Simple Linear Time Algorithms For Piercing Pairwise Intersecting Disks*

Ahmad Biniaz ${ }^{\dagger} \quad$ Prosenjit Bose ${ }^{\ddagger} \quad$ Yunkai Wang ${ }^{\ddagger}$

Abstract

A set \mathcal{D} of disks in the plane is said to be pierced by a point set P if each disk in \mathcal{D} contains a point of P. Any set of pairwise intersecting unit disks can be pierced by 3 points (H. Hadwiger and H. Debrunner, Ausgewählte Einzelprobleme der kombinatorischen Geometrie in der Ebene, Enseignement Math, 1955) and Danzer established that any set of pairwise intersecting arbitrary disks can be pierced by 4 points (L. Danzer, Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene, Studia Scientiarum Mathematicarum Hungarica, 1986). Existing linear-time algorithms for finding a set of 4 or 5 points that pierce pairwise intersecting disks of arbitrary radius use the LP-type problem as a subroutine. We present simple linear-time algorithms for finding 3 points for piercing pairwise intersecting unit disks, and 5 points for piercing pairwise intersecting disks of arbitrary radius. Our algorithms use simple geometric transformations and avoid heavy machinery. We also show that 3 points are sometimes necessary for piercing pairwise intersecting unit disks.

1 Introduction

Let \mathcal{D} be a set of pairwise intersecting disks in the plane. Helly's theorem states that if every set of 3 disks in \mathcal{D} has a non-empty intersection, then all disks in \mathcal{D} can be pierced by 1 point, in other words, $\cap \mathcal{D}$ is nonempty [7, 8]. Finding a piercing point set is more difficult if the disks in \mathcal{D} only intersect pairwise and \mathcal{D} contains groups of 3 disks that have no common intersection. Danzer [3] and Stachó [11] independently showed that such a set \mathcal{D} can be pierced by at most 4 points. Danzer's proof is based on his first unpublished proof in 1956, while Stachó's proof uses similar ideas that were used in his previous construction of 5 piercing points in 1965 [10]. Even though Danzer proved that 4 points are sufficient, the proof is not constructive [3]. Stachó's construction is simpler, but it is still not simple enough to be turned into an easy subquadratic algorithm [10, 11]. Har-Peled et al. [6] presented the first deterministic linear-time algorithm for finding 5 pierc-

[^0]ing points of a set \mathcal{D} by formulating the piercing problem as an LP-type problem. An LP-type problem is an abstract generalization of a low-dimensional linear program. Chazelle and Matoušek showed that LP-type problems can be solved in deterministic linear time if we have a constant-time violation test and the range space has bounded VC-dimension [2]. More recently, Carmi et al. [1] presented a linear time algorithm for finding 4 piercing points. Their algorithm requires the computation of the smallest disk that intersects every disk in \mathcal{D}, which they formulated as an LP-type problem [2, 9]. They pose as an open problem to find the piercing set without using linear programming.

As for lower bounds on this problem, Grünbaum [4] provides a set of 21 pairwise intersecting disks that cannot be pierced by 3 points. Later, Danzer [3] reduced the number of disks to 10 . This is close to optimal since every set of 8 pairwise intersecting disks can be pierced by 3 points [10]. However, Danzer's construction is difficult to verify since the positions of the disks cannot be visualized easily. Har-Peled et al. [6] gave a simpler construction with 13 disks.

Hadwiger and Debrunner [5] showed that if all the disks in \mathcal{D} have the same radius, then 3 points are sufficient to pierce \mathcal{D}. Their algorithm computes the smallest regular hexagon enclosing the centers of all disks in \mathcal{D}. It is not clear how one can simply find such a hexagon in linear time.

1.1 Our Contributions

We present a deterministic linear time algorithm for finding 3 points that pierce a set of pairwise intersecting unit disks (disks of radii one), and a deterministic linear time algorithm for finding 5 points that pierce a set of pairwise intersecting arbitrary disks (disks of arbitrary radii). Our algorithms employ simple geometric transformations, and do not require solving any LP-type problem. We also present a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points. This shows that 3 points are sometimes necessary and always sufficient to pierce pairwise intersecting unit disks.

We denote the Euclidean distance between points a and b by $|a b|$.

2 Piercing Pairwise Intersecting Unit Disks

In this section, we first present our deterministic lineartime algorithm for piercing pairwise intersecting unit disks by 3 points. Then we introduce a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points.

2.1 Algorithm For Computing Three Piercing Points

Let \mathcal{D} be a set of pairwise intersecting unit disks, each disk D_{i} is centered at $c_{i}=\left(x_{i}, y_{i}\right)$.

Theorem 1 Let \mathcal{D} be a set of pairwise intersecting unit disks. In $O(|\mathcal{D}|)$ time, we can compute 3 points that pierce \mathcal{D}.

Figure 1: Configuration of Theorem 1.

Proof. Let D_{1} be an arbitrary disk in \mathcal{D}. We reduce its radius while keeping c_{1} fixed until D_{1} becomes tangent to another disk $D_{2} \in \mathcal{D}$. This can be completed in $O(|\mathcal{D}|)$ time by computing the distance from c_{1} to all other disks in \mathcal{D}. Notice that the disks in \mathcal{D} are still pairwise intersecting and any set of points that pierces the new set of disks also pierces the original set of disks. Let r_{1} be the radius of D_{1}. After this transformation, $r_{1} \leq 1$, and D_{1} is tangent to D_{2}. By a translation and rotation, we move c_{1} to the origin and c_{2} to a point that lies on the positive y-axis with coordinate $\left(0, r_{1}+1\right)$. Let D_{0} be a unit disk (not necessarily in \mathcal{D}) with center $c_{0}=\left(0, r_{1}-1\right)$. Since $r_{1} \leq 1, D_{1} \subseteq D_{0}$. Any disk that intersects D_{1} also intersects D_{0}. Let D_{0}^{\prime} and D_{2}^{\prime} be two disks with radius 2 and centers c_{0} and c_{2}, respectively. See Figure 1. If a unit disk D_{i} intersects D_{0} and D_{2}, then $\left|c_{0} c_{i}\right| \leq 2,\left|c_{2} c_{i}\right| \leq 2$ and $c_{i} \in D_{0}^{\prime} \cap D_{2}^{\prime}$.

Let D_{3} be the disk in \mathcal{D} with the maximum x coordinate. Since D_{3} belongs to \mathcal{D}, it must intersect

Figure 2: Area that we need to cover.
D_{1} and D_{2}, we note that $0 \leq x_{3} \leq \sqrt{3} . x_{3} \geq 0$ since $x_{3} \geq x_{1}=0$. The boundaries of D_{0}^{\prime} and D_{2}^{\prime} intersect at the point $\left(\sqrt{3}, r_{1}\right)$, so c_{3} must either fall on or the left of the line $x=\sqrt{3}$. We conclude that $x_{3} \leq \sqrt{3}$. The disk D_{3} can be found in $O(|\mathcal{D}|)$ time. For every disk $D_{i} \in \mathcal{D}$, $\left|c_{i} c_{3}\right| \leq 2$ since D_{i} and D_{3} intersect. We have that $\left|x_{i} x_{3}\right| \leq 2$ since both D_{i} and D_{3} are unit disks. Therefore, in addition to being in $D_{0}^{\prime} \cap D_{2}^{\prime}$, the x-coordinate of all the centers lie in the interval $\left[x_{3}-2, x_{3}\right]$. Let β represent the region where all the centers of disks in \mathcal{D} must lie as illustrated in red in Fig 2. We say an area is covered by a point set P if every point in the area has distance at most 1 to at least 1 point in P. Therefore, if we can find 3 points that cover β, then those three points pierce every disk in \mathcal{D}. As noted above, we have that $0 \leq x_{3} \leq \sqrt{3}$. We consider two cases, namely when $1 \leq x_{3} \leq \sqrt{3}$ and $0 \leq x_{3}<1$.

Figure 3: Location of P_{1}.
Case 1: $1 \leq x_{3} \leq \sqrt{3}$. Let A (resp. B) be the rightmost point of β on the boundary of D_{0}^{\prime} (resp. D_{2}^{\prime}). The first point P_{1} is chosen be a point that falls in β
and has distance 1 to both A and B. Let C_{1} be a circle of radius 1 centered at P_{1}; See Figure 3 .

Let l_{1} be the vertical line $x=x_{3}-\frac{1}{2}$. First we prove that P_{1} always lies to the left of l_{1}. Let the midpoint of line segment $A B$ be $M .|A B|$ decreases as x_{3} increases and it is maximized when $x_{3}=1$. When $x=1$, $|A B|=2 \sqrt{3}-2<\sqrt{3}$. So $|A B|<\sqrt{3}$ and $|A M|<\frac{\sqrt{3}}{2}$. Since $\triangle P_{1} A M$ is a right triangle and $\left|A P_{1}\right|=1$, by the Pythagorean theorem, $\left|P_{1} M\right|>\frac{1}{2}$. Therefore, P_{1} always lies to the left of l_{1}. Let the intersection point of circle C_{1} and D_{0}^{\prime} different from A be labelled C, and the intersection point of circle C_{1} and D_{2}^{\prime} different from B be labelled $D . P_{1}$ lies on the bisector of the line segment $A B$, so P_{1} lies on the line $y=r_{1}$, therefore, C_{1} is tangent to both lines $y=r_{1}+1$ and $y=r_{1}-1$. Since the circle C_{1} is tangent to these two lines, both C and D lie to the left of P_{1}. See Figure 3. Since the radius of C_{1} is 1 , the radius of D_{0}^{\prime} is 2 , and C lies to the left of l_{1}, we have that the clockwise arc from C to A on the boundary of D_{0}^{\prime} and the clockwise arc from B to D on the boundary of D_{2}^{\prime} are both contained in C_{1}. Therefore, the center of any unit disk of \mathcal{D} that lies on or to the right of l_{1} is contained in the disk C_{1}. We now show how to compute points P_{2} and P_{3} to pierce all the disks that do not contain P_{1}, namely the disks in \mathcal{D} whose centers are in β but outside disk C_{1}. The coordinates of A, B, P_{1}, P_{2}, and P_{3} are given in Appendix A.

Figure 4: Remaining area to be covered.
Consider the rectangle formed by the following 4 points: $E=\left(x_{3}-\frac{1}{2}, r_{1}+1\right), F=\left(x_{3}-\frac{1}{2}, r_{1}-1\right), G=$ $\left(x_{3}-2, r_{1}+1\right), H=\left(x_{3}-2, r_{1}-1\right)$. See Figure 4. Since D_{0}^{\prime} is tangent to the line $y=r_{1}+1$ at $(0, r+1)$, and D_{2}^{\prime} is tangent to the line $y=r_{1}-1$ at $(0, r-1)$, the area $\beta \cap\left\{x<x_{3}-\frac{1}{2}\right\}$ as shown in Fig 4 is contained completely within the rectangle $E F H G$. If the points P_{2} and P_{3} cover this rectangle, then we are done. Let N be the midpoint of line segment $E F$ and let O be the midpoint of line segment $G H$. See Figure 5. We choose P_{2} to be the center of the rectangle $E N O G .|E N|=1$
and $|N O|=\frac{3}{2}$, by Pythagorean theorem, P_{2} 's distance to all four vertices of the rectangle is $\frac{\sqrt{13}}{4}$. Therefore, if a unit disk's center falls in the rectangle $E N O G$, then the disk is pierced by P_{2}. Symmetrically pick P_{3} to be the center of the rectangle $N F H O$. Then any unit disk in \mathcal{D} whose center falls to the left of l_{2} is pierced by one of P_{2} and P_{3}.

Figure 5: Location of P_{2} and P_{3}.
Case 2: $0 \leq x_{3}<1$. Let q be the maximum of x_{3} and $2-\sqrt{3}$. By the definition, we know that $q \geq 2-\sqrt{3}$. We also know that the rightmost point on the lens formed by D_{0}^{\prime} and D_{2}^{\prime} is $(-\sqrt{3}, 0)$, so the line $x=x_{3}-2$ lies to the left of the point when $x_{3}-2<-\sqrt{3}$. Therefore, we can safely say that the x-coordinate of all the centers lie in the interval $[-\sqrt{3},-\sqrt{3}+2]$ when $x_{3}<2-\sqrt{3}$. Since q is the maximum of x_{3} and $2-\sqrt{3}$, the x-coordinate of all the centers lie in the interval $[q-2, q]$ when $0 \leq x_{3}<1$. $q \geq 2-\sqrt{3}$, so $q-2 \geq-\sqrt{3} . ~ q<1$, so $q-2<-1$. Therefore, we have that $-\sqrt{3} \leq q-2<-1$. If we reflect all the disks in \mathcal{D} about the y-axis, then all the centers lie in the interval $[-q,|q-2|]$. Let $q^{\prime}=|q-2|$, and we compute the piercing points using $x=q^{\prime}$ and $x=q^{\prime}-2$ as in Case 1. Then the three computed points pierce \mathcal{D}.

2.2 A Lower Bound

We now present a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points. See Figure 6 for an illustration of these disks in a nutshell; details are given in Theorem 2.

Theorem 2 There exists a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points.

Proof. Follow Figure 7. We begin the construction by placing 3 unit disks D_{1}, D_{2}, D_{3} centered at $(0,0),(2,0),(1, \sqrt{3})$ respectively. These points are the

Figure 6: Nine unit disks that cannot be pierced by 2 points.

Figure 7: Illustration of the construction of a set of 9 pairwise intersecting unit disks that cannot be pierced by 2 points.
vertices of an equilateral triangle with side length 2 . Notice that these disks are pairwise tangent. We denote the center of D_{i} by c_{i}. Let C_{i} be the circle of radius 2 centered at c_{i}. The intersection of C_{1}, C_{2}, and C_{3} is a reuleaux triangle, which is illustrated in red in Figure 7. The center of any unit disk, that intersects D_{i}, lies in C_{i}. Therefore the center of any unit disk, that intersects the three disks D_{1}, D_{2}, and D_{3}, lies in the reuleaux triangle. We then introduce 6 more unit disks as follows where $\epsilon=0.01$:

- D_{1}^{\prime} with center $c_{1}^{\prime}=\left(2-\sqrt{4-\epsilon^{2}}, \epsilon\right)$ on C_{2}.
- $D_{1}^{\prime \prime}$ with center $c_{1}^{\prime \prime}=\left(\epsilon, \sqrt{3}-\sqrt{4-(\epsilon-1)^{2}}\right)$ on C_{3}.
- D_{2}^{\prime} with center $c_{2}^{\prime}=\left(2-\epsilon, \sqrt{3}-\sqrt{4-(\epsilon-1)^{2}}\right)$ on C_{3}.
- $D_{2}^{\prime \prime}$ with center $c_{2}^{\prime \prime}=\left(\sqrt{4-\epsilon^{2}}, \epsilon\right)$ on C_{1}.
- D_{3}^{\prime} with center $c_{3}^{\prime}=\left(1+\epsilon, \sqrt{4-(1+\epsilon)^{2}}\right)$ on C_{1}.
- $D_{3}^{\prime \prime}$ with center $c_{3}^{\prime \prime}=\left(1-\epsilon, \sqrt{4-(1+\epsilon)^{2}}\right)$ on C_{2}.

We show that $\mathcal{D}=\left\{D_{1}, D_{1}^{\prime}, D_{1}^{\prime \prime}, D_{2}, D_{2}^{\prime}, D_{2}^{\prime \prime}, D_{3}, D_{3}^{\prime}\right.$, $\left.D_{3}^{\prime \prime}\right\}$ is a desired set. Given the above coordinates of the centers of the disks in \mathcal{D}, one can simply verify that the distance between any two centers is at most 2 and thus the disks are pairwise intersecting.

Now we show that \mathcal{D} cannot be pierced by two points. For the sake of contradiction, suppose that $\left\{p_{1}, p_{2}\right\}$ pierces all disks in \mathcal{D}. Then one of these points pierces at least two of the disks D_{1}, D_{2} and D_{3}. Due to symmetry assume that p_{1} pierces D_{1} and D_{2} (as in Figure 7), and thus $p_{1}=(1,0)$ since $\left|c_{1} c_{2}\right|=2$. By our construction, p_{1} does not pierces $D_{1}^{\prime}, D_{2}^{\prime \prime}, D_{3}, D_{3}^{\prime}$ and $D_{3}^{\prime \prime}$. Thus, these disks are pierced by p_{2}, and in particular $p_{2} \in D_{1}^{\prime} \cap D_{2}^{\prime \prime} \cap D_{3}$. The circumscribed circle of the triangle $c_{1}^{\prime} c_{2}^{\prime \prime} c_{3}$ has radius 1.15 , which implies that the intersection of $D_{1}^{\prime}, D_{2}^{\prime \prime}$, and D_{3} is empty, which is a contradiction. This finishes our proof.

3 Piercing Pairwise Intersecting Arbitrary Disks

We now consider a set \mathcal{D} of pairwise intersecting disks of arbitrary sizes. Each disk $D_{i} \in \mathcal{D}$ is described by its center c_{i} and its radius r_{i}. Let D_{1} be the smallest disk in \mathcal{D}. We shrink D_{1} while fixing its center at c_{1} until D_{1} becomes tangent to another disk, say D_{2}. This can be done in linear time by computing the distance of c_{1} to all c_{i} 's and subtract the distances by the radius of the disks. In this new setting, disks in \mathcal{D} are still pairwise intersecting and any set of points that pierces the new set of disks also pierces the original set of disks. After scaling, rotation and translation, assume that D_{1} has radius 1 and is centered at the origin and D_{2} is centered on the positive y-axis; these transformations can be performed in linear time.

Figure 8: Configuration of Lemma 3.

Before showing our algorithm for finding the piercing set, we first present 2 geometric lemmas that will be proved later. See Figure 8 for the configuration outlined in the statement of Lemma 3 and Figure 9 for the configuration of Lemma 4. In the lemmas, we let $P_{1}=(0,0), P_{2}=(\sqrt{3}, 0), P_{3}=\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right), P_{4}=\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right)$, $P_{5}=(-\sqrt{3}, 0)$ and let $P=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$. Points $\left\{P_{2}, P_{3}, P_{4}, P_{5},\left(-\frac{\sqrt{3}}{2},-\frac{3}{2}\right),\left(\frac{\sqrt{3}}{2},-\frac{3}{2}\right)\right\}$ are the vertices of a regular hexagon with sides of length $\sqrt{3}$ centered at the origin. Specifically points P_{2} to P_{5} are the top 4 vertices of the regular hexagon; see Figure 10.

Figure 9: Configuration of Lemma 4.

Lemma 3 If the radius of D_{1} is 1 and the radius of D_{2} is at most $5+2 \sqrt{6}$, then P pierces \mathcal{D}.

Lemma 4 If the radius of D_{1} is 1 , the radius of D_{2} is larger than $5+2 \sqrt{6}$ and there exists at least one disk in \mathcal{D} that misses all the points in P, then we can find in constant time a different set of 5 points that pierces \mathcal{D}.

These two lemmas are sufficient for proving the existence of 5 piercing points for arbitrary disks.

3.1 Algorithm

1. Find the smallest disk $D_{1} \in \mathcal{D}$
2. Reduce the radius of D_{1} until D_{1} is tangent to a disk in \mathcal{D}, say D_{2}
3. By scaling, rotation and translation of \mathcal{D}, let the center of D_{1} be the origin and the radius of D_{1} be 1. Let D_{2} be centered on the y-axis above D_{1}
4. If $r_{2} \leq 5+2 \sqrt{6}$, then P pierces \mathcal{D}
5. If $r_{2}>5+2 \sqrt{6}$ and there exist at least one disk in \mathcal{D} that misses all the 5 points in P, then by Lemma 4 , we find another set of 5 points that pierces \mathcal{D} in constant time.

Theorem 5 Given a set of pairwise intersecting arbitrary disks in the plane, in deterministic linear time, we can find 5 points that pierce the set.

Figure 10: The first candidate set of 5 points.

Proof. Let \mathcal{D} be a set of pairwise intersecting arbitrary disks. If we apply algorithm as depicted in Section 3.1 on \mathcal{D}, it will return 5 points. If $r_{2} \leq 5+2 \sqrt{6}$, by Lemma $3, P$ pierces \mathcal{D}. If $r_{2}>5+2 \sqrt{6}$ and there exists at least one disk in \mathcal{D} that is not pierced by any of the 5 points in P, then by Lemma 4 we can find 5 points that pierce \mathcal{D}.

The correctness of the algorithm comes from Lemma 3 and Lemma 4, which we prove in Section 3.2 and Section 3.3, respectively. Step 1 of the algorithm clearly takes linear time. Step 2 can also be completed in linear time by computing the distance from c_{1} to all other centers in D. Step 3 takes linear time. The points P_{1} to P_{5} can be obtained in constant time after the transformation. Then checking whether these 5 points are sufficient takes linear time. If these 5 points are not sufficient, then by Step 5, we can compute a new set of 5 points that pierce \mathcal{D} in constant time.

We now present a definition that will be used in Section 3.2 and Section 3.3.

Definition 1 (Between) Let A and B be two intersecting disks, and let p and q be two points in the plane. Let the center of A (resp. B) be a (resp. b). We say that A intersects B between p and q if the following two conditions hold:

- Line segment ab intersects line segment pq.
- Both p and q lie outside A.

3.2 Proof for Lemma 3

Proof. Recall points P_{1} to P_{5} where $P_{1}=(0,0), P_{2}=$ $(\sqrt{3}, 0), P_{3}=\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right), P_{4}=\left(-\frac{\sqrt{3}}{2}, \frac{3}{2}\right), P_{5}=(-\sqrt{3}, 0)$; see Figure 10. We now argue that these 5 points pierce \mathcal{D} when $r_{2} \leq 5+2 \sqrt{6}$. Let t_{1} be the line with a positive slope that is tangent to D_{1} and passing through P_{2}. The equation of t_{1} is $t_{1}=\frac{\sqrt{2}}{2} x-\frac{\sqrt{6}}{2}$. Let t_{2} be the line with a negative slope that is tangent to D_{1} and passing

Figure 11: $\{A, B, C\}$ are three pairwise intersecting disks. A intersects B between p and q. C intersects B, but not between p and q since $p q$ and $b c$ do not cross.
through P_{5}. The equation of t_{2} is $t_{2}=-\frac{\sqrt{2}}{2} x-\frac{\sqrt{6}}{2}$. Since D_{2} is centered on the positive y-axis, D_{2} is tangent to both t_{1} and t_{2} when $r_{2}=5+2 \sqrt{6}$. Therefore, when $r_{2} \leq 5+2 \sqrt{6}, D_{2}$ falls above t_{1} and t_{2}.

We first prove that any disk whose center falls in the first or the second quadrant is pierced by P. Let $D_{i} \in \mathcal{D}$ be a disk with center c_{i} and radius r_{i} where c_{i} falls in the first or the second quadrant. Since D_{1} is the smallest disk in \mathcal{D}, we have that $r_{i} \geq 1$. Since points $P_{2}, P_{3}, P_{4}, P_{5}$ are the vertices of a regular hexagon, there must exist a $j \in\{2,3,4,5\}$ such that $\angle P_{j} P_{1} c_{i} \leq \frac{\pi}{6}$. Let $\theta=\angle P_{j} P_{1} c_{i}$. By the law of cosines,

$$
\begin{equation*}
\left|c_{i} P_{j}\right|^{2}=\left|c_{i} P_{1}\right|^{2}+\left|P_{1} P_{j}\right|^{2}-2\left|c_{i} P_{1}\right|\left|P_{1} P_{j}\right| \cos (\theta) \tag{1}
\end{equation*}
$$

$\left|P_{1} P_{j}\right|=\sqrt{3}$ since these points all have distance $\sqrt{3}$ to the origin. $\left|c_{i} P_{1}\right| \leq r_{i}+1$ since D_{i} and D_{1} intersect. We have that $\cos (\theta) \geq \cos \left(\frac{\pi}{6}\right)$ since $\theta \leq \frac{\pi}{6}$. Therefore, $-2\left|c_{i} P_{1} \| P_{1} P_{j}\right| \cos (\theta) \leq-2\left|c_{i} P_{1}\right|\left|P_{1} P_{j}\right| \cos \left(\frac{\pi}{6}\right)$. By replacing terms in equation 1 , we get

$$
\begin{align*}
\left|c_{i} P_{j}\right|^{2} & \leq\left|c_{i} P_{1}\right|^{2}+(\sqrt{3})^{2}-2 \sqrt{3}\left|c_{i} P_{1}\right| \cos \left(\frac{\pi}{6}\right) \\
& \leq\left|c_{i} P_{1}\right|^{2}+3-3\left|c_{i} P_{1}\right| \tag{2}\\
& \leq\left(\left|c_{i} P_{1}\right|-1\right)^{2}-\left|c_{i} P_{1}\right|+2
\end{align*}
$$

When $\left|c_{i} P_{1}\right| \geq 2,\left(\left|c_{i} P_{1}\right|-1\right)^{2}-\left|c_{i} P_{1}\right|+2 \leq r_{i}^{2}+2-$ $\left|c_{i} P_{1}\right| \leq r_{i}^{2}$. Therefore, $\left|c_{i} P_{j}\right| \leq r_{i}$ and D_{i} contains P_{j}. If $\left|c_{i} P_{1}\right| \leq 1, c_{i}$ falls in D_{1}. Then D_{i} is pierced by P_{1} since $r_{i} \geq 1$.

Now let us consider the case when $1<\left|c_{i} P_{1}\right|<2$. Let $f(x)$ be the parabola $x^{2}-3 x+3$. The vertex of $f(x)$ is $\left(\frac{3}{2}, \frac{3}{4}\right)$. Therefore, when $1<x \leq \frac{3}{2}, \frac{3}{4} \leq f(x)<1$. Similarly, when $\frac{3}{2} \leq x<2, \frac{3}{4} \leq f(x)<1$. Combining these results together, we have that $f(x)<1$ when $1<$ $x<2$. Let $\left|c_{i} P_{1}\right|=x$, then we have that $\left|c_{i} P_{j}\right|^{2} \leq$ $f(x)<1$. Therefore, $\left|c_{i} P_{j}\right|<1$ and P_{j} pierces D_{i} since $r_{i} \geq 1$.

We now show that any disk in \mathcal{D} whose center falls in the third or fourth quadrant is pierced by at least one of $\left\{P_{1}, P_{2}, P_{5}\right\}$. If all disks are pierced by at least one of these points, then we are done. So we assume that there exists at least one disk, say D_{3}, that is not pierced by any of these three points. Since D_{2} lies completely above t_{1} and t_{2}, D_{3} must intersect D_{2} between P_{1} and P_{2} or between P_{1} and P_{5}. D_{3} 's radius is at least 1 since otherwise it contradicts the assumption that D_{1} is the smallest disk in \mathcal{D}. Then D_{3} does not cross the $y=1$ line. D_{2} lies completely above the $y=1$ line, so D_{3} does not intersect D_{2} and we have a contradiction. Therefore, any disk in \mathcal{D} whose center falls in the third or fourth quadrant is pierced by one of $\left\{P_{1}, P_{2}, P_{5}\right\}$.

3.3 Proof for Lemma 4

Proof. Recall the lines t_{1}, t_{2}, and the point set P from the proof of Lemma 3. Since $r_{2}>5+2 \sqrt{6}, D_{2}$ intersects both t_{1} and t_{2}. We assumed that there exists at least one disk, say $D_{3} \in \mathcal{D}$ that is not pierced by P. D_{3} intersects both D_{1} and D_{2}. The center c_{3} of D_{3} cannot lie in the first or second quadrant since otherwise it must contain one point of P as was shown Section 3.2. Up to symmetry we may assume that the center c_{3} lies in the fourth quadrant, and thus it intersects D_{2} to the right side of the y-axis. This setting is depicted in Figure 12 (a).

Since the interior of D_{1} lies completely below the line $y=1$ and the interior of D_{2} lies completely above this line, any disk in $\mathcal{D} \backslash\left\{D_{1}, D_{2}\right\}$ must cross this line in order to intersect both D_{1} and D_{2}. Since D_{3} misses P, then D_{3} must lie completely below the polygonal line

$$
\ell: \begin{cases}y=0, & x \leq \sqrt{3} \\ t_{1}, & x>\sqrt{3}\end{cases}
$$

as shown in Figure 12(a). If D_{3} crosses ℓ when $x \leq \sqrt{3}$, then either D_{3} contains one of $\left\{P_{1}, P_{2}, P_{5}\right\}$ or it does not intersect with D_{2}. If D_{3} crosses ℓ when $x>\sqrt{3}$, then either D_{3} contains P_{2} or it does not intersect with D_{1}. Therefore, any disk in \mathcal{D} whose center falls above ℓ must cross ℓ in order to intersect with D_{3}.

We are going to construct a point set $P^{\prime}=$ $\left\{P_{6}, P_{7}, P_{8}, P_{9}, P_{10}\right\}$ that pierces \mathcal{D}. Set $P_{6}=(0,-3)$. In the rest of the proof we describe how to obtain P_{7}, P_{8}, P_{9}, and P_{10}; the coordinates of these points are given in Appendix B. Let C_{1} (resp. C_{2}) be the circle passing through P_{6} that is tangent to disk D_{1} and line $y=1$ in the left side (resp. right side) of the y-axis, as in Figure 12(b). Let C_{3} be the circle that is centered above $y=1$ and that is tangent to the disk D_{1}, the line t_{1} and to the x-axis. The disks C_{1} and C_{3} intersect at two points, where we pick the intersection point that is closer to the origin as the point P_{7}; see Figure 12(c).

(a) Boundaries that disks in \mathcal{D} must cross.

(c) Location of P_{7}.

(e) Location of P_{9}.

(b) Location of P_{6}.

(d) Location of P_{8}.

(f) Location of P_{10}.

Figure 12: Illustration of the proof for Lemma 4.

Now let C_{4} be a circle of radius 1 that passes though P_{7} and that is tangent to the x-axis, and let C_{5} be a circle of radius 1 that passes through P_{7} and that is tangent to the the line $y=1$. The point P_{8} is the intersection point between C_{4} and C_{5} that is different from P_{7}. See Figure 12(d) for an illustration.
To obtain P_{9}, let C_{6} be a circle of radius 1 that passes through P_{8} and that is tangent to the line $y=1$. The intersection point of C_{2} and C_{6} that falls in the first quadrant is P_{9}, as depicted in Figure 12(e). To obtain P_{10}, we draw a circle C_{7} of radius 1 through P_{9} and tangent to D_{1}. The point P_{10} is the intersection point of C_{3} and C_{7} that is closer to the origin, as in Figure 12(f).
Now that all five points in P^{\prime} have been introduced, we are going to show that these five points pierce all disks \mathcal{D}. Consider the convex quadrilateral formed by
P_{6}, P_{7}, P_{9}, and P_{10}, as in Figure 13. These four points pierce any disk of \mathcal{D} whose center lies outside the quadrilateral, because any such disk must intersect D_{1}.

- C_{3} is tangent to ℓ and D_{1}, and both P_{7} and P_{10} lie on C_{3}. If a disk D_{4} in \mathcal{D} intersects D_{1} between P_{7} and P_{10}, D_{4} cannot cross ℓ. Since D_{3} lies completely below ℓ, D_{4} does not intersect D_{3} and it violates the pairwise intersecting property of \mathcal{D}.
- Both P_{6} and P_{7} lie on C_{1}, and C_{1} is tangent to the $y=1$ line. If a disk D_{4} intersects D_{1} between P_{6} and P_{7}, then D_{4} does not intersect D_{2} and again contradicts our assumption that the disks in \mathcal{D} are pairwise intersecting. Using a similar argument, we can also prove that there cannot exist a disk in \mathcal{D} that intersects D_{1} between P_{6} and P_{9}.
- Any disk that intersects with D_{1} between P_{9} and P_{10} must contain one of these two points. Otherwise, its radius is smaller than 1 , contradicting the fact that D_{1} is the smallest disk.

Figure 13: The points $P_{6}, P_{7}, P_{9}, P_{10}$ form a quadrilateral that contains D_{1}.

Now we show how the disks of \mathcal{D} centered inside the quadrilateral are pierced by points in P^{\prime}. We divide the quadrilateral into four triangles, as in Figure 13.

- P_{7} and P_{8} both lie on C_{5} and the radius of C_{5} is 1 . Therefore, any disk whose center lies in $\triangle P_{6} P_{7} P_{8}$ must contain one of P_{7} or P_{8} in order to intersect with D_{2}, otherwise its radius is smaller than 1.
- Similarly, P_{7} and P_{8} both lie on C_{4} and the radius of C_{4} is also 1. Therefore, any disk whose center lies in $\triangle P_{7} P_{8} P_{10}$ must contain one of P_{7} and P_{8} in order to intersect with D_{3}.
- Any disk whose center lies in $\triangle P_{8} P_{9} P_{10}$ must contain one of these three vertices because the diameter of this triangle is at most 2 .
- Any disk whose center falls in $\triangle P_{6} P_{8} P_{9}$ must contain one of P_{8} and P_{9} in order to intersect D_{2}, otherwise its radius is smaller than 1 since C_{6} has radius 1 and both P_{8} and P_{9} lie on C_{6}.

Given D_{1}, D_{2}, t_{1}, and t_{2}, the point set P^{\prime} can be found in constant time.

4 Conclusion

In this paper, we gave two simple linear time algorithms for finding 3 piercing points and 5 piercing points for pairwise intersecting unit disks and pairwise intersecting arbitrary disks, respectively. However, it is still not known whether we can find an algorithm for finding a piercing point set of size 4 for any set of pairwise intersecting arbitrary disks without solving an LP-type problem. For the lower bound, the remaining open question is whether any set of 9 pairwise intersecting disks
can be pierced by 3 points or not, as it is known that any set of 8 pairwise intersecting disks can be pierced by 3 points [10]. Another interesting open question is whether we can find an efficient algorithm that decides the optimal number of piercing points for any set of pairwise intersecting arbitrary disks.

References

[1] P. Carmi, M. J. Katz, and P. Morin. Stabbing pairwise intersecting disks by four points. CoRR, abs/1812.06907, 2018.
[2] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension. Journal of Algorithms, 21(3):579 - 597, 1996.
[3] L. Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. Studia Scientiarum Mathematicarum Hungarica, 21(1-2):111-134, 1986.
[4] B. Grünbaum. On intersections of similar sets. Portugal. Math., 18:155-164, 1959.
[5] H. Hadwiger and H. Debrunner. Ausgewählte Einzelprobleme der kombinatorischen Geometrie in der Ebene. Enseignement Math. (2), 1:56-89, 1955.
[6] S. Har-Peled, H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir, and M. Willert. Stabbing pairwise intersecting disks by five points. Discret. Math., $344(7): 112403,2021$.
[7] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175-176, 1923.
[8] E. Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatshefte für Mathematik, 37(1):281-302, 1930.
[9] J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica, 16(4/5):498-516, 1996.
[10] L. Stachó. Über ein Problem für Kreisscheibenfamilien. Acta Scientiarum Mathematicarum (Szeged), 26:273282, 1965.
[11] L. Stachó. A solution of Gallai's problem on pinning down circles. Mat. Lapok, 32(1-3):19-47, 1981/84.

A Coordinates of points in Theorem 1

Here are the coordinates of points in the proof of Theorem 1:

$$
\begin{gathered}
A=\left(x_{3}, \sqrt{4-x_{3}^{2}}+r_{1}-1\right) \\
B=\left(x_{3},-\sqrt{4-x_{3}^{2}}+r_{1}+1\right) \\
P_{1}=\left(x_{3}-\sqrt{\left.2 \sqrt{4-x_{3}^{2}}+x_{3}^{2}-4, r_{1}\right)}\right. \\
P_{2}=\left(x_{3}-\frac{5}{4}, r_{1}+\frac{1}{2}\right) \\
P_{3}=\left(x_{3}-\frac{5}{4}, r_{1}-\frac{1}{2}\right)
\end{gathered}
$$

B Coordinates of points in Lemma 4

For each point P_{i}, let x_{i} be its x-coordinate and y_{i} be its y-coordinate, and for each circle C_{i}, let $\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$ be its center and r_{i}^{\prime} be its radius. Here are the coordinates of points P_{i} and equations of circles C_{i} :

$$
\begin{aligned}
& P_{6}=(0,-3) \\
& C_{1}:(x+4)^{2}+(y+3)^{2}=16 \\
& C_{2}:(x-4)^{2}+(y+3)^{2}=16 \\
& C_{3}:\left(x-x_{3}^{\prime}\right)^{2}+\left(y-y_{3}^{\prime}\right)^{2}=\left(r_{3}^{\prime}\right)^{2} \\
& x_{3}^{\prime}=-\sqrt{1+2 r_{3}^{\prime}}, y_{3}^{\prime}=r_{3}^{\prime} \\
& r_{3}^{\prime}=\frac{16-4 \sqrt{6}+\sqrt{(16-4 \sqrt{6})^{2}-16(\sqrt{6}-2)^{2}}}{2(\sqrt{6}-2)^{2}} \\
& P_{7}=\left(\frac{\left(-2 r_{3}^{\prime}-6\right) y_{7}+\left(x_{3}^{\prime}\right)^{2}-9}{2 x_{3}^{\prime}+8}, \frac{-b_{7}+\sqrt{b_{7}^{2}-4 a_{7} c_{7}}}{2 a_{7}}\right) \\
& a_{7}=\left(-2 r_{3}^{\prime}-6\right)^{2}+\left(2 x_{3}^{\prime}+8\right)^{2} \\
& b_{7}=2\left(-2 r_{3}^{\prime}-6\right)\left(\left(x_{3}^{\prime}\right)^{2}-9\right)+8\left(2 x_{3}^{\prime}+8\right)\left(-2 r_{3}^{\prime}-6\right)+6\left(2 x_{3}^{\prime}+8\right)^{2} \\
& c_{7}=\left(\left(x_{3}^{\prime}\right)^{2}-9\right)^{2}+8\left(2 x_{3}^{\prime}+8\right)\left(\left(x_{3}^{\prime}\right)^{2}-9\right)+9\left(2 x_{3}^{\prime}+8\right)^{2} \\
& C_{4}:\left(x-\sqrt{2 y_{7}-y_{7}^{2}}-x_{7}\right)^{2}+(y-1)^{2}=1 \\
& C_{5}:\left(x-\sqrt{1-y_{7}^{2}}-x_{7}\right)^{2}+y^{2}=1 \\
& P_{8}=\left(\frac{2 y_{8}+q_{1}}{q_{2}}, \frac{-b_{8}-\sqrt{b_{8}^{2}-4 a_{8} c_{8}}}{2 a_{8}}\right) \\
& q_{1}=\left(\sqrt{1-y_{7}^{2}}+x_{7}\right)^{2}-\left(-\sqrt{2 y_{7}-y_{7}^{2}}-x_{7}\right)^{2}-1 \\
& q_{2}=2\left(\sqrt{1-y_{7}^{2}}+x_{7}\right)-2\left(\sqrt{2 y_{7}-y_{7}^{2}}+x_{7}\right)
\end{aligned}
$$

$$
\begin{gathered}
a_{8}=4+q_{2}^{2} \\
b_{8}=4 q_{1}-4 q_{2}\left(\sqrt{1-y_{7}^{2}}+x_{7}\right)
\end{gathered}
$$

$$
c_{8}=q_{1}^{2}+q_{2}^{2}\left(\sqrt{1-y_{7}^{2}}+x_{7}\right)^{2}-2 q_{1} q_{2}\left(\sqrt{1-y_{7}^{2}}+x_{7}\right)-q_{2}^{2}
$$

$$
C_{6}:\left(x-\sqrt{1-y_{8}^{2}}-x_{8}\right)^{2}+y^{2}=1
$$

$$
P_{9}=\left(\frac{-b_{9}+\sqrt{b_{9}^{2}-4 a_{9} c_{9}}}{2 a_{9}}, \frac{q_{3} x_{9}+q_{4}}{6}\right)
$$

$$
q_{3}=8-2\left(\sqrt{1-y_{8}^{2}}+x_{8}\right)
$$

$$
q_{4}=\left(\sqrt{1-y_{8}^{2}}+x_{8}\right)^{2}-10
$$

$$
a_{9}=36+q_{3}^{2}
$$

$$
b_{9}=2 q_{3} q_{4}+36 q_{3}-288
$$

$$
c_{9}=q_{4}^{2}+36 q_{4}+324
$$

C_{7} is centered at

$$
\begin{gathered}
\left(\sqrt{4-\left(y_{7}^{\prime}\right)^{2}}, \frac{-b_{10}+\sqrt{b_{10}^{2}-4 a_{10} c_{10}}}{2 a_{10}}\right) \\
a_{10}=4 x_{9}^{2}+4 y_{9}^{2} \\
b_{10}=-4 y_{9}\left(x_{9}^{2}+y_{9}^{2}+3\right) \\
c_{10}=\left(x_{9}^{2}+y_{9}^{2}+3\right)^{2}-16 x_{9}^{2}
\end{gathered}
$$

$$
P_{10}=\left(x_{7}^{\prime}-\sqrt{1-\left(y_{10}-y_{7}^{\prime}\right)^{2}}, \frac{-b_{11}-\sqrt{b_{11}^{2}-4 a_{11} c_{11}}}{2 a_{11}}\right)
$$

$$
q_{5}=\left(x_{7}^{\prime}\right)^{2}+\left(y_{7}^{\prime}\right)^{2}-\left(x_{3}^{\prime}\right)^{2}-\left(y_{3}^{\prime}\right)^{2}+\left(r_{3}^{\prime}\right)^{2}-1-\left(2 x_{7}^{\prime}-2 x_{3}^{\prime}\right) x_{7}^{\prime}
$$

$$
a_{11}=\left(2 y_{3}^{\prime}-2 y_{7}^{\prime}\right)^{2}+\left(2 x_{7}^{\prime}-2 x_{3}^{\prime}\right)^{2}
$$

$$
b_{11}=2 q_{5}\left(2 y_{3}^{\prime}-2 y_{7}^{\prime}\right)-2 y_{7}^{\prime}\left(2 x_{7}^{\prime}-2 x_{3}^{\prime}\right)^{2}
$$

$$
c_{11}=q_{5}^{2}+\left(\left(y_{7}^{\prime}\right)^{2}-1\right)\left(2 x_{7}^{\prime}-2 x_{3}^{\prime}\right)^{2}
$$

[^0]: *Research supported in part by NSERC.
 ${ }^{\dagger}$ School of Computer Science, University of Windsor, Windsor, Canada. ahmad.biniaz@gmail.com
 ${ }^{\ddagger}$ School of Computer Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca, yunkai@scs.carleton.ca

