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Succinct Data Structures

Succinct data structures seek to encode data structures using
space as near information theoretical bounds as possible.

There are
(2n

n

)
/(n + 1) binary(ordinal) trees on N nodes,

approaches have been proposed to represent such trees in
2N + o(N) bits.

Level order binary marked (LOBM) binary trees Jacobson [4].

Balanced parenthesis sequences Munro and Raman [5].
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Level Order Binary Marked
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Balanced Parentheses
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Binary Rank/Select

Given a bit-vector B we define the following operations:

rank1(B, i) and rank0(B, i) return the number of 1s and 0s
in B[1..i ], respectively.

select1(B, r) and select0(B, r) return the position of the
r th occurrences of 1 and 0, respectively.

Lemma

A bit vector B of length N can be represented using either: (a)
N + o(N) bits, or (b) dlg

(N
R

)
e+ O(N lg lg N/ lg N) bits, where R is

the number of 1s in B, to support the access to each bit, rank and
select in O(1) time (or O(1) I/Os in external memory).
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External Memory Model

The I/O model of Aggarwal and Vitter [1] splits memory into
fast, but finite internal memory, and slow, but infinite external
memory (EM).

Algorithms evaluated in terms of number of I/O operations
(block transfers) required to complete a process.

Blocking of data structures refers to partitioning data into
blocks that can be transfered in a single I/O operation.
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Our Contributions

Our goal is to develop data structures that are both succinct
and efficient in the EM setting.

We have two main results:

A succinct encoding of arbitrary degree trees that permits
bottom-up traversal in asymptotically optimal I/Os.
A succinct encoding of binary trees that permits top-down
traversal in asymptotically optimal I/Os.
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Problem Statement - Bottom Up Traversal

Given a rooted tree T and a node v ∈ T report the path from
v to the root of T .

By representing T in a succinct fashion we improve upon the
space bound while maintaining the optimal asymptotic bound
on I/Os.

Lemma

A rooted tree T can be stored in O(N/B) blocks on disk such that
a bottom-up path of length K in T can be traversed in K/τB
I/Os, where 0 < τ < 1 is a constant. (Hutchinson et al. [3])
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Blocking Strategy
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Blocking Strategy
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Duplicate Paths

Property 1: Given a block (or superblock) Y , for any node x in Y
there exists a path from x to either the top of its layer, or to the
duplicate path of Y , which consists entirely of nodes in Y .

1 Select as the duplicate path the path from the vertex of
minimum preorder number.

2 A duplicate path is stored for each block.

3 The duplicate path of the first block in a superblock is the
superblock duplicate path.
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Proof

v

x

y

x′

y′

Tv T ′
x

Case 1 Case 2
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Block Encoding

Each block is encoded by three data structures:

1 Tree structure is encoded using a balanced parentheses
sequence.

2 The duplicate path is encoded as an array, Dp[j ], 1 < j < τB.
Duplicate paths for superblocks store the preorder value
within the slice. Duplicate paths for regular blocks store
preorder value within the superblock.

3 The root-to-path array Rp[j ], 1 < j < τB encodes the
information required to map the roots of subtrees created by
the blocking to nodes on the duplicate path or top of the layer.
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Navigating within a block
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Navigating a within a block
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Navigating between blocks - Identifying Nodes

1 For the node v ∈ T on layer `v , let pv be its preorder number
within `v .

2 Each node in T is uniquely represented by the pair (`v , pv ).

3 Let π define the lexicographic order on these pairs.
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Navigating Between Blocks
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Space Requirements

The total space required by the data structure is:

1 Space to store the tree succinctly: 2N bits.

2 Space to store the bitvectors for navigating between layer:
o(N)

3 Space to store the duplicate paths: 12τN
logB N

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees



Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Space Requirements for Duplicate Paths

Duplicate paths store arrays with entries of size dlg Ne
(superblocks) or dlg Be (blocks).

Our analysis is based on assumption of fixed size full
blocks/superblocks.

We cannot guarantee this so we use non-full leading
blocks/superblocks.

We use another set of bit vectors (o(N)) to enable
packing/lookup of non-full leading blocks.
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Results

Space Requirements:

2N + εN
logB N + o(N) when 0 < ε < 1.

I/O Efficiency:

Given a node-to-root path of length K the path can be
reported in O(K/B) I/Os

Corollary

A tree T on N nodes with q-bit keys can be represented in

(2 + q)N + q ·
[

6τN
dlogB Ne + 2τqN

dlg Ne + o(N)
]

bits such that given a

node-to-root path of length K, that path can be reported in
O(τK/B) I/Os, when 0 < τ < 1.
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Top Down Traversal: Problem Statement

Given a binary tree T in which every node is associated with a
q-bit key, we wish to traverse a top-down path of lenght K
starting at the root of T and terminating at some node v ∈ T

Lemma

For a binary tree T , a traversal from the root to a node of depth
K requires the following number of I/Os:

1 Θ(K/ lg(1 + B)), when K = O(lg N),

2 Θ(lg N/(lg(1 + B lg N/K ))), when K = Ω(lg N) and
K = O(B lg N), and

3 Θ(K/B), when K = Ω(B lg N).
Due to Demaine et al [2]
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Blocking Strategy

Blocking in two phases.

Phase 1 blocks the topmost
c lg N, 0 < c < 1 layers.

Block the first blg (A + 1)c
levels of T .

Remove blocked nodes and
repeat until c lg N levels are
blocked.
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Blocking Strategy: Phase 2

x

l(x)
(A − 1) · w(r(x))

w(x)

(A − 1) · w(l(x))
w(x)

r(x)

Remaining nodes are blocked
recursively.

At node x let w(x) be the size
of the subtree rooted at x .

For a block with remaining
capacity A, add x and
subdivide remaining capacity
among x ’s subtrees
proportional to their weights.
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Top Down Blocking

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees



Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees



Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Top Down Blocking
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Top Down Blocking
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Block Representation

Each internal tree block stores:

The set of keys for this block (array).

The tree structure, using LOBM representation.

The dummy offset
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Dummy node ordering and dummy offset

Let Γ be a total order over the set of all dummy nodes in
internal blocks. In Γ the order of dummy node d is
determined first by its block number, and second by its
position within the succinct representation for its block.

The dummy offset records the position in Γ of the first
dummy node in a block.
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Navigate between internal blocks
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Navigate between internal-terminal blocks

Similar to navigation between internal blocks.

Use a separate bitvector S to identify roots of terminal blocks.

Blocks may be non-full so they are packed together on disk,
requiring an additional o(N) bit array to identify block
locations.

Craig Dillabaugh, Meng He, Anil Maheshwari Succinct and I/O Efficient Data Structures for Traversal in Trees



Outline Preliminaries Our Contributions Bottom Up Top Down Open Problems References

Results

Space requirements:

For a rooted binary tree of size N with keys of size
q = O(lg N) bits we store T in (3 + q)N + o(N) bits.

I/O Efficiency:

A root to node path of length K can be reported with:

1 O
(

K
lg(1+(B lg N)/q)

)
I/Os, when K = O(lg N)

2 O

(
lg N

lg(1+ B lg2 N
qK )

)
I/Os, when K = Ω(lg N) and

K = O
(

B lg2 N
q

)
, and

3 O
(

qK
B lg N

)
I/Os, when K = Ω

(
B lg2 N

q

)
.
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Corollary

Given a rooted binary tree, T , of size N, with keys of size q = O(1)
bits, T can be stored using 3N + o(n) bits in such a manner that a
root to node path of length K can be reported with:

1 O
(

K
lg(1+(B lg N))

)
I/Os when K = O(lg N)

2 O

(
lg N

lg(1+B lg2 N
K

)

)
I/Os when K = Ω(lg N) and

K = O
(
B lg2 N

)
, and

3 O
(

K
B lg N

)
I/Os when K = Ω(B lg2 N).
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Open Problems

Top-down traversal in trees of higher bounded degree.

Improve the I/O bound for bottom-up from O(K/B) to
O(K/A) I/Os where A is the number of nodes that can be
represented succinctly in a block.

Improving constants in asymptotic terms for traversal.
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