
Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Succinct and I/O Efficient Data Structures for
Traversal in Trees

Craig Dillabaugh Meng He Anil Maheshwari

School of Computer Science, Carleton University, Ottawa, Ontario, Canada

October 16, 2008

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Outline

1 Preliminaries
Succinct Data Structures
External Memory Model

2 Our Contributions

3 Bottom Up Traversal
Navigation
Analysis
Results

4 Top Down Traversal
Navigation
Results

5 Open Problems

6 References

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Outline

1 Preliminaries
Succinct Data Structures
External Memory Model

2 Our Contributions

3 Bottom Up Traversal
Navigation
Analysis
Results

4 Top Down Traversal
Navigation
Results

5 Open Problems

6 References

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Outline

1 Preliminaries
Succinct Data Structures
External Memory Model

2 Our Contributions

3 Bottom Up Traversal
Navigation
Analysis
Results

4 Top Down Traversal
Navigation
Results

5 Open Problems

6 References

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Outline

1 Preliminaries
Succinct Data Structures
External Memory Model

2 Our Contributions

3 Bottom Up Traversal
Navigation
Analysis
Results

4 Top Down Traversal
Navigation
Results

5 Open Problems

6 References

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Outline

1 Preliminaries
Succinct Data Structures
External Memory Model

2 Our Contributions

3 Bottom Up Traversal
Navigation
Analysis
Results

4 Top Down Traversal
Navigation
Results

5 Open Problems

6 References

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Outline

1 Preliminaries
Succinct Data Structures
External Memory Model

2 Our Contributions

3 Bottom Up Traversal
Navigation
Analysis
Results

4 Top Down Traversal
Navigation
Results

5 Open Problems

6 References

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Succinct Data Structures

Succinct data structures seek to encode data structures using
space as near information theoretical bounds as possible.

There are
(2n

n

)
/(n + 1) binary(ordinal) trees on N nodes,

approaches have been proposed to represent such trees in
2N + o(N) bits.

Level order binary marked (LOBM) binary trees Jacobson [4].

Balanced parenthesis sequences Munro and Raman [5].

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Level Order Binary Marked

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Balanced Parentheses

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Binary Rank/Select

Given a bit-vector B we define the following operations:

rank1(B, i) and rank0(B, i) return the number of 1s and 0s
in B[1..i], respectively.

select1(B, r) and select0(B, r) return the position of the
r th occurrences of 1 and 0, respectively.

Lemma

A bit vector B of length N can be represented using either: (a)
N + o(N) bits, or (b) dlg

(N
R

)
e+ O(N lg lg N/ lg N) bits, where R is

the number of 1s in B, to support the access to each bit, rank and
select in O(1) time (or O(1) I/Os in external memory).

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

External Memory Model

The I/O model of Aggarwal and Vitter [1] splits memory into
fast, but finite internal memory, and slow, but infinite external
memory (EM).

Algorithms evaluated in terms of number of I/O operations
(block transfers) required to complete a process.

Blocking of data structures refers to partitioning data into
blocks that can be transfered in a single I/O operation.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Our Contributions

Our goal is to develop data structures that are both succinct
and efficient in the EM setting.

We have two main results:

A succinct encoding of arbitrary degree trees that permits
bottom-up traversal in asymptotically optimal I/Os.
A succinct encoding of binary trees that permits top-down
traversal in asymptotically optimal I/Os.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Problem Statement - Bottom Up Traversal

Given a rooted tree T and a node v ∈ T report the path from
v to the root of T .

By representing T in a succinct fashion we improve upon the
space bound while maintaining the optimal asymptotic bound
on I/Os.

Lemma

A rooted tree T can be stored in O(N/B) blocks on disk such that
a bottom-up path of length K in T can be traversed in K/τB
I/Os, where 0 < τ < 1 is a constant. (Hutchinson et al. [3])

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Duplicate Paths

Property 1: Given a block (or superblock) Y , for any node x in Y
there exists a path from x to either the top of its layer, or to the
duplicate path of Y , which consists entirely of nodes in Y .

1 Select as the duplicate path the path from the vertex of
minimum preorder number.

2 A duplicate path is stored for each block.

3 The duplicate path of the first block in a superblock is the
superblock duplicate path.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Proof

v

x

y

x′

y′

Tv T ′
x

Case 1 Case 2

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Block Encoding

Each block is encoded by three data structures:

1 Tree structure is encoded using a balanced parentheses
sequence.

2 The duplicate path is encoded as an array, Dp[j], 1 < j < τB.
Duplicate paths for superblocks store the preorder value
within the slice. Duplicate paths for regular blocks store
preorder value within the superblock.

3 The root-to-path array Rp[j], 1 < j < τB encodes the
information required to map the roots of subtrees created by
the blocking to nodes on the duplicate path or top of the layer.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating within a block

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating a within a block

1

2

3

4

5 6

7

8

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating a within a block

[7]

[4]

[2]

[1]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

1

2

4

7

Dp

1

2

3

4

5 6

7

8

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating a within a block

[7]

[4]

[2]

[1]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

1

2

4

7

Dp

() () ((() ()) (()))

1 5 6 8

3

2

4 7

2

1

1

1

Rp

1

2

3

4

5 6

7

8

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating between blocks - Identifying Nodes

1 For the node v ∈ T on layer `v , let pv be its preorder number
within `v .

2 Each node in T is uniquely represented by the pair (`v , pv).

3 Let π define the lexicographic order on these pairs.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating Between Blocks

1
2

3 4

5

6

7
8 9

10 11

12

Li−1

Li

Li+1

... 1000 0010 0000 1000 0100 1000 ..

Vfirst

Vparent

Vfirst child

... 1000 0000 0000 1000 0000 0000 ..

... 0001 0100 0010 0000 0000 0000 ..

Li−1 Li Li+1

61 4 9 12

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating Between Blocks

1
2

3 4

5

6

7
8 9

10 11

12

Li−1

Li

Li+1

... 1000 0010 0000 1000 0100 1000 ..

Vfirst

Vparent

Vfirst child

... 1000 0000 0000 1000 0000 0000 ..

... 0001 0100 0010 0000 0000 0000 ..

Li−1 Li Li+1

61 4 9 12

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating Between Blocks

1
2

3 4

5

6

7
8 9

10 11

12

Li−1

Li

Li+1

... 1000 0010 0000 1000 0100 1000 ..

Vfirst

Vparent

Vfirst child

... 1000 0000 0000 1000 0000 0000 ..

... 0001 0100 0010 0000 0000 0000 ..

Li−1 Li Li+1

61 4 9 12

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigating Between Blocks

1
2

3 4

5

6

7
8 9

10 11

12

Li−1

Li

Li+1

... 1000 0010 0000 1000 0100 1000 ..

Vfirst

Vparent

Vfirst child

... 1000 0000 0000 1000 0000 0000 ..

... 0001 0100 0010 0000 0000 0000 ..

Li−1 Li Li+1

61 4 9 12

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Space Requirements

The total space required by the data structure is:

1 Space to store the tree succinctly: 2N bits.

2 Space to store the bitvectors for navigating between layer:
o(N)

3 Space to store the duplicate paths: 12τN
logB N

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Space Requirements for Duplicate Paths

Duplicate paths store arrays with entries of size dlg Ne
(superblocks) or dlg Be (blocks).

Our analysis is based on assumption of fixed size full
blocks/superblocks.

We cannot guarantee this so we use non-full leading
blocks/superblocks.

We use another set of bit vectors (o(N)) to enable
packing/lookup of non-full leading blocks.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Results

Space Requirements:

2N + εN
logB N + o(N) when 0 < ε < 1.

I/O Efficiency:

Given a node-to-root path of length K the path can be
reported in O(K/B) I/Os

Corollary

A tree T on N nodes with q-bit keys can be represented in

(2 + q)N + q ·
[

6τN
dlogB Ne + 2τqN

dlg Ne + o(N)
]

bits such that given a

node-to-root path of length K, that path can be reported in
O(τK/B) I/Os, when 0 < τ < 1.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Traversal: Problem Statement

Given a binary tree T in which every node is associated with a
q-bit key, we wish to traverse a top-down path of lenght K
starting at the root of T and terminating at some node v ∈ T

Lemma

For a binary tree T , a traversal from the root to a node of depth
K requires the following number of I/Os:

1 Θ(K/ lg(1 + B)), when K = O(lg N),

2 Θ(lg N/(lg(1 + B lg N/K))), when K = Ω(lg N) and
K = O(B lg N), and

3 Θ(K/B), when K = Ω(B lg N).
Due to Demaine et al [2]

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Blocking in two phases.

Phase 1 blocks the topmost
c lg N, 0 < c < 1 layers.

Block the first blg (A + 1)c
levels of T .

Remove blocked nodes and
repeat until c lg N levels are
blocked.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Blocking in two phases.

Phase 1 blocks the topmost
c lg N, 0 < c < 1 layers.

Block the first blg (A + 1)c
levels of T .

Remove blocked nodes and
repeat until c lg N levels are
blocked.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Blocking in two phases.

Phase 1 blocks the topmost
c lg N, 0 < c < 1 layers.

Block the first blg (A + 1)c
levels of T .

Remove blocked nodes and
repeat until c lg N levels are
blocked.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy

Blocking in two phases.

Phase 1 blocks the topmost
c lg N, 0 < c < 1 layers.

Block the first blg (A + 1)c
levels of T .

Remove blocked nodes and
repeat until c lg N levels are
blocked.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Blocking Strategy: Phase 2

x

l(x)
(A − 1) · w(r(x))

w(x)

(A − 1) · w(l(x))
w(x)

r(x)

Remaining nodes are blocked
recursively.

At node x let w(x) be the size
of the subtree rooted at x .

For a block with remaining
capacity A, add x and
subdivide remaining capacity
among x ’s subtrees
proportional to their weights.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

1

2 3 4

5

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

1

2 3 4

5

1 2

3 4 5 6

7

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

1

2 3 4

5

1 2

3 4 5 6

7

Real node

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

1

2 3 4

5

1 2

3 4 5 6

7

Real node

Dummy node

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

1

2 3 4

5

1 2

3 4 5 6

7

Dummy root

Real node

Dummy node

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Block Representation

Each internal tree block stores:

The set of keys for this block (array).

The tree structure, using LOBM representation.

The dummy offset

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Dummy node ordering and dummy offset

Let Γ be a total order over the set of all dummy nodes in
internal blocks. In Γ the order of dummy node d is
determined first by its block number, and second by its
position within the succinct representation for its block.

The dummy offset records the position in Γ of the first
dummy node in a block.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigate between internal blocks

Bit Vector Internal Dummy Roots (X)

1

2 3 4

5

1 2

3 4 5 6

7

Dummy root

Real node

Dummy node Bit Encoding (Block 1)

1111 0111 0000 1000 0

. . . 0000 0101 1 . . .

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigate between internal blocks

Bit Vector Internal Dummy Roots (X)

1

2 3 4

5

1 2

3 4 5 6

7

Dummy root

Real node

Dummy node Bit Encoding (Block 1)

1111 0111 0000 1000 0

. . . 0000 0101 1 . . .

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigate between internal blocks

Bit Vector Internal Dummy Roots (X)

1

2 3 4

5

1 2

3 4 5 6

7

Dummy root

Real node

Dummy node Bit Encoding (Block 1)

1111 0111 0000 1000 0

. . . 0000 0101 1 . . .

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Navigate between internal-terminal blocks

Similar to navigation between internal blocks.

Use a separate bitvector S to identify roots of terminal blocks.

Blocks may be non-full so they are packed together on disk,
requiring an additional o(N) bit array to identify block
locations.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Results

Space requirements:

For a rooted binary tree of size N with keys of size
q = O(lg N) bits we store T in (3 + q)N + o(N) bits.

I/O Efficiency:

A root to node path of length K can be reported with:

1 O
(

K
lg(1+(B lg N)/q)

)
I/Os, when K = O(lg N)

2 O

(
lg N

lg(1+ B lg2 N
qK)

)
I/Os, when K = Ω(lg N) and

K = O
(

B lg2 N
q

)
, and

3 O
(

qK
B lg N

)
I/Os, when K = Ω

(
B lg2 N

q

)
.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Corollary

Given a rooted binary tree, T , of size N, with keys of size q = O(1)
bits, T can be stored using 3N + o(n) bits in such a manner that a
root to node path of length K can be reported with:

1 O
(

K
lg(1+(B lg N))

)
I/Os when K = O(lg N)

2 O

(
lg N

lg(1+B lg2 N
K

)

)
I/Os when K = Ω(lg N) and

K = O
(
B lg2 N

)
, and

3 O
(

K
B lg N

)
I/Os when K = Ω(B lg2 N).

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Open Problems

Top-down traversal in trees of higher bounded degree.

Improve the I/O bound for bottom-up from O(K/B) to
O(K/A) I/Os where A is the number of nodes that can be
represented succinctly in a block.

Improving constants in asymptotic terms for traversal.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

References

Alok Aggarwal and S. Vitter Jeffrey.
The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

Erik D. Demaine, John Iacono, and Stefan Langerman.
Worst-case optimal tree layout in a memory hierarchy.
arXiv:cs/0410048v1 [cs:DS], 2004.

David A Hutchinson, Anil Maheshwari, and Norbert Zeh.
An external memory data structure for shortest path queries.
Discrete Applied Mathematics, 126:55–82, 2003.

Guy Jacobson.
Space-efficient static trees and graphs.
FOCS, 42:549–554, 1989.

J. Ian Munro and Venkatesh Raman.
Succinct representation of balanced parentheses and static
trees.
SIAM J. Comput., 31(3):762–776, 2001.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees

	Outline
	Preliminaries
	Succinct Data Structures
	External Memory Model

	Our Contributions
	Bottom Up Traversal
	Navigation
	Analysis
	Results

	Top Down Traversal
	Navigation
	Results

	Open Problems
	References

