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Abstract
We present a technique for representing bounded degree planar graphs in a succinct

fashion while permitting I/O efficient traversal of paths. We represent a graph G, on N
vertices, each with an associated key of q = O(lg N) bits1, using Nq+O(N)+o(Nq) bits
such that a path of length K can be traversed with O(K/ lg B) I/Os, where B is the disk
block size. We demonstrate that our structure may be adapted to represent, with the
same space bounds, a terrain modeled as a triangular-irregular network. Within this
terrain we support traversal of a path which visits K triangles in the same O(K/ lg B)
I/O complexity. We demonstrate that a number of useful queries - reporting terrain
profiles, trickle paths, and connected components - can be performed efficiently with
our data structures.

1 Introduction

External memory (EM) data structures and succinct data structures both address the prob-
lem of representing very large data sets. In the EM model, the goal is to structure data
that is too large to fit into internal memory in a way that minimizes the transfer of data
between internal and external memory. For succinct data structures, the aim is to encode
the structural component of the data structure using as little space as is theoretically possi-
ble, while still permitting efficient navigation. As both EM and succinct data structures are
essentially dealing with the same fundamental problem, it seems natural to examine how the
two techniques can be used together. In addition to our own research on traversal in trees
[13], the only other research of which we are aware that merges these techniques is that of
Munro and Clark [9], and Chien et al. [7], on succinct EM data structures for text indexing.

Here we develop data structures for path traversal in planar graphs. Given a bounded
degree planar graph G we wish to report a path composed of K vertices in G, such that
the number of I/O operations is minimized. We demonstrate practical applications of our
structure showing how it can be applied to answering queries on triangular irregular network
(TIN) models of a terrain.

∗This work was supported by NSERC of Canada. The work was done while the second author was at the
School of Computer Science, Carleton University, Canada.

1In this paper we use lg N to denote log2 N .
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1.1 Background

In the External Memory (EM) model [2] the number of elements in the problem instance is
denoted by N . Memory is divided into a two-level hierarchy, external and internal memory.
External memory is assumed to have effectively infinite capacity, but accessing data elements
in external memory is slow. Internal memory permits efficient operations, but the capacity of
such memory is limited to M < N elements. Data elements are transferred between internal
and external memory in blocks of size B, where 1 < B < M/2. In this paper we make the
additional assumption that B = Ω(lgN). We refer to such a transfer as an I/O operation.
The efficiency of algorithms in the EM model is evaluated with respect to the number of I/O
operations they require.

Nodine et al. [19] first explored the problem of blocking graphs in external memory for
efficient path traversal. Path traversal is measured in terms of blocking speed-up - the worst
case number of vertices (path length) that can be traversed before an I/O is required. The
authors identify the optimal bounds on the worst case blocking speed-up for several classes
of graphs. Agarwal et al. [1] proposed an I/O efficient algorithm that blocks a bounded
degree planar graph G such that any path of length K can be traversed in O(K/ lgB) I/Os.

Succinct data structures were originally proposed by Jacobson [16]; the idea is to repre-
sent data structures using space as near the information-theoretic lower bounds as possible,
while still permitting efficient navigation. For example, in a succinct graph representation
adjacency queries may be performed without decompressing the structure in any way. Jacob-
sen presented the first succinct data structure for planar graphs, and numerous efforts have
been made to improve his original result, including Munro and Raman [18], and Chuang et
al. [8]. Recently Chiang et al. [6] improved on these previous results to obtain a succinct data
structure for simple planar graphs of 2m+ 2n+ o(n) bits, where m and n are the number of
edges and vertices, respectively, in the graph.

1.2 Our Contributions

In this paper we present the following contributions:

1. In Section 3, we describe a data structure for bounded degree planar graphs that allows
traversal of a path of length K using O( K

lgB
) I/Os. This matches the I/O complexity

of Agarwal et al. [1] but improves the space complexity from O(N lgN) + 2Nq bits to
O(N) + Nq + o(Nq) bits, which is considerable in the context of huge datasets. (For
example, with keys of constant size the improvement in the space is by a factor of
lgN .)

2. In Section 4, we adapt our structure to triangular-irregular networks. We demonstrate
that path traversal on terrains modeled in this manner may be performed with O( K

lgB
)

I/Os, whereK is the number of triangles that must be crossed to complete the traversal.
If storing a point requires ϕ bits, then our data structure can store a terrain on N points
using Nϕ+O(N)+o(Nq) bits. Again our I/O efficiency matches that of [1] with similar
space improvement as for bounded degree planar graphs.
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3. In Section 5 we describe several practical applications that make use of our representa-
tion for triangulated terrains from the previous section. We demonstrate that reporting
terrain profiles and trickle paths can be performed with the O( K

lgB
) bound on I/Os. We

then show that connected component queries can be performed with the O( |T
′|

lgB
) I/O

bound when the region being reported is convex and is of size |T ′| triangles. Finally, we

show how non-convex regions with holes can also be reported with O
(
|T ′|
lgB

+ h logB h
)

I/Os where h is the number of edges on the region’s boundary and on any holes it con-
tains. To answer such queries requires an additional O(h · (ϕ+ lg h)) bits of storage.
Alternatively, we demonstrate that with no additional store we can answer the same

query in O
(
|T ′|
lgB

+ h′ logB h
′
)

I/Os, where h′ is the total number of triangles that touch

all holes in, plus the boundary of, T ′.

4. Finally, in Section 6 we describe how by using o(Nϕ) bits of additional storage we can
perform planar point location on a terrain, T , in O(logB N) I/Os. Assymptotically
this does not change the space requirement for T .

2 Preliminaries

A key data structure used in our research is a bit vector B[1..N ], where B[i] ∈ {0, 1},
that supports efficiently the operations rank and select. The operations rank1(B, i) and
rank0(B, i) return the number of 1s and 0s inB[1..i], respectively. The operations select1(B, r)
and select0(B, r) return the position of the rth occurrence of 1 and 0, respectively. The
problem of representing a bit vector succinctly to support rank and select in constant time
under the word RAM model with word size Θ(lgN) bits has been considered in [16, 9, 20],
and these results can be directly applied to the external memory model. The following
lemma summarizes the results of Jacobson [16] and Clark and Munro [9] (part (a)), and
Raman et al. [20] (part (b)):

Lemma 1. A bit vector B of length N can be represented using either: (a) N+o(N) bits, or
(b) lg

(
N
R

)
+O(N lg lgN/ lgN) bits, where R is the number of 1s in B, to support the access to

each bit, rank and select in O(1) time (or O(1) I/Os in external memory). When R� N
the value of lg

(
N
R

)
+O(N lg lgN/ lgN) is o(N).

Frederickson [14] developed a technique for decomposing planar graphs. He divides a
planar graph into overlapping regions which contain two types of vertices, interior and
boundary vertices. Interior vertices occur in a single region and are adjacent only to vertices
within that region. Boundary vertices are shared among two or more regions. Frederickson’s
result is summarized in the following:

Lemma 2 ([14]). A planar graph with N vertices can be subdivided into Θ(N/r) regions of
no more than r vertices with at most O(N/

√
r) boundary vertices.
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3 Graph Representation

Let G be a planar graph of bounded degree d. Each vertex in G stores a q-bit key. We assume
that q may be stored using at most O(lgN) bits, but q is not necessarily related to the size
of the graph and may take on a small constant value. For example, q may record colours
for the vertices in the graph. We perform a two-level partitioning of G [4]. This results in a
subdivision of G into regions of fixed maximum size, which are subdivided into sub-regions
of smaller fixed maximum size. Within the regions and sub-regions vertices fall into one of
two categories, interior vertices, and boundary vertices. A vertex is interior to a region if all
of its neighbouring vertices in G belong to the same region. A vertex is a region boundary
if it has neighbouring vertices in G which belong to different regions. Sub-region vertices
are labeled as interior or boundary in the same fashion. Due to the two level partitioning, a
sub-region boundary vertex may also be a region boundary (see Fig. 1).

Consider some vertex v ∈ G. Based on [1], we define the α-neighbourhood of v as follows.
Beginning with v, we perform a breadth-first search in G and select the first α vertices
encountered. We include the subgraph induced by these vertices to form the complete
α-neighbourhood of v. Analogous to the interior and boundary vertices in a region or sub-
region, we define internal and terminal vertices for α-neighbourhoods. The neighbours of an
internal vertex belong to the same α-neighbourhood, while terminal vertices have neighbours
external to the α-neighbourhood (see Fig. 2).

In our representation of G, we store each sub-region and the α-neighbourhood of each
boundary vertex. When constructing the α-neighbourhoods of sub-region boundary vertices,
we add one additional constraint, that it cannot be extended beyond the region it is interior
to. Collectively we refer to the sub-regions and α-neighbourhoods as components of the
graph. The regions are not explicitly stored, but are rather a collection of their sub-region
components. Each component stores a representation of a portion of G which permits traver-
sal within that component. To enable traversal of G each vertex is assigned a unique graph
label. Given the graph label for a vertex, we must identify a component that contains that
vertex, and identify within the component’s representation which vertex corresponds to the
given graph label. Furthermore, for every vertex within a component we must be able to
determine its graph label.

3.1 Graph Labelling

In this section we describe the labeling scheme that enables traversal across the components of
the graph. The scheme is based on Bose et al. [4], but uses the technique of Frederickson [14]
for graph decomposition.

Each vertex v ∈ G is assigned a unique graph label, in addition to possibly multiple -
in the case of boundary vertices - region labels and sub-region labels. We partition G into t
regions. We denote the ith such region by Ri. Each Ri is then subdivided into q sub-regions.
We denote by qi the number of sub-regions in region Ri, and denote the jth sub-region of
region Ri as Ri,j. In partitioning G the vertices on the boundary of a sub-region (or region)
appear in more than one sub-region (region). Consider a boundary vertex, v ∈ Ri,j. We say
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w

Figure 1: A graph G partitioned into two regions (delineated by solid lines), which are
further subdivided into two sub-regions (delineated by dashed lines). Region boundary
vertices, which are shared between the regions are marked by large hallow circles, while sub-
region boundary vertices are marked by smaller, shaded circles. Regular interior vertices are
marked by solid circles. The vertex v is both a region and sub-region boundary, while vertex
w is a sub-region boundary, but interior to its region.

that the instance of v appearing in Ri,j defines v if there is no sub-region Ri,h, such that
v ∈ Ri,h and h < j. All subsequent instances of v in any other sub-region are referred to as
duplicates. Likewise, for a region boundary v ∈ Ri, v is a defining vertex if there is no other
region Rh containing v for which h < i. In our labeling at the region and graph levels, our
strategy is to assign defining vertices a unique label, while duplicate vertices are assigned
the label of the defining vertex which they duplicate.

The encoding of a sub-region Ri,j induces a permutation on the vertex set within the sub-
region. We let the position of each vertex within this permutation serve as its sub-region
label. Now consider the assignment of the vertices within the region Ri with qi sub-regions.
There are, including duplicates, a total of

∑qi
j=1 |Ri,j| vertices in Ri. Let nbi be the number

of defining boundary vertices in Ri. We visit each sub-region Ri,j for j = 1, 2, . . . qi in
turn and assign each defining vertex the next available region label from the set {1, . . . , nbi}.
This process is then repeated and the interior vertices are assigned labels from the set
{nbi + 1, . . . , |Ri|}. Duplicate vertices are assigned the label of their defining vertex.

The assignment of graph labels mirrors that of region labels. Let nb record the total
number of region boundary vertices over all regions in G. Visit each region Ri for i =
1, 2, . . . , t and assign each defining boundary vertex the next available graph label from the
set {1, . . . , nb}. As with region labeling, we then repeat this process and assign each interior
vertex the next available label from the set {nb + 1, . . . |G|}. This completes the labeling
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Figure 2: Creating an α-neighbourhood for a vertex v, with α = 16. The original graph and
v are shown in (a). In (b) a breadth first search is performed from v to identify the vertices
in v’s α-neighbourhood. Finally in (c) the α-neighbourhood subgraph, including vertices
and edges is extracted. Only edges connecting vertices in the α-neighbourhood are retained.
The vertex v is internal while vertex w is terminal.

procedure.
Based on this labeling scheme, observe that the graph labels assigned to all interior

vertices of a region are consecutive. Likewise, the region and graph labels assigned to all
interior vertices of a sub-region are consecutive.

3.2 Data Structures

We wish to have each sub-region fit in a single disk block. Denote by A the maximum number
of vertices that may be stored in a block, and this becomes our maximum sub-region size.
Using Lemma 2 we first divide G into regions of size A lg3N by setting r = A lg3N . We
further divide each region into sub-regions of size A by setting r = A. The sub-region Ri,j

is encoded using three data structures:

1. A compact encoding of the graph structure of Ri,j. This encoding involves a permuta-
tion of the vertices in Ri,j.
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2. A bit vector, B of length |Ri,j| for which B[i] = 1 if and only if the corresponding
vertex in the encoding’s permutation is a boundary vertex.

3. An array of length |Ri,j| which stores the q-bit key for each vertex.

We store two arrays LS and LR, which record for each sub-region Ri,j, and region Ri,
respectively, the graph label of the sub-region’s (region’s) first interior vertex.

We select A such that a sub-region of size A will fit in exactly one block in memory.
However, we are only guaranteed that sub-regions will have at most A vertices, therefore
some sub-regions will occupy less than a full block. We do not want to waste any bits by
storing sub-regions in partially full blocks so we store sub-regions to disk in the following
fashion, which is based on [13]. To begin let �SR be a total order of the sub-regions of G.
Sub-region Rj,k comes before Rl,m in �SR if either j < k, or, if j = k and k < m. We write
the sub-regions to disk according to this order. Prior to writing a sub-region we write its
sub-region offset value, which is the size, in vertices, of that sub-region. When we finish
writing one sub-region to disk, we immediately start writing the next sub-region. If we come
to a block boundary, we skip a pre-defined number of bits at the start of the next block,
which we term the block offset, and continue writing the bits for the current sub-region.
When we overrun a block in this fashion, we record the length of the overrun (in bits) in
the block offset. If we are lucky and the sub-region ends at a block boundary we simply
write 0 to the block offset of the next block. Since a sub-region of size A is no larger than
a single block, a sub-region will never span portions of more than two blocks. We continue
this process of writing sub-regions until all sub-regions have been written to disk.

Denote by Q the total number of sub-regions used to store G. To facilitate efficient
lookup of sub-regions within the disk blocks we store two bit vectors:

1. Bit vector BR[1..Q], where BR[i] = 1 iff the ith sub-region in �SR is the first sub-region
in its region.

2. Bit vector BS[1..Q], where BS[i] = 1 iff the block in which the ith sub-region starts
differs from sub-region i− 1.

We now consider the boundary vertices. There are both region and sub-region boundary
vertices, and we store the α-neighbourhood for each such boundary vertex. For boundary
vertex v, let Gv be the subgraph that comprises v’s α-neighbourhood, which we encode as
follows:

1. An encoding of the graph structure of Gv. This encoding involves a permutation of
the vertices in Gv.

2. A bit array of length |Gv| which marks each vertex in Gv as internal or terminal.

3. A variable which records the position of v within the permutation of the vertices of
Gv.
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4. An array of length |Gv| which stores the key associate with each vertex.

5. An array, Lα, of length |Gv| which stores:

(a) The graph label for each vertex if v is a region boundary.

(b) A region offset, of lg (A lg3N) bits, if v is a sub-region boundary. The offset is
calculated from the graph label of the first vertex in v’s parent region, which is
stored in LR.

The α-neighbourhoods of all sub-region boundary vertices are stored together in an ar-
ray, SRα. Since the size of the compact encoding of the subgraph may vary between α-
neighbourhoods, we pad extra bits on neighbourhoods where necessary to ensure that the
elements of SRα are of fixed size. This array is created by visiting each region in turn and
appending the α-neighbourhoods of all sub-region boundary vertices to SRα, ordered by
region label. Additionally, we store a bit vector D of length N where D[i] = 1 if the vertex
with graph label i is a sub-region boundary (a 0 bit is recorded for region boundaries and
interior vertices).

Lemma 3. The data structures described above store a bounded degree planar graph G on
N vertices, each associated with a q = O(lgN)-bit key, in O(N) +Nq + o(Nq) bits.

Proof. First consider the space required to store the sub-regions. We denote by c the number
of bits, per vertex, required to store the sub-graph and boundary bit-vector. The exact
value of this constant depends on the chosen succinct representation for the graph, plus one
additional bit per vertex for the boundary bit-vector. We have assumed blocks of size B lgN
bits, and for the sake of simplicity, that c+ q divides B lgN evenly. Thus cA+ qA = B lgN
bits and the number of elements a sub-region can store becomes:

A =
B lgN

c+ q
(1)

There are Θ(N/A) subregions with O
(
N/
√
A
)

boundary vertices. To store a single

copy of each vertex we require N(c + q) bits, which accounts for all internal vertices plus
the defining copy of each boundary vertex. We must still account for the additional space

required to store the O
(
N/
√
A
)

boundary vertices, which we do as follows:

O

(
N√
A

)
(c+ q) = O

(
N√
A

)
c+O

(
N√
A

)
q

= o(N) + o(Nq) (2)

In evaluating the number of bits used to store the sub-regions we must finally consider
the cost of storing the bit arrays BR and BS, plus the block and sub-region offsets when
packing the sub-regions to disk. BR and BS are both bit arrays of length bounded by the
number of sub-regions of which there are O(N/A), and as such require o(N) bits by Lemma
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1. Each block offset requires lgB bits and there are O(N/B) blocks, so block offsets use no
more than O(N/B) lgB = o(N) bits. Likewise the O(N/A) sub-region offsets use no more
than O(N/A) lgA = o(N) bits.

Adding the o(N) bit cost of storing the structures related to block packing to the N(c+q)
bits required to store non-duplicate vertices, and the o(N)+o(Nq) bits for duplicate vertices,
we have the following total cost for storing the sub-regions:

N(c+ q) + o(Nq) + o(N) (3)

The array LS stores the N/A graph labels, each of lgN bits, of the first interior vertex
in each sub-region. Noting that q = O(lgN) bits and B = Ω(lgN) bits the number of bits
required to store LS is:

N

A
· lgN =

N

B lgN/(c+ q)
· lgN = O(N) (4)

The array LR which stores the graph label of the first interior vertex in each regional
likewise requires lgN bits per entry, and has a total of Θ(N/(A lg3N)) entries. Its space
requirement in bits is therefore:

Θ

(
N

A lg3N

)
· lgN = Θ

(
N

B lg2N

)
= o(N) (5)

We must also account for the space required to store the α-neighbourhoods for all bound-
ary vertices. We select α = A

1
3 as the size of the α-neighbourhoods for both region and sub-

region boundary vertices. When splitting G into regions, we set r = A lg3N . By Lemma

2, this splits G into Θ
(

N
A lg3N

)
regions of size less than or equal to A lg3N vertices, with a

total of N√
A lg3N

boundary vertices. Since labels require lgN bits each, we have a total of

lgN + q + c bits associated with each vertex in the α-neighbourhood of a region boundary
vertex. In each α-neighbourhood we store A1/3 vertices. Cumulatively, the number of bits
required to store the α-neighbourhoods of all region boundary vertices is:

N√
A lg3N

· A
1
3 · (lgN + q + c) =

N

A
1
6 lg

3
2 N
·Θ(lgN) = o(N) (6)

For sub-regions we have r = A, such that G is split into Θ
(
N
A

)
sub-regions of size

less than or equal to A vertices, with a total of O
(

N√
A

)
boundary vertices. The space

required by Lα to store the labels associated with each vertex in the α-neighbourhood of a
sub-region boundary vertex is lg (A lg3N) bits. The total space requirement in bits for the
α-neighbourhoods of all sub-region boundary vertices is:

N√
A
· A

1
3 · (lg (A lg3N) + q + c) =

N

A
1
6

(lgA+ 3 lg lgN) +
N

A
1
6

(q + c)

= O(N) + o(Nq) (7)
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Finally the bit vector D has only Θ(N/
√
A) 1 bits, and is of length N , so by Lemma

1(b) can be stored in o(N) bits.
To summarize we require Nq + o(Nq) + o(N) bits to store the sub-regions (Eq. 3) and

O(N) bits for LS (Eq. 4). LR and the α-neighbourhoods of the region boundary vertices
require only o(N) bits (Eqs. 5 and 6) and as such are lower-order terms. Finally, the sub-
region boundary α-neighbourhoods require O(N)+o(Nq) bits (Eq. 7). Together these terms
yield the final space cost of Nq +O(N) + o(Nq).

3.3 Navigation

The traversal algorithm operates by loading either a sub-region or the α-neigh-bourhood
of a boundary vertex and traversing that component until a boundary vertex (in the case
of a sub-region) or a terminal vertex (in the case of a α-neighbourhood) is encountered, at
which time the next component is loaded from memory and traversal continues. Traversal
assumes that we have available a function, step, which given a vertex v in G and the key
value of v determines where to proceeded in the traversal. A call to the step function can
have one of three possible outcomes, termination of the traversal; selection of a neighbour
of the current vertex; or, loading a new component from memory if not all of the current
vertices’ neighbours are in the currently loaded component.

Now we analyze the I/O complexity. We first show that within each component, labels
can be reported at no additional I/O cost (Lemma 4). We then describe how we ensure
that components can be identified and loaded in O(1) I/Os (Lemmas 5 and 6). Finally we
demonstrate that visiting a constant number of components guarantees a progress of O(lgA)
steps along the path (Lemma 7).

Lemma 4. Given a sub-region or α-neighbourhood, the graph labels of all interior (sub-
regions) and internal (α-neighbourhoods) vertices can be reported without incurring any ad-
ditional I/Os beyond what is required when the component is loaded to main memory.

Proof. The encoding of a sub-region induces an order on all vertices, both interior and
boundary, of that sub-region. Consider the interior vertex at position j among all vertices
in the sub-region. The position of this vertex among all interior vertices may be determined
by the result of rank0(B, j). Recall that graph labels assigned to all interior vertices in a
sub-region are consecutive, and therefore by adding one less this value to the graph label of
the first vertex in the sub-region, the graph label of interior vertex at position j is obtained.

For the α-neighbourhood of a region boundary vertex the graph labels from Lα can
be reported directly. For the α-neighbourhoods of sub-region boundary vertices, we can
determine from LR the graph label of the first vertex in the parent region. This potentially
costs an I/O, but we can pay for this when the component is loaded. We can then report
graph labels by adding the offset stored in Lα to the value from LR.

When we arrive at a boundary/terminal vertex, conversions between labels are necessary
in order to locate the next component to load. Our labeling scheme is derived from [4], and
by Lemma 3.4 in their paper, conversion between these labels can be performed in O(1)
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operations in internal memory. Extending this to external memory we have the following
lemma:

Lemma 5. There is a data structure of o(N) bits such that given a graph, G, partitioned and
labeled as described above, the following operations can be performed in O(1) I/O operations:

(a) Given the graph label of vertex v, compute the region Ri to which v is interior (or which
defines v if it is a region boundary), and the region label of v in Ri.

(b) Given the region label of a vertex v ∈ Ri, compute the sub-region Ri,j to which v is
interior (or which defines v if it is a sub-region boundary), and the sub-region label of v
in Ri,j.

(c) Given the sub-region label of vertex v in sub-region Ri,j, compute the region label of v in
Ri.

(d) Given the region label of a vertex v in region Ri, compute the graph label of v in G.

The results of the previous Lemma lead to the following Lemma.

Lemma 6. When the traversal algorithm encounters a terminal or boundary vertex v, the
next component containing v in which the traversal may be resumed can be loaded in O(1)
I/O operations.

Proof. Consider first the case of a boundary vertex, v, for a sub-region. The vertex may be
a region or sub-region boundary. By Lemmas 5(c) and 5(d), the graph label of v can be
determined in O(1) I/O operations. If v is a region boundary vertex, this graph label serves
as a direct index into the array or region boundary vertex α-neighbourhoods. Loading the
α-neighbourhood requires an additional I/O operation.

If v is a sub-region boundary vertex, then the region and region label can be determined
by Lemma 5(a). By Lemma 5 we can determine the graph label. For the sub-region boundary
vertex, v, with graph label `G, we can determine position of the α-neighbourhood of v in
SRα in O(1) I/Os by rank1(D, `G). In order to report the graph labels of vertices in the
α-neighbourhood, we must know the graph label of the first interior vertex of the region,
which we can read from LR with at most a single additional I/O operation.

Next consider the case of a terminal node in a α-neighbourhood. If this is the α-
neighbourhood of a sub-region boundary vertex, the region Ri, and region label are known,
so by lemma 5(d) we can determine the graph label and load the appropriate component
with O(1) I/O operations. Likewise for α-neighbourhoods of a region boundary vertex the
graph label is obtained directly from the vertex key.

Finally, we show that a sub-region can be loaded in O(1) I/Os. Assume we wish to load
sub-region Ri,j. Let r = select1(BR, i) mark the start of the region i. We can then locate
the block, b, in which the representation for sub-region j starts by b = rank1(BS, r + j).
There may be other sub-regions stored entirely in b prior to Ri,j. We know if BS[r + j] = 0
then Ri,j is the first sub-region stored in b which has its representation start in b. If this is
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not the case, the result of select1(rank1(BS, r + j)) will indicate the position of r among
the sub-regions stored in b. We can now read sub-region Ri,j as follows. We load block b into
memory and read the block offset which indicates where the first sub-region in b starts. If
this is Ri,j, we read the sub-region offset to determine its length, and read Ri,j into memory,
possibly reading into block b + 1 if there is an overrun. If Ri,j is not the first sub-region
starting in block b, then we note how many sub-regions we must skip from the start of b and
by reading only the sub-region offsets we can jump to the location in b where Ri,j starts.
The rank and select operations require O(1) I/Os, and we read portions of at most two
blocks b and b+ 1 to read a sub-region, so we can load a sub-region with O(1) I/Os.

Lemma 7. Using the data structures and navigation scheme described above, a path of length

K in graph G can be traversed in O
(

K
lgA

)
I/O operations.

Proof. The α-neighbourhood components are generated by performing a breadth-first traver-
sal, from the boundary vertex, v, which defines the neighbourhood. A total of A1/3 vertices
are added to each α-neighbourhood component. Since the degree of G is bounded by d, the
length of a path from v to the terminal vertices of the α-neighbourhood is logdA

1/3. However,
for sub-region boundary vertices the α-neighbourhoods only extend to the boundary vertices
of the region, such that the path from v to a terminal node may be less than logdA

1/3. In
later case the terminal vertex corresponds to a region boundary vertex.

Without loss of generality, assume that traversal starts with an interior vertex of some
sub-region. Traversal will continue in the sub-region until a boundary vertex is encountered,
at which time the α-neighbourhood of that vertex is loaded. In the worst case we travel
one step before arriving at a boundary vertex of the sub-region. If the boundary vertex
is a region boundary, the α-neighbourhood is loaded, and we are guaranteed to travel at
least logdA

1/3 steps before another component must be visited. If the boundary vertex
is a sub-region boundary, then the α-neighbourhood is loaded, and there are again two
possible situations. In the first case, we are able to traverse logdA

1/3 steps before another
component must be visited. In this case, by visiting two components, we have progressed a
minimum of logdA

1/3 steps. In the second case a terminal vertex in the α-neighbourhood
is reached before logdA

1/3 steps are taken. This case will only arise if the terminal vertex
encountered is a region boundary vertex. Therefore, we load the α-neighbourhood of this
region boundary vertex, and progress at least logdA

1/3 steps along the path before another
I/O will be required.

Since we traverse logdA
1/3 vertices with a constant number of I/Os, we visit O

(
K

lgA

)
components to traverse a path of length K. By Lemma 6, loading each component requires
a constant number of I/O operations, and by Lemma 4 we can report the graph labels of all
vertices in each component without any additional I/Os. Thus the path may be traversed

in O
(

K
lgA

)
I/O operations.

Theorem 1. Given a planar graph G of bounded degree, where each vertex stores a key of
q bits, there is a data structure that represents G in Nq + O(N) + o(Nq) bits that permits

traversal of a path of length K with O
(

K
lgB

)
I/O operations.
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Proof. Proof follows directly from Lemmas 3 and 7. We substitute B for A, using Eq. 1
(A = Ω(B)), as this is standard for reporting results in the I/O model.

Due to the need to store keys with each vertex, its is impossible to store the graph with
fewer than Nq bits. The space savings in our data structure are obtained by reducing the
space required to store the actual graph representation. Agrawal et al. [1] do not attempt to
analyse their space complexity in bits, but, assuming they use lgN bit pointers to represent
the graph structure, their structure requires O(N lgN) bits for any size q. If q is a small
constant, our space complexity becomes O(N)+o(N) which represents a savings of lgN bits
compared to the O(N lgN) space of of Agarwal et al.. In the worst case when q = Θ(lgN),
our space complexity is ΘN lgN which is asympotically equivalent to that of Agarwal et
al.. However, even in this case our structure can save a significant amount of space due to
the fact that we store the actual graph structure with O(N) bits (the Nq and o(Nq) terms
in our space requirements are related directly to space required to store keys), compared to
O(N lgN) bits in their representation.

4 Representing Triangulated Terrains

Let Σ be a terrain in R
3. Let P be a set of points on the terrain Σ with coordinates x, y, and

z, where z is the elevation of the point. The triangulation T , of the point set P , is a model
of Σ. By projecting T onto the x, y-plane we can view T as a planar graph with vertices
being the point set P . Each triangle of T is defined by three points from P . If a point is one
of the defining points for a triangle, we say that it is adjacent to that triangle. Two triangles
are adjacent if they share a common edge (and consequently two adjacent points).

We can represent T in a compact fashion as follows. Let G = (V,E) be the dual graph
of T . G is a connected planar graph of bounded degree, d = 3, with a vertex corresponding
to each triangle in T (see Fig. 3(a)). There is no vertex corresponding to the outer face, so
edges along the perimeter of T do not have a corresponding edge in the dual G. Starting
with G we generate an augmented planar graph G′ = (V ′, E ′), by adding the point set P to
G such that V ′ = V ∪ P . We form the edge set E ′ by adding an edge to E for each vertex
pair (v, p) where v ∈ V and p ∈ P and where p is adjacent to v in T (see Fig. 3(b)). The
new graph G′ remains planar, but is no longer of bounded degree. However, all vertices from
the original vertex set V , are still of degree at most six. In the augmented graph we refer to
the vertices corresponding to triangles as triangle vertices and the vertices corresponding to
points as point vertices. In a similar fashion, we refer to the edges of G as dual edges and
those edges added to connect the point and triangle vertices as point edges.

For purposes of quantifying the bit cost of our data structures we denote by ϕ = O(lgN)
the number of bits required to represent a point in our data structures. Most applications of
terrain models do not require that a key be stored with the triangles, so we need not assume
there is a q bit key associated with each dual vertex (triangle). We show that the space used
by keys in our graph structure is effectively the same as the space used by the point set in
our triangulation, but that if we wish to maintain keys we can do so without a significant
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(a) (b)

Figure 3: Representation of a triangulation as a planar graph. (a) The dual graph G of
a triangulation, with vertices as hallow circles and edges as dashed lines. Edges in the
triangulation are shown as solid lines. (b) The augmented graph G′ is shown where the
point set P has been reinserted (solid dots), and newly added edges are shown as solid lines.

increase in the size of our data structures.

Lemma 8. Given the dual graph, G of triangulation T with N vertices, the augmented graph
G′ has at most 2N + 2 vertices.

Proof. The vertex set V ′ includes the vertices V , of which there are exactly N , plus a vertex
for each point in P . We prove by induction that there are at most N + 2 points in P and
thus at most 2N + 2 vertices in V ′. For the base case we have a terrain T with a single
triangle in which case N = 1 and |P | = 3 = N + 2. Now assume that |P | ≤ N + 2 holds for
all terrains of N triangles. Let GN be the dual graph of a triangulation T with N triangles
and |PN | points. The dual graph GN+1 is created by adding a single triangle to T . This
new triangle has three adjacent points, however, since GN+1 is connected, at least one dual
edge is added connecting a vertex v ∈ GN with the new face w ∈ GN+1. In T this dual
edge represents the fact that v and w are adjacent, and two of the points adjacent to w are
already in P . Therefore, adding a new face adds at most one additional point to P and
|PN+1| ≤ (N + 1) + 2.

We encode G′ using a succinct planar graph data structure. The encoding involves a
permutation of the vertices of G′. Let `(v), the augmented graph label of v, be the position
of a vertex v in this permutation. We then store the point set P in an array P ordered by
the augmented graph label, `(p) of each point p ∈ P . Finally, create a bit vector π of length
|V ′|, where π[v] = 0 if v is a triangle vertex and π[v] = 1 if v is a point vertex. To summarize
this structure we have the following Lemma.

Lemma 9. The data structures described above can represent a terrain T composed of N
triangles with ϕ = O(lgN) bit point coordinates, using Nϕ+O(N) + o(Nϕ) bits, such that
given the label of a triangle, the adjacent triangles and points can be reported in O(1) time.

14



Proof. Since the augmented planar graph is simple we can encode it with 2|E ′|+2|V ′|+o(|V ′|)
bits using [6]. By Lemma 8 if |V | = N then |V ′| ≤ 2N + 2 which bounds the number of
vertices. Each triangle vertex is connected by an edge to at most 3 other triangles, so there
are at most 3

2
triangle vertices. Additionally in total there are 3N point edges connecting

the triangle vertices with point vertices so in total there are no more than 9
2
N edges. Thus

the augmented graph can be encoded using at most 13N + o(N) bits.
In [6] adjacency and degree queries can be performed in O(1). We must still demonstrate

that given a label we can identify the corresponding triangle vertex, and show that for a
vertex we can distinguish between point vertex and triangle vertex neighbours. We assign to
each triangle a unique graph label as follows. Consider the set of triangles in T , the graph
label of each triangle corresponds to that of its dual vertex v ∈ V . In G′ each of these
vertices has an augmented graph label. The graph label of dual vertex v, and therefore the
corresponding triangle, is equal to the rank of v’s augmented graph label among all vertices
from the set V .

Given the graph label of a triangle vertex t, t is located in G′ by select0(π, t). Conversely,
given the augmented graph label of a face vertex f ∈ G′, we can report the graph label of f by
rank0(π, f). To report the triangles adjacent to f , simply check G′ to find all neighbours of
f . Since d ≤ 6, this takes constant time. For a neighbour w the value of π[w] indicates if w is
a face or point vertex. We can recover the coordinates of a point vertex w by P [rank1(π,w)].

The array P stores at most N + 2 points. If each point requires ϕ bits then P requires
Nϕ bits. Finally, by Lemma 1(b) we can store the bit array π such that rank and select

can be performed in constant time with N + o(N) bits.

4.1 Compact External Memory TIN Representation

In this section we extend our data structures for I/O efficient traversal in bounded degree
planar graphs (Section 3) to terrains. We thereby obtain a terrain representation that is
compact, but which also permits efficient traversal. We represent T by its dual graph G.
Since the dual graph of the the terrain (and subsequently each component) is a bounded
degree planar graph, it can be represented with the data structures described in Section
3. Each component is a subgraph of G for which we generate the augmented subgraph,
as described above. To represent a terrain we must store the augmented subgraph which
includes points from the point set P adjacent to the triangles represented by the vertices in
the sub-regions and α-neighbourhoods. In this structure, key values are optional as they are
unnecessary in representing the terrain.

Lemma 10. The space requirement, in bits, to store a component (α-neighbour-hood or sub-
region) representing a terrain is within a constant factor of the space required to store the
terrain’s dual graph.

Proof. We first consider the case of α-neighbourhoods. To store a terrain we require addi-
tional space to store: the points in P adjacent to the component’s triangles, more space to
store the augmented graph which includes more vertices and edges, and the bit-vector π. By
Lemma 8 the points array is of size at most (α + 2)ϕ bits. Since the αq-bit array of keys
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is no longer needed, storing the points incurs no additional space over that used to store
the dual graph in our construction in Section 3. However, if the keys are needed we require
α(ϕ + q) bits to store both the points and the key values. For the graph representation,
again by Lemma 8, in the augmented graph we at most double the size of the vertex set and
add no more than 3α edges. The graph encoding is a linear function of the number of edges
and vertices and therefore the number of bits required for the graph encoding increases by a
only constant factor. Finally for π we require fewer than two bits per vertex, so we can add
this cost to the constant cost of representing the graph.

For sub-regions the analysis is more complex. A sub-region may be composed of multiple
connected components, thus we cannot assume that there will be at most A+2 point vertices
in the augmented subgraph. By Lemma 2 there are no more than Θ(N/

√
A) boundary

vertices in G. Since each connected component in a sub-region must have at least one
boundary vertex, this bounds the number of distinct connected components in all sub-regions.
Each sub-region is composed of at most Θ(

√
A) individual components, so in the worst case

there are no more than
√
A(
√
A+2) < 2A point vertices. Thus, the total number of vertices

in the augmented graph is less than 3A which adds at most an additional 6A edges. As
demonstrated with the α-neighbourhoods, the additional storage for all data structures used
to represent a sub-region increases by only a constant factor.

One important feature of our representation is that each triangle stores very limited
topological information. Consider the information available to some triangle t ∈ T in the
augmented dual graph, G′. We can determine the - up to three - triangles adjacent to t, and
the three points adjacent to t, but we have no information about how these are related. For
example, let w, x, and y be the points adjacent to t, and let t′ be some triangle adjacent
to t. We cannot directly determine if t and t′ are adjacent along edge wx, xy, or wy. The
only way to acquire this information is to actually visit each of t’s neighbours and thereby
construct locally the topological information. Fortunately the need to visit the neighbours
of a triangle in order to reconstruct its topological information will not increase the I/O
costs of path traversal in the TIN. If t corresponds to an interior vertex (in a sub-region),
or an internal vertex (in an α-neighbourhood), then all neighbours of t are represented
in the current component. If t corresponds to a boundary (sub-region) or terminal (α-
neighbourhood) vertex then the traversal algorithm already requires that a new sub-region,
or α-neighbourhood, be loaded. The newly loaded component will contain the necessary
neighbour information to reconstruct the topology of t. Thus, at no point during a traversal
is it necessary to load a component merely to construct the topology of a triangle in an
adjacent or overlapping component.

For terrains modeled using the TIN structure we have the following theorem due to
Theorem 1 and Lemma 10.

Theorem 2. Given a terrain T , where each point coordinate may be stored in ϕ bits, there
is a data structure that represents T in Nϕ + O(N) + o(Nϕ) bits, that permits traversal of

a path which crosses K faces in T with O
(

K
lgB

)
I/O operations.
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For the case in which we wish to associate a q bit key with each triangle we also have
the following theorem.

Theorem 3. Given a terrain T , where each point coordinate may be stored in ϕ bits, and
where each triangle has associated with it a q bit key, there is a data structure that represents
T in N(ϕ+ q) +O(N) + o(N(ϕ+ q)) bits, that permits traversal of a path which crosses K

faces in T with O
(

K
lgB

)
I/O operations.

Proof. In our proof to Lemma 10 we demonstrated that the number of triangles (dual vertices
with an associated q bit key) and points (of ϕ bits) are within a constant factor of each other
in the worst case. Assuming this worst case does occur we are effectively assuming each
triangle is associated with a ϕ + q bit key in our data structures. This yields the desired
space bound.

5 Applications on TIN Models

In this section we apply our data structures for TIN models to answering several queries on
triangulated surfaces. We begin with two trivial and closely related queries, reporting terrain
profiles and trickle paths. These are presented to highlight the fact that even traversing a
simple path on a triangulated terrain can produce useful results. We then present a slightly
more complex application of our data structures in reporting connected components on a
terrain. In this section we assume that for all queries we given a starting triangle, t ∈ T , as
a query parameter. In Section 6 we show how to remove this assumption using o(Nϕ) extra
bits, such that queries take a start point p as a parameter and the triangle t containing p
can be located efficiently.

5.1 Terrain Profiles and Trickle Paths

Terrain profiles are a common tool for GIS visualization. The input is a line segment, or
chain of line segments possibly forming a polygon, and the output is a profile of the elevation
along the line segment(s). The trickle path, or path of steepest ascent, from a point p, is the
path on T that begins a p and follows the direction of steepest descent until it reaches a local
minimum or the boundary of T [10]. Both queries simply involve traversing a path over T ,
with the fundamental difference being that in the terrain profile the path is given, whereas
in reporting the trickle path the path is unknown beforehand and must be determined based
on local terrain characteristics.

In analyzing these algorithms we measure the complexity of a path based on the number
of triangles it intersects, which we denote by K. When a path intersects a vertex we consider
all triangles adjacent to that vertex to have been intersected. Given this definition we have
the following result for terrain profile and trickle path queries:

Lemma 11. Let T be a terrain stored using our representation, then:

17



(a) Given a chain of line segments, S, the profile of the intersection of S with T can be
reported with O( K

lgB
) I/Os.

(b) Given a point p the trickle path from p can be reported with O( K
lgB

) I/Os.

Proof. The chain S contains of i segments denoted s0, s1, . . . si. For reporting an elevation
profile start at the endpoint of s0, and let t ∈ T be the triangle which contains this endpoint.
We assume that t is given as part of the query. We calculate the intersection of s0 with
the boundary of t to determine which triangle to visit next. If at any point in reporting
the query the next endpoint of the current segment sj falls within the current triangle we
advance to the next segment sj+1. This procedure is repeated until the closing endpoint of
si is visited. This query requires walking a path of exactly K triangles through T .

For the trickle path we are given triangle t and some point interior to t. The trickle path
from p, and its intersection with the boundary of t, can be calculated from the coordinates of
the point vertices adjacent to t. If the path crosses only the faces of triangles, but does not
follow an edge or cross a point vertex, then by Theorem 2, it requires O(K/ lgB) I/O’s to
report a path crossing K triangles. When an edge is followed, visiting both faces adjacent to
that edge no more than doubles the number of triangles visited. The only possible problem
occurs when the path intersects a point vertex. Such cases require a walk around the point
vertex to determine which triangle (or edge) the path exits through, or if the point vertex is
a local minima. In this case, the path must visit each triangle adjacent to the point vertex
through which it passes, so all triangles visited during the cycle around a point vertex are
accounted for in the path length K.

5.2 Connected Component Queries

In this section we describe how connected component queries can be reported using our
data structures. Recall that we denote by T a triangulation and by G the dual of T .
The augmented dual graph is denoted G′. Let P be some property of a triangle in the
triangulation T . For triangle t this property, denoted P(t) may either be stored as a key
value, or be something that can be calculated locally, such as slope or aspect.

5.2.1 Problem Statement

We are given a convex terrain T and a triangle t ∈ T and wish to report all triangles in the
connected component T ′ ⊂ T that share a common attribute or property P(t) (the property
of t). A triangle t′ ∈ T is in T ′ if and only if P(t) = P(t′) and there exists a path in G from
t to t′ that consists of triangles for which all triangles share the same property/attribute.

5.2.2 Background

One simple technique for reporting a connected component is to start with t and perform a
depth first search in G reporting all triangles t′ ∈ T for which P(t′) = P(t). However, the
standard depth first search algorithm requires that we be able to mark triangles (vertices in
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Figure 4: Visible and hidden edges on a triangle. In the figure on the left both ab and ac
are visible to p. In the centre figure only ab is visible, as is the case in the figure on the right
since p, a, and c are co-linear.

G) as visited to prevent vertices from being revisited by different branches of the algorithm’s
execution. Such an approach is infeasible with our data structures due to the duplication of
the vertices of G, which would require that we mark a vertex and all duplicates whenever a
vertex is visited.

To deal with this problem we employ a technique proposed by Gold and Maydell [15] that
imposes a tree structure on the dual of a triangulation. This technique was later modified
by De Berg et al. [12] to deal with planar subdivisions. In this technique we create a tree
from the graph G, which includes the vertices of G and a subset of the edges of G. This tree,
denoted GT , can be rooted at an arbitrary vertex in G. The tree is not explicitly created,
rather the parent-child relationships between vertices can be calculated locally at each vertex
(which corresponds to a triangle in T ). Since GT is a tree rooted at t the depth-first search
does not risk visiting any vertex more than once.

Before proceeding with a detailed description of how GT is generated we will state some
conventions, and define some terms. To avoid confusion between edges occurring in the
triangulation and in the dual graph we refer to an edge connecting points x and y in T by
xy. We denote the edge in G connecting vertices u and v by (u, v).

Let 4abc be a triangle, and p a point, in R
2. We say that an edge ab is visible to p if,

and only if, we can draw a line segment from p to any point on ab, excluding the endpoints
a and b, without intersecting any part of 4abc. If this condition does not hold we say that
the edge ab is hidden (see Fig 4).

Let p and q be points and ` be a line in R
2. Relative to p, we say that q is behind ` if the

line segment pq intersects ` at a point other than q (in which case q is on `). If pq does not
intersect ` then the points are in front of ` relative to each other.

To generate GT we start with the triangle ts ∈ T ′. We choose an arbitrary point s
interior to ts and build GT based on the relationship of each triangle to this point. Consider
an arbitrary vertex v ∈ G. Unless v is ts we select from among its neighbours a unique
parent triangle. Any neighbour u of v which selects v as its parent is considered a child
of v. If v has neighbours which are neither its parent, nor a child, they are not considered
adjacent to v. The tree GT includes all vertices v ∈ G and for each vertex the directed edge
(v, parent(v)). Note that each edge in GT is the dual of an edge in the triangulation T .
If (v, u) is a parent edge in G then we also refer to the the edge xy in T adjacent to the
triangles corresponding to v and u as a parent edge.
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Figure 5: Proof for Observation 1.

In order to select the parent of a vertex in GT we apply the two following rules in order.
By these rules the selected parent edge is always visible to s in our terminology. Let p1, p2,
and p3 be the points adjacent to triangle t, where dist(s, p1) < dist(s, p2) < dist(s, p3) (if
points are equidistant we break ties first by x and then by y coordinate). To determine the
parent apply the following rules:

1. Consider the line segments sp1, sp2, and sp3. If one of these segments intersects an
edge of t then the triangle adjacent to t along that edge is the parent of t, otherwise,

2. Let the edge p1p2 correspond the the parent edge in GT .

We wish to prove that GT is a tree and that it includes as nodes every vertex in G. We
will do this by showing that there is a path to every vertex v ∈ G, and that GT contains no
cycles. But first we make the following observations.

Observation 1. Given a triangle4abc and a point p interior to it, for each vertex v ∈ {abc},
the Euclidean distance between v and p is less than the maximum Euclidean distance between
v and the other two vertices.

Proof. Without loss of generality let a be the vertex under consideration. We extend a ray
from a through p. This ray intersects the edge bc at a point p′. Let C be the circle, centred
at a of radius dist(a, p′). Now consider the line `bc which is an extension of the edge bc. If
`bc touches C at p′ but does not intersect it then both dist(a, p) < dist(a, p′) < dist(a, b),
and dist(a, p) < dist(a, p′) < dist(a, c) (see Fig. 5(a)). Otherwise assume, without loss of
generality that dist(a, b) < dist(a, p). In this case `bc must intersect C at some a point w
and point b must lie between p′ and w (see Fig.5(b)). In this case vertex c lies outside of C
and therefore dist(a, d) < dist(a, d′) < dist(a, c).

Observation 2. If ` is a line containing points p, u, and u′ then for an arbitrary point s if
dist(s, p) < dist(s, u) and u lies between u′ and p on ` then dist(s, u) < dist(s, u′).
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Proof. Consider the triangle 4spu′. The vertex u is on the interior of edge pu′ and thus on
the interior of of 4spu′. By Observation 1 dist(s, u) < dist(s, u′).

Observation 3. If T is the triangulation of a convex region no edge on the boundary of T
will be selected as the parent edge of a triangle t ∈ T .

Proof. Let 4xyz be a triangle in T with parent edge xy which is on the outer boundary of
the triangulation T of a convex region. The edge xy is visible from s, otherwise it will not
be selected as parent. Let a be a point in 4xyz for which the line segment sa intersects xy.
Clearly we can select some such point since xy is visible to s. Since a is in 4xyz we also
know that a is in T , and as the region is convex the line segment sa is contained entirely in
T [11]. This is a contradiction since we have claimed that sa intersects xy on the boundary
of T .

We have assumed that the domain of the triangulation T is convex. Due to Observation
3 this ensures that there is no branch of GT that could re-enter T along the boundary after
leaving. This requirement is not problematic since a non-convex triangulation can be made
convex by adding a linear number of triangles. With this assumption we know prove that
GT is both connected and contains no cycles, and is therefore a tree.

Lemma 12. For every triangle t ∈ T there exists a path in GT from t to the triangle ts at
which GT is rooted.

Proof. We prove the lemma by contradiction. Assume there exists a disconnected compo-
nent, K of one or more triangles in T such that no path in GT from ts to any triangle t ∈ K
exists. The boundary of K consists of a set of triangle edges which form a polygon enclosing
K. None of these edges on the boundary may be parent edges, otherwise the path from st
would simply extend across that parent edge.

Let C be the chain of maximal length (measured by number of edges) along the boundary
of K, for which all edges in C are visible to s. We label the vertices on C clockwise from v0

to vn. Each consecutive pair of vertices vi−1vi on C is a visible edge on a triangle contained
in K. Consider this set of triangles. Each triangle in this set has its parent edge selected
by rule 2, since rule 1 only selects parent edges for a triangle with a single visible edge. For
the triangle adjacent to edge vi−1vi let the third vertex be v′i. For each triangle 4vi−1viv

′
i

we know that either dist(s, v′i) < dist(s, vi) or dist(s, v′i) < dist(s, v′i−1), in order that v′i
be on the parent edge. Consider the first triangle in the set, 4v0v1v

′
1 and the rays −→sv0 and

−→sv1. By definition v0 is the first vertex on the chain so v′1 does not lie above −→sv0, otherwise
4v0v1v

′
1 would intersect the boundary of K (see Fig. 6). Thus v1v′1 must lie below −→sv1.

Since triangles in T cannot intersect each other, we can apply the same logic to the next
triangle 4v1v2v

′
2 on the chain to show that v′2 must lie below −→sv2 and so on until we reach

4vn−1vnv
′
n. Since C is of maximal length the boundary of K does not extend below −→svn so

that vnv′n cannot be the parent edge of 4vn−1vnv
′
n.

It may be the the case that the boundary of K encircles s such that C is convex polygonal
chain around s. In this case let v0 be the vertex on C which maximizes dist(s, v0). The
fact that vi−1vi and viv′i are both visible to s, implies that dist(s, vi−1) > dist(s, v′i) by
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Observation 1. Thus dist(s, v0) > dist(s, v1) > . . . > dist(s, vn). However since C is a
closed polygonal chain v0 = vn, which is impossible (see Fig. 6).
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Figure 6: Proof that GT is connected. On the left the chain C is shown. The boundary of
K is the thick dashed line. On the right proof that the boundary of K cannot form a cycle
around s.

Lemma 13. There are no cycles in GT .

Proof. Assume that GT contains a cycle C. In GT a cycle corresponds to a chain of triangles,
each the parent of the other. C cannot include the triangle ts since ts does not have a parent.
By Lemma 12 GT is connected, so there exists in GT a path from ts to some triangle w ∈ C.
Such a path is a chain of parent edges leading from w to ts. Without loss of generality
assume that u /∈ C is the parent of w on P (it may be that u = ts). Triangle w now has two
parent edges, a parent on C and a parent on P , which is impossible because each triangle
has a unique parent edge (see Fig. 7).

Lemma 14. Given the triangulation T of a convex region, and some triangle ts ∈ T then
GT rooted at ts is a tree.

Proof. This proof follows directly from Lemmas 12 and 13.

Since GT is a tree we can report a connected component T ′ by selecting any triangle t ∈ T ′
as ts, selecting any point interior to ts as s, and performing a depth first traversal on GT

rooted at ts. We expand the traversal from any triangle t ∈ T ′ for which P(t) = P(ts). Since
each triangle contains locally all the information needed to determine its own parent/child
relationships, the algorithm needs to remember the previously visited triangle to make a
decision regarding where the traversal will proceed to next.
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Figure 7: GT does not contain any cycles.

Lemma 15. Let T ′ ⊂ T be a connected, convex component. Given ts ∈ T ′ we can report all

triangles in T ′ with
(
|T ′|
lgB

)
I/Os.

Proof. We select ts as the start triangle and let s be the mid-point of t.
We first demonstrate that the subtree of GT connecting the triangles of T ′ to ts, which

we denote GT ′ , is still a tree (it is not split into subtrees by the boundary of T ′). If we
apply the same logic in Observation 3 to the boundary of T ′ it is clear that the boundary
of the convex region T ′ contains no parent edges. Assume some branch in GT leaves T ′ and
re-enters at some edge along the boundary of T ′. This must occur at a parent edge, but this
is impossible. Thus GT ′ is still a connected tree.

Starting with ts as the root we perform a depth-first search in GT , terminating the search
(locally) along any branch when a triangle t′ is encountered for which P(t′) 6= P(ts). The
depth-first traversal is equivalent to a walk along a path which visits each reported triangle
at most three times, and each unreported triangle once. Thus, if the component contains
|T ′| triangles the traversal is equivalent to performing a walk of length at most 4|T ′|. By

Theorem 2 we can report the connected component with O
(
|T ′|
lgB

)
I/Os.

It can be easily shown that Lemma 15 can also apply to any star-shaped region so long
as the point s is selected such that it falls in the kernel of the region. We also have the
following Corollary for rectangular window queries.

Corollary 1. Given a terrain T , a query window W , and a triangle t ∈ T which intersects
the query window, the set of triangles which intersect the query window, TW , can be reported

with O
(
|TW |
lgd A

)
I/Os.

Proof. First note that the query window problem is equivalent to reporting a connected
component where the selection property is that a triangle intersects the query window W .
Care must be taken with triangles that intersect the query window boundary. We must
guarantee that no triangle has a parent edge in GT corresponding to an edge in T that lies
completely outside the window W . It is easy to verify that given triangle 4abc, and the
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point s, that any rectangular query window W containing s and intersecting 4abc intersects
(or contains) at least one of the visible edges of 4abc. Thus we modify rule 2, such that if
rule 2 is applied we do not assign as the parent edge an edge entirely outside W . There is
no need to modify rule 1 as in this case there is only one visible edge, so it must intersect
W . With this modification reporting query windows is equivalent to reporting any convex

connected component and the I/O complexity is O
(
|TW |
lgB

)
I/Os.

5.2.3 General Connected Components

In this section we present an algorithm that permits us to traverse components that are non-
convex and possibly contain holes. By hole we refer to a connected component of triangles
for which P(t) 6= P(ts) and for which all boundary edges on the hole border on a triangle
in T ′. In the connected component T ′, there exists a path in GT from t to ts. This implies
that triangles in T ′ must be edge adjacent. For holes the opposite holds, such that two holes
that touch at a vertex may be considered a single hole, and a hole touching the boundary of
T ′ may be considered part of the boundary.

We select a triangle, ts within T ′ and wish to report the connected component containing
all triangles in T ′. Let u, and v be vertices in G corresponding to the adjacent triangles tu
and tv in T for which P(tu) = P(ts) 6= P(tv). Let e be the edge in T that corresponds to the
undirected edge (u, v) in G. The edge e is on the boundary (or perimeter) of the region T ′,
or on the boundary of one of the holes in T ′. We divide boundary edges into three classes
with respect to GT (see Fig.8):

1. e is a wall edge if neither the directed edge (u, v) nor the directed edge (v, u) is present
in GT .

2. e is an entry edge if the directed edge (v, u) is present in GT .

3. e is an exit edge if the directed edge (u, v) is present in GT .

We report the triangles in T ′ using the algorithm DepthF irstTraversal shown in Fig.
9. We assume that we are given the starting triangle ts. DepthF irstTraversal performs
a standard depth-first traversal in GT with one important modification. If a branch of the
algorithm’s execution terminates at an entry boundary edge the function ScanBoundary
(Fig. 10) is called, which traverses the entire chain of boundary edges and recursively
calls DepthF irstSearch at each triangle encountered adjacent to an exit edge. The search
structure V ensures that no boundary edge is scanned more than once. Whenever a entry
edge is visited during the ScanBoundary or DepthF irstSearch processes it is added to the
search structure V if it is not already present. If an entry edge is encountered which is already
in V execution of ScanBoundary is halted. Likewise when DepthF irstTraversal encounters
an entry edge already in V it does not invoke ScanBoundary. Figure 11 demonstrates how
DepthF irstSearch and ScanBoundary operate.

Lemma 16. Given a triangle ts ∈ T the algorithm described above reports the all triangles
t ∈ T ′ even when T ′ has holes or a non-convex boundary.
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tvtv tu
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entry edge exit edge wall edge

Figure 8: The three types of boundary edges. The boundary edge is drawn in red and
the dashed arrow represents the directed edges (v, u) and (u, v) in GT . The shaded region
represents the triangle that belongs to T ′, which is tu in each case.

Proof. Let v be a vertex in G corresponding to some triangle t ∈ T ′ which is not reported
by our algorithm. Since v is not reported the path v  ts in G must have one or more
subpath that cuts through a hole or through the boundary of T ′. Let w  u be the closest
such subpath to ts. Let w′ ∈ T ′ be the child of w in GT , and let u′ ∈ T ′ be the parent
of u in GT . The edge (w′, w) corresponds to an exit edge while (u, u′) corresponds to an
entry edge. By definition the path u′  ts is contained wholly in T ′ and thus the depth-
first search commencing at ts reaches u′. If the entry edge corresponding to (u, u′) has not
previously been visited the ScanBoundary algorithm is invoked. Since ScanBoundary walks
the entire chain of boundary edges around the boundary of the hole/component, the exit
edge corresponding to (w′, w) will be visited during this call to ScanBoundary unless it is
blocked when ScanBoundary encounters a previously visited entry edge (this may occur if
one of the recursive calls to DepthF irstSearch made at exit edges during ScanBoundary
encounters the same boundary). However, if ScanBoundary is blocked from visiting (w′, w)
in such a fashion then ScanBoundary must have been called from the blocking entry edge.
Let s0, s1, . . . , si be a sequence of such blocking calls to ScanBoundary along the boundary
chain between (u, u′) and (w′, w). Clearly the last such call, si will result in (w′, w) being
visited. This same argument can be applied to any other subpaths leaving T ′ on v  ts,
and as such v is visited by DepthF irstTraversal.

We evaluate the I/O efficiency of our algorithm with respect to two values. The first is
the number of triangles in T ′ which we denote |T ′|, and the second is the total number of
boundary edges around all holes and the boundary of T ′. We denote by h the total number
of boundary edges. Thus I/O efficiency of our algorithms are summarized in the following
lemma.

Lemma 17. The algorithms DepthF irstTraversal reports a connected component T ′ with

h boundary edges using O
(
|T ′|
lgB

)
+O(h logB h) I/Os.
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Algorithm DepthFirstTraversal(ts, s)
1. t← ts
2. do
3. if(t has unvisited children)
4. c← next unvisited child of t
5. if(P(c) 6= P(t))
6. e← boundary edge corresponding to (c, t)
7. if(e is an entry edge and e /∈ V)
8. ScanBoundary(e, t)
9. endif
10. else
11. t← c
12. endif
13. else
14. t← parent of t
15. endif
16. until(t has no more unvisited children and t = ts)

Figure 9: Algorithm DepthF irstTraversal.

Proof. Performing a the depth-first traversal is equivalent to a walk of length at most 4|T ′|,
which we know can be performed in O

(
|T ′|
lgB

)
I/Os. We must also account for the length of

the paths traversed by calls to ScanBoundary. Any triangle in T ′ may be visited at most
three times since it may be adjacent to no more than three different boundary chains. Thus
the total additional length of the walks associated with calls to ScanBoundary is bounded
by 3|T ′|, which increases the length of the path traversed by a constant.

We must also account for the number of I/Os required to maintain and query the data
structure V . There are h boundary edges and in the worst case most of these edges may
be entry edges. Using a B-tree or similar data structure to store V enables insertions and
queries to be performed in O(logB h) time. An entry edge may be added to V a single time,
and be subsequently visited at most one additional time. Thus the total cost to maintain
and query V is O(h logB h).

Finally we must account for the space used to store the search structure V . If we store
as the structure in a B-Tree we can assume that for each record we must store a ϕ-bit point
(as each edge can be uniquely identified by the coordinates of its mid-point) in addition to a
lg h bit pointer. Thus the space for this structure is O(h · (ϕ+ lg h)) bits. In theory the size
of this structure could be larger than T , but in most realistic scenarios it will be significantly
smaller.

To summarize we have the following theorem to summarize our results for convex and
general connected components. The space bound is from Theorem 2, plus the space for V
for general connected components, while the I/O bounds are obtained from Lemmas 15 and
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Algorithm ScanBoundary(e, t, s)
1. e′ ← next boundary edge in counterclockwise direction from e
2. do
3. if(e′ is an entry edge)
4. if(e′ ∈ V)
5. break
6. else
7. add e′ to V
8. endif
9. endif
10. if(e′ is an exit edge)
11. select triangle t adjacent to e′

12. DepthF irstTraversal(t, s)
13. endif
14. until(e’ == e)

Figure 10: Algorithm ScanBoundary.

17.

Theorem 4. A triangulation T , with ϕ-bit keys per triangle, may be stored using Nϕ +

O(N)+o(Nϕ) bits such that a connected component T ′ may be reported using O
(
|T ′|
lgB

)
I/Os if

T ′ is convex. If T ′ may be non-convex or have holes then the query requires O
(
|T ′|
lgB

+ h logB h
)

I/Os, plus an additional O(h · (ϕ+ lg h)) bits of storage, where h is the number of boundary
edges around holes and the perimeter of T ′.

5.3 Connected Components without Additional Storage

One drawback with our technique for reporting connected components is that we must store
the search structure V in order to complete the traversal. In this section we present a revised
version of the algorithm that removes the need for this additional data structure at the cost
of performing additional I/O operations.

Our technique is based on the constant memory algorithm of Bose and Morin [5], for
the more general case of subdivision traversal in planar subdivisions. This paper itself is a
refinement of the algorithm presented by De Berg et al. [12]. The strategy in both papers
is to identify a single entry edge on each face. When an edge is visited while reporting the
edges of a face, a check is made to determine if it is the (unique) entry edge for an adjacent
face. If the edge proves to be an entry edge then the adjacent face is entered. The resulting
traversal is a depth-first traversal of the faces of the subdivision. In both papers (Morin and
Bose, De Berg et al.) the subdivision is assumed to be represented as a doubly connected
edge list, or similar structure.

27



Bose and Morin [5] select entry edges based on a total order �p, on the edges of T . The
position of each edge, e in �p, is determined based on the edge’s key. The key is a 4-tuple
of properties that can be calculated locally for each edge based on the edge’s geometry. As
with our structure the value of an edge’s key depends on the value of a starting point s
contained in one of the faces. To determine if an edge is the entry point of a face (that may
be a hole boundary or the component boundary), we perform the following both-ways search.
Starting at edge e the boundary is scanned in both directions until either, (a) an edge e′

on either scan is encountered with a lower key than e in �p, or (b) the scans meet without
having found any such edge. In case (b) the edge e is then selected as the entry edge for the
boundary.

The fundamental result of Bose and Morin is that for a subdivision with n vertices, all
faces (including edges and vertices) can be reported with O(n log n) steps. Their approach
can also be directly applied to reporting a connected component of the subdivision with
O(h log h) time where the h is the number of vertices in the component.

In our paper all faces are triangles, so using their technique to find the entry edge of a
triangle (face) t ∈ T can be performed in constant time. Where their ’search both ways’
technique proves useful in our setting is in dealing with holes and the exterior boundary of
the component. A hole, the interior of which will not be reported, may consist of one or
many faces (triangles) but we treat a hole as if it were a single face. As we do not store
a doubly-connected edge list, we cannot walk the edges of the hole as they do. Rather, we
must walk the set of triangles that touch the boundary of the hole. This includes all triangles
in T ′ that:

1. have an edge that is part of the boundary of a hole,

2. have as one of their defining points a point that lies on the boundary of a hole.

Let h′ denote the number of triangles that must be visited to walk the boundary of all
holes in, plus the external boundary of, T ′. A triangle can be adjacent to at most three
different holes so h′ = O(|T ′|). Let H be some hole in our component. In order that we
can apply the analysis of Bose and Morin directly in our setting, we conceptually add zero
length psuedo-edges to H at any point on the boundary of H that is adjacent to a triangle t
which touches H at a point, but which does not share an edge with H (see Fig. 12 ). With
respect to the key values in �p, we set the value of a key for a pseudo-edge to ∞. Since
the entry edge in any hole is the edge of minimum key value, no psuedo-edge will ever be
selected as the entry edge. Given this definition of a psuedo-edge, the value h′ can also be
considered the sum of real and psuedo-edges over all holes and the exterior boundary of the
component T ′.

The following lemmas summarize results for Bose and Morin that can now be applied
directly to our setting:

Lemma 18. For a connected component T ′ requiring h′ triangles to be visited in order to
walk the boundary of all holes plus the exterior boundary of T ′, the both ways search technique
can find entry edges for all holes (and the exterior) by visiting at most O(h′ log h′) steps, or
O(h′ logB h

′) I/Os.
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Proof. Theorem 1 in Bose and Morin [] states that a planar subdivision of faces with n
vertices can be traversed in O(n log n) time. By adding zero-length pseudo-edges in our
setting we effectively make the set of holes and the exterior boundary equivalent to faces
with h′ vertices on their boundaries. Thus using the two way search can locate entry edges
with O(h′ log h′) steps. Since we can travel O(logB) steps during such searches before
incurring an I/O we can perform all such searches in O(h′ logB h

′) I/Os.

Applying the both-ways search technique presented above requires only minor modifca-
tions to our algorithms. In the DepthF irstTraversal algorithm (Fig. 9) at line 7 rather
than check if e ∈ V , we perform the both-ways search to determine if e is the unique entry
edge. If this is true we then perform ScanBoundary starting with e. The only alteration to
the ScanBoundary algorithm (Fig. 10) is that we can omit steps 3 through 9 since following
the both-ways search we know that e is the unique entry edge for the boundary or hole.

To summarize we have the following theorem:

Theorem 5. A triangulation T , with ϕ-bit keys per triangle, may be stored using Nϕ +

O(N)+o(Nϕ) bits such that a connected component T ′ may be reported using O
(
|T ′|
lgB

+ h′ logB h
′
)

I/Os, where h′ is the total number of triangles that touch all holes in, plus the boundary of,
T ′.

6 Terrain Representation with Point Location

For the various applications that we have described in the previous section (5), we assume
that a starting triangle in T is given as an input parameter to the problem. This is problem-
atic because in real applications we will typically need to locate the triangle from which we
will begin reporting the result. In this section we describe how to extend our data structures
to answer point location queries efficiently.

Our point location structure is based on that of Bose et al. [4] as our data structures share
the same two-level partition scheme. Their construction relies on the point location structure
of Kirkpatrick [17] for which there is no known external memory version. Rather we use the
structure of Arge et al. [3] which uses linear space and answers vertical ray shooting queries
in O(logB N) I/Os.

We want to design a point location structure which given a query point pq will return the
label of the sub-region containing pq. Since we are operating in the I/O model, we can afford
to perform an exhaustive search of the sub-region to locate the exact triangle containing pq.
We use a two level search structure. The first level allows us to locate the region containing
pq, while the second allows us to locate the sub-region containing pq. As the the structure is
effectively the same at each level, we will only describe the structure for locating the region
in detail.

Consider the set of region boundary vertices used to partition T . These correspond to
a subset of the triangles in T . We create a planar subdivision by selecting these boundary
triangles and removing all triangles corresponding to the internal vertices of the regions.
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We associate with each edge in this subdivision the region immediately below it. If the
area below the edge is not part of T , or is perhaps a hole in T , then we mark the edge
with invalid value. It may be the case for some edge that the area below it is part of a
boundary triangle and therefore belongs to two or more regions. In this case we can make
an arbitrary selection of any region containing that triangle. We then build the persistent
B-Tree structure of Arge et al. [3] on this subdivision. To determine which region the query
point pq belongs to we perform a vertical ray shooting query from pq to report the first edge
encountered in our subdivision above that point. Since we associate with each edge the
region below it, the result of this query yields the region containing pq.

For each region we then build a similar structure using the sub-region boundary vertices.
Thus given the region containing pq we can then locate the sub-region containing this point
by performing a second search.

Lemma 19. By augmenting our terrain data structure with a structure using an additional
o(Nϕ) bits, point location queries can be answered in O(logB N) I/Os.

Proof. In the top level, region finding, data structure there are O

(
N√
A lg3N

)
region boundary

vertices. For each such vertex we insert at most three edges into our search structure.
Associated with each edge we must store 2ϕ bits for the endpoints, plus a region label

requiring lg
(

N
A lg3N

)
bits. Thus the total space in bits required by this structure will be:

O

(
N√
A lg3N

)
·
(

2ϕ+ lg

(
N

A lg3N

))
= O

(
Nϕ√
A lg3N

)
+O

(
N√
A lg3N

)
· lg
(

N

A lg3N

)
= o(Nϕ) + o(N) (8)

For the sub-region search structures we will consider their space cumulatively. We add

O
(
N/
√
A
)

edges each requiring 2ϕ bits for the endpoints and lg (lg3N) bit references to

the lg3N sub-regions within the region. The space required for this structure is then:

O

(
N√
A

)
· (2ϕ+ lg (lg3N)) = O

(
Nϕ√
A

)
+O

(
N√
A
· lg lg (N)

)
(9)

The first term this equation is clearly o(Nϕ). Recall that A = (B lgN)/(c+ϕ) and that
B = Ω(lgN). Thus for the second term of Eq.(9) we have:

O

(
N√
A
· 3 lg lgN

)
= O

 N√
B lgN
c+ϕ

· lg lg (N)


= o(Nϕ) (10)

The total space we use is thus bounded by o(Nϕ) bits. The I/O complexity stems from
the fact that we perform two point location queries on data structures that answer the query
in O(logB N) I/Os where each structure is of size less than N .
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Theorem 6. Given a terrain T , where each point coordinate may be stored in ϕ bits, there
is a data structure that represents T in Nϕ + O(N) + o(Nϕ) bits, that permits traversal of

a path crossing K faces in T with O
(

K
lgB

)
I/Os, and which supports point location queries

with O(logB N) I/Os.

Proof. The terrain data structure requires Nϕ + O(N) + o(Nϕ) bits by Theorem 2. By
Lemma 19 adding point location requires only o(Nϕ) bits so the overall space bound is the
same and queries can be answered in O(logB N) I/Os.
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Figure 11: On the left a triangulation T and connected component T ′ (shaded) with a non-
convex boundary and holes is shown. The original tree GT is shown on the right with vertices
labelled by preorder number for the entire triangulation T . Hallow vertices correspond to
vertices removed from GT by holes and/or concavities in the boundary of T ′. The parent-
child relationships, and the vertex labels are also shown on T . In T boundary edges are
thick lines, with entry edges being dashed, and exit edges dotted. The original call to
DepthF irstTraversal first encounters the entry edge (8,7), from which ScanBoundary will
visit exit edges (9,8), (12,11) and (14,13), in that order, before terminating back at (8, 7).
This initial call to ScanBoundary results in subtrees rooted at vertices 9, 12, and 14 being
reported. ScanBoundary is not invoked from entry edge (10,2) as this edge is added to
V during the invocation of ScanBoundary from (8, 7). ScanBoundary is however called
from (17, 1), which results in entry edges (26, 18), (24, 19) and (20, 19) being visited and the
subtrees rooted at vertices 26, 24 and 20 being reported.
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b
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b
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Figure 12: The figure on the left shows a portion of a component (grey) with a hole (white).
The dashed box indicates the detailed area shown in the figure on the right. The right hand
figure shows conceptually how additional edges are added to the hole boundary, correspond-
ing to triangles in the component. At the point marked a a single pseudo-edge is added since
there is only one non-edge adajacent triangle adjacent to this point. The point b has two
non-edge adjacent triangles so two pseudo-edges b and b′ are added to the hole boundary.
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