms for piercing pairwise intersecting disks. In Meng He and Don Sheehy, editors, Proceedings of the 33rd Canadian Conference on Computational Geometry, CCCG 2021, August 10-12, 2021, Dalhousie University, Halifax, Nova Scotia, Canada, pages 228-236, 2021.
4. Prosenjit Bose, Leonidas J. Guibas, Anna Lubiw, Mark H. Overmars, Diane L. Souvaine, and Jorge Urrutia. The floodlight problem. Int. J. Comput. Geom. Appl., 7(1/2):153-163, 1997.
5. G. D. Chakerian and S. K. Stein. Some intersection properties of convex bodies. Proceedings of the American Mathematical Society, 18(1):109-112, 1967.
6. L. Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. Studia Scientiarum Mathematicarum Hungarica, 21(1-2):111-134, 1986.
7. Alon Efrat, Günter Rote, and Micha Sharir. On the union of fat wedges and separating a collection of segments by a line. In A. Lubiw and J. Urrutia, editors, Proceedings of the Fifth Canadian Conference on Computational Geometry, Waterloo, pages 115-120, 1993.
8. Jacob E. Goodman and Joseph O'Rourke, editors. Handbook of Discrete and Computational Geometry. CRC Press, Inc., USA, 1997.
9. Branko Grünbaum. On intersections of similar sets. Portugal. Math., 18:155-164, 1959.
10. Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha Sharir, and Max Willert. Stabbing pairwise intersecting disks by five points. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
11. Ed. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175-176, 1923.
12. R. N. Karasev. Transversals for families of translates of a two-dimensional convex compact set. Discrete \& Computational Geometry, 24(2):345-354, 2000.
13. R. N. Karasev. Piercing families of convex sets with the d-intersection property in \mathbb{R}^{d}. Discrete Comput. Geom., 39(4):766-777, June 2008.
14. Matthew J. Katz. 3-d vertical ray shooting and 2-d point enclosure, range searching, and arc shooting amidst convex fat objects. Computational Geometry, 8(6):299-316, 1997.
15. Matthew J. Katz, Mark H. Overmars, and Micha Sharir. Efficient hidden surface removal for objects with small union size. Computational Geometry, 2(4):223-234, 1992.
16. Seog-Jin Kim, Kittikorn Nakprasit, Michael J. Pelsmajer, and Jozef Skokan. Transversal numbers of translates of a convex body. Discrete Math., 306(18):2166-2173, sep 2006.
17. Jirí Matousek, János Pach, Micha Sharir, Shmuel Sifrony, and Emo Welzl. Fat triangles determine linearly many holes. SIAM J. Comput., 23:154-169, 1994.
18. Frank Nielsen. On point covers of c-oriented polygons. Theo. Comp. Sci., 265(1-2):17-29, 2001.
19. Mark H. Overmars and Frank A. van der Stappen. Range searching and point location among fat objects. Journal of Algorithms, 21(3):629-656, 1996.
20. J. Pach, Ido Safruti, and Micha Sharir. The union of congruent cubes in three dimensions. In Proceedings of the Seventeenth Annual Symposium on Computational Geometry, SCG '01, page 19-28, New York, NY, USA, 2001. Association for Computing Machinery.
21. Pat Morin Paz Carmi, Matthew J. Katz. Stabbing pairwise intersecting disks by four points. 2020.
22. Otfried Schwarzkopf, Ulrich Fuchs, Günter Rote, and Emo Welzl. Approximation of convex figures by pairs of rectangles. Computational Geometry, 10(2):77-87, 1998.
23. Lajos Stachó. Über ein Problem für Kreisscheibenfamilien. Acta Scientiarum Mathematicarum (Szeged), 26:273-282, 1965.
24. Lajos Stachó. A solution of Gallai's problem on pinning down circles. Mat. Lapok, 32(1-3):19-47, 1981/84.
25. Marc J. van Kreveld. On fat partitioning, fat covering and the union size of polygons. Comput. Geom., 9(4):197-210, 1998.

[^0]: * Research supported in part by NSERC.

[^1]: ${ }^{4}$ Let $\tau(C)$ denote the piercing number of C, that is, the minimum number of points required such that every shape in C contains at least one of these points.

