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Résumé

Nous rappelons d’abord le concept d’algebre de Kleene avec domaine (AKD). Puis,
nous expliquons comment utiliser les opérateurs des AKD pour définir un ordre partiel
appelé raffinement démoniaque ainsi que d’autres opérateurs démoniaques (plusieurs de
ces définitions proviennent de la littérature). Nous cherchons & comprendre comment se
comportent les AKD munies des opérateurs démoniaques quand on exclut les opérateurs
angéliques usuels. C’est ainsi que les propriétés de ces opérateurs démoniaques nous
servent de base pour axiomatiser une algebre que nous appelons Algebre démoniaque
avec domaine et opérateur t-conditionnel (ADD-F,). Les lois des ADD-F, qui ne con-
cernent pas I'opérateur de domaine correspondent a celles présentées dans ’article Laws
of programming par Hoare et al. publié¢ dans la revue Communications of the ACM en
1987.

Ensuite, nous étudions les liens entre les ADD-F, et les AKD munies des opérateurs
démoniaques. La question est de savoir si ces structures sont isomorphes. Nous
démontrons que ce n’est pas le cas en général et nous caractérisons celles qui le sont.
En effet, nous montrons qu'une AKD peut étre transformée en une ADD-F, qui peut
étre transformée a son tour en ’AKD de départ. Puis, nous présentons les conditions
nécessaires et suffisantes pour qu'une ADD-F, puisse étre transformée en une AKD qui
peut étre transformée a nouveau en ’ADD-F, de départ.

Les conditions nécessaires et suffisantes mentionnées précédemment font intervenir
un nouveau concept, celui de décomposition. Dans un contexte démoniaque, il est
difficile de distinguer des transitions qui, a partir d’'un méme état, menent a des
états différents. Le concept de décomposition permet d’y arriver simplement. Nous
présentons sa définition ainsi que plusieurs de ses propriétés.



Abstract

We first recall the concept of Kleene algebra with domain (KAD). Then we explain
how to use the operators of KAD to define a demonic refinement ordering and demonic
operators (many of these definitions come from the literature). We want to know how
do KADs with the demonic operators but without the usual angelic ones behave. Then,
taking the properties of the KAD-based demonic operators as a guideline, we axiomatise
an algebra that we call Demonic algebra with domain and t-conditional (DAD-F,). The
laws of DAD-F, not concerning the domain operator agree with those given in the 1987
Communications of the ACM paper Laws of programming by Hoare et al.

Then, we investigate the relationship between DAD-F, and KAD-based demonic
algebras. The question is whether every DAD-F, is isomorphic to a KAD-based demonic
algebra. We show that it is not the case in general. However, we characterise those
that are. Indeed, we demonstrate that a KAD can be transformed into a DAD-FR,
which can be transformed back into the initial KAD. We also establish necessary and
sufficient conditions for which a DAD-F, can be transformed into a KAD which can be
transformed back into the initial DAD-F,.

Finally, we define the concept of decomposition. This notion is involved in the
necessary and sufficient conditions previously mentioned. In a demonic context, it is
difficult to distinguish between transitions that, from a given state, go to different
states. The concept of decomposition enables to do it easily. We present its definition
together with some of its properties.
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Chapter 1

Introduction

In software engineering and in computer science (as well as in many other fields of engi-
neering), the notion of refinement is omnipresent [Som06]. Indeed, program refinement
is behind many practical approaches that are used for developing software systems. In
theoretical computer science, formal methods are interested in many questions includ-
ing program refinement and how it can be used to improve automatic code generation.
Since one of the basis of theoretical computer science is mathematics, formal methods
study refinement via mathematical tools. For this task, many algebraic structures have
been introduced throughout the last decades.

These structures encapsulate refinement via a partial order operator. The follow-
ing list gives an idea of how a structure can mathematically represent operations on
programs. Generally,

e an addition operator or supremum operator (+, U or 1) denotes non-deterministic
choice,

W

e a multiplication operator (-, “;” or o) denotes sequential composition,
e a unary exponent operator (*, ¢ or *) denotes finite (or infinite) iteration
e and an inequality symbol (<, C or C) denotes refinement. Usually

r<y <= z+ty=y

so that = refines y means that a non-deterministic choice between x and y is
equivalent to y.
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There is more than one such structure, each of them having its intended model and
each of them representing a particular semantics of programs. Among other aspects,
these algebraic structures handle angelic or demonic semantics. The expression “angelic
semantics” may intuitively be thought of as the set of all possible behaviours, while the
expression “demonic semantics” may be viewed as the set of all behaviours that can be
guaranteed.

Moreover, some structures make it possible to analyse program semantics in a
partial-correctness framework and others in a total-correctness framework. Partial-
correctness means that the models of the structure focus only on transitions of a program
that initialise and terminate successfully. Total-correctness means that the structure
focuses on all possible transitions of a program, even those that do not lead to successful
termination.

1.1 Three Algebraic Structures

The first structure worth mentioning is relation algebra (RA) [SS93, Tardl]. It is a
structure that has relations as its intended model. Its axioms are satisfied by the usual
operators on relations. Suppose a context where there are five possible states for a
program P. Note S5 = {1,2,3,4,5} the set of possible states and suppose that P is
represented by the relation {(1,1),(1,4),(2,5),(3,2)}. It means that the program P
has four possible behaviours.

1. From state 1, it may either stay there
2. or go to state 4,
3. from state 2, it can only go to state 5

4. and from state 3, it can only go to state 2.

From other states, there is no possible action.

Intuitively!, one can think of relations as subsets of S x S for a set of states S.
The program interpretation of the usual operators on relations is as follows. Union (U)
stands for non-deterministic choice, composition of relations (;) stands for sequential

'RA admits non representable models, but for the needs of this introduction, we only consider
representable ones.
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composition, reflexive transitive closure (*) stands for finite iteration and inclusion (C)
stands for program refinement. Having in mind the previous three paragraphs, one can
see that RA deals with angelic semantics in a partial-correctness framework.

Another well-known structure is Kleene algebra (KA) [Con71, Koz94]. Its canonical
model is that of regular languages [Bro89]. Union of languages is represented by the
operator +, concatenation of languages is represented by the operator -, the closure of
languages is represented by the operator * and inclusion of languages is represented by
the partial order <. KA enables to model non-deterministic choice, program sequence,
finite iteration and program refinement. It turns out that KA admits relations as a
model too and it is also used for giving angelic semantics of programs in a partial-
correctness framework. KA was extended to Kleene algebra with tests (KAT) [Koz97],
which has been extended to Kleene algebra with domain (KAD) [DMS04, DMS06b,
DMTO06]. KAD has a domain operator that gives a grip on the inputs of the program
(which is a useful tool). For the purpose of this introduction, we do not say more
about it (see Chapter 2 for details), but we mention the name here for completeness.
The intuition of regular languages or relations remains the best one for KA and its
extensions.

In parallel to the study of relations, predicate transformers were introduced [Dij76].
Considering a fixed set of states .S, one can see a predicate as a subset of S. We denote
the set of subsets of S by p(S). A predicate transformer is then a function of type
©(S) — ©(S). Suppose a context where there are three possible states for a program
P. Denote by S5 = {1,2,3} the set of states and suppose that P is represented by the
predicate transformer

T:p(S) — p(5)

i - {
{1 - {1}
2t - {
{8t — {2}

{1,.2} — {1}
{1,3} — {1,2}
{23} — {2}

{1,2,3} — {1,2,3} .

An association A — B has the following interpretation: to ensure that the program P
terminates in any state of A, it must start in a state of B.

e The association {1} +— {1} means that to terminate in state 1, the program P
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must start in state 1.

e The association {2} — {} means that there is no state from which the program
P necessarily goes to state 2.

e The association {2,3} — {2} means that to terminate in either of states 2 or 3,
the program P must start in state 2.

e The association {1,3} — {1,2} means that to terminate in either of states 1 or
3, the program P must start either in state 1 or 2.

Now take any two predicate transformers 77 : p (S3) — © (53) and Ty : o (S3) —
© (S3). Here is a description of some operators on predicate transformers.

e The supremum operator H is such that (77 U Ty)(p) = T1(p) N Ta(p) for all p €
0 (S3)-

e The composition operator is (T1573)(p) = T1(T2(p)) for all p € p (Ss).

e For now, the easiest way to describe the iteration operator on a predicate trans-
former T : o (S3) — © (S3) is

T =14T U (TeT) U (TeTeT) |

where 1, defined by 1(p) = p for all p € p (.S3), is the identity for the composition
operator. This iteration operator is then a finite iteration operator since it iter-
ates T' no more than three times. Note that this definition is only valid for Ss.
The general definition (including the case where S is infinite) of 7 involves the
calculation of the least fixpoint of a well-chosen function. For the time being, we
skip the details.

e We write 77 T T, when Ty(p) C T1(p) for all p € p (S3).

With this interpretation, predicate transformers give demonic semantics of programs in
a total-correctness framework.

Recently, Von Wright defined demonic refinement algebra (DRA) [vWO04]. This
structure has the positively conjunctive predicate transformers? as its intended model.

2Let I # {} be an index set. A predicate transformer T over a set of states S is positively conjunctive

e

iel il
where p; € p(9).
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In addition to the finite iteration operator, it includes an infinite iteration operator ¢
related to the calculation of the greatest fixpoint of a well-chosen function. DRA has
been extended to demonic refinement algebra with enabledness (DRAe) [Sol07, SyWO06].
The name of this operator (enabledness operator) reflects its semantic interpretation
in the realm of programs and its axiomatisation is inspired by that of the domain
operator of KAD. For the purpose of this introduction, we do not say more about it
(see [DDO0O6Gc, DD08b, Sol07, SvW06] for details or Section 6.2 for a brief presentation).
The intuition of positively conjunctive predicate transformers remains the best one for

DRA and DRAe.

1.2 The Meeting Point of Two Parallel Lines

Relations and predicate transformers seem to be the “opposite” of each other. Relations
represent an angelic semantics of programs in a partial-correctness framework and they
model the states where a program may go from a given state. Predicate transformers
represent a demonic semantics of programs in a total-correctness framework and they
model the states from which a program is guaranteed to get to a given state.

However, work has been done to bring together angelic and demonic semantics.
For instance, demonic operators were defined in RA from the angelic ones [BvdW93,
BZ86, DBST95, DMN97, Kah01, Mad96, TD99]. Demonic operators were defined from
the angelic ones in KAD too [DMT00, DMTO06]. It is worth mentioning since, as said
previously, relations are also a model of KAD. Other works relating angelic and demonic
semantics have been published [BvW92, MCRO07, Sol07]. At the moment, no algebraic
structure has relations with demonic operators (or KAD with demonic operators) as its
intended model.

It turns out that relations and predicate transformers can be connected. Take
Sy = {1,2}. The lattice of relations over Sy has the shape of the one of Figure 1.1.
This lattice might be seen as a model of RA as well as a model of KAD. By ordering
the same relations but with demonic refinement (which can be defined from the angelic
operators in RA), one gets a semilattice of the shape of the one of Figure 1.2. As
mentioned before, no algebraic structure has relations with demonic operators as its
intended model. The lattice of positively conjunctive predicate transformers over S
has the shape of the one of Figure 1.3. This lattice might be seen as a model of DRAe.
Looking carefully at these three semilattices, one can gather them in the lattice of
Figure 1.4.
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Figure 1.1: Lattice of relations over Sy ordered by angelic refinement.

Figure 1.2: Lattice of relations over Sy ordered by demonic refinement.
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Figure 1.3: Lattice of positively conjunctive predicate transformers over S5 ordered by
C
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[ ] [ ]
><><. \\ °

N

\

WY

/3

X

/

Angelic lattice
of relations over Sy
(Figure 1.1) o

Figure 1.4: Lattice of positively conjunctive predicate transformers over Sy, a synthesis
of the semilattices of Figures 1.1, 1.2 and 1.3.
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Even though the lattice of Figure 1.4 is not a complete surprise, it raises questions.

e Is there a similar connection when S is any (finite or infinite) set of states?

e [s there a similar connection between KAD, RA and DRAe in general rather than
just between some of their models?

e [s it possible to describe this connection in an algebraic way?

1.3 Contributions

In [DD06¢, DDO08b], we show that, under suitable hypotheses, every DRAe is isomorphic
to an algebra of ordered pairs of elements of a KAD. This establishes an algebraic
connection between the bottom part of the lattice and the whole lattice —refer to
Figure 1.4. We are going to present a general survey of this result in Section 6.2.

In this thesis (as well as in [DD06a, DD06b, DD08al),

1. To those demonic operators that were defined in the context of KAD, we add two
new ones: the demonic iteration operator “4 and the t-conditionnal operator Fa,.

2. We demonstrate many properties of the demonic iteration operator and the t-
conditionnal operator.

3. We define an algebraic structure called demonic algebra with domain and t-
conditional (DAD-F,) that has KAD with demonic operators as its intended model
(so that the semilattice of Figure 1.2 might be seen as a model of DAD-F,).

4. We prove the independence of many axioms of DAD-FR, by means of appro-
priate counter-examples. Many of these counter-examples were generated by
Mace4 [Mac|, an automated theorem prover system that generates finite (coun-
ter)models from first-order axioms.

5. We demonstrate many properties of DAD-F.
6. We define angelic operators from the demonic ones of DAD-F.

7. We demonstrate that, under suitable hypotheses, DAD-F, together with the afore-
mentioned angelic operators form a KAD.
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DAD-F,
with
decomposable
elements

Figure 1.5: Representation of the duality between KAD and DAD-F,.

8. We demonstrate that a KAD can be transformed into a DAD-F, which can be
transformed back into the initial KAD. We also demonstrate that, under suitable
hypotheses, a DAD-R, can be transformed into a KAD which can be transformed
back into the initial DAD-FR,. Consequently, under the same suitable hypotheses,
one can see DAD-FR, as a dual of KAD. This duality is an algebraic connection
between the bottom part and the upper part of the lattice of Figure 1.4 for
any model of KAD. Showing it is the ultimate goal of this text. The suitable
hypotheses mentioned above are related to the notion of decomposable elements
and we skip the details for this introduction. Figure 1.5 gives a picture of the

duality between KAD and DAD-F,.

In [DD06c, DDO08b], we also establish, under suitable hypotheses, an algebraic con-
nection between the upper part of the lattice and the whole lattice —refer to Figure 1.4.

1.4 Plan of the Thesis

There are two kinds of tasks we have to accomplish. Firstly, the lower part of the
lattice, the upper part of the lattice and the whole lattice of Figure 1.4 must have an
algebraic foundation. In other words, we have to define three algebraic structures, each
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one of them having one part of the lattice as its intended model. KAD is an algebraic
foundation for the lower part, DAD-F, is an algebraic foundation for the upper part,
and DRAe is an algebraic foundation for the whole lattice. Secondly, we have to define
transformations from any part of the lattice to any other part of the lattice. In this
thesis, we mainly concentrate on the bottom part and the upper part. The treatment
of the whole lattice will only be skimmed over.

Here is how the thesis is divided. At first, in Chapter 2, we recall the definitions of
Kleene algebra (KA) and its extensions, Kleene algebra with tests (KAT) and Kleene
algebra with domain (KAD). This chapter also contains the definitions of the usual
demonic operators in terms of the KAD’s operators. To these operators, we add two
new demonic ones and we derive new simple results about all of them. The chapter
concludes with a fundamental theorem stating that the elements of a KAD together with
the demonic operators form a demonic algebra with domain and t-conditional (defined
in the following chapter). It is the first step toward the desired duality.

Secondly, in Chapter 3, we present a new structure called demonic algebra (DA) and
its extensions, demonic algebra with tests (DAT), demonic algebra with domain (DAD)
and demonic algebra with domain and t-conditional (DAD-R,). We also demonstrate
many results about these structures.

Thirdly, in Chapter 4, we define angelic operators from DAD-F,’s operators. In
order to do so, we need to define decomposable elements. These are indispensable for the
definition of angelic composition. Once angelic operators are defined, we present major
results about them and about decomposable elements. The chapter concludes with
a fundamental theorem stating that the decomposable elements of a DAD-F, together
with the angelic operators form a KAD. It is the second step toward the desired duality.

Then, in Chapter 5, we define —refer to Figure 1.5— functions F and G such that
F(K) is a DAD-FA, for each KAD K and, under suitable conditions, G(A) is a KAD
for each DAD-F, A. Then, we demonstrate that (under the same suitable conditions)
G o F is the identity on any KAD K and F o G is the identity on any DAD-F, A. It is
the third and last step toward the desired duality.

In Chapter 6, we present a short discussion about two different algebras of ordered
pairs. The first algebra helps understand models of DAD-F,. The second one was
defined in [DD06¢, DDO08b] and it is behind an algebraic connection between the bottom
part of the lattice and the whole lattice of Figure 1.4.

We finally conclude in Chapter 7.



Chapter 2

Kleene Algebra with Domain and
KAD-based Demonic Operators

We explained in the introduction that the ultimate goal of this thesis is to establish an
algebraic connection —a duality— between the lower part and the upper part of the
lattice of Figure 1.4. In order to do so, we need an algebraic description of each part.

In this chapter, we present algebraic foundations for the lower part of the lattice of
Figure 1.4. Indeed, we recall basic definitions about Kleene algebra (KA) (Section 2.1)
and its extensions, Kleene algebra with tests (KAT) (Section 2.2) and Kleene algebra
with domain (KAD) (Section 2.3).

Then we present the KAD-based definition of the demonic operators (Section 2.4)
together with crucial properties they satisfy (Section 2.5). It prepares the ground for
Chapter 3 where we present algebraic foundations for the upper part of the lattice of
Figure 1.4. It is the first step toward the desired duality (refer to Section 1.3).

2.1 Kleene Algebra

In this section, we present the concept of Kleene algebra (KA) and we discuss some of
its axioms. Initially, different variants of KA were introduced by Conway [Con71], but
since then, one of them has become well known, thanks to Kozen [Koz94|. This is the
one we present in this section and use throughout this thesis.
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Definition 2.1 (Kleene algebra). A Kleene algebra (KA) is a structure KK = (K, +, -, ¥,
0,1) such that the following properties hold for all z,y,z € K.

(T+y)+z = v+ y+2) (2.1)
vy = y+uo (2.2)
r+xr = x (2.3)
O+2 = x (2.4)
(x-y) 2 z-(y-2) (2.5)
0Oz = 2-0=0 (2.6)
-z r-l=uz (2.7)
r-(y+z2) = z-y+ax-2 (2.8)
(x4+y)-z2 = x-z2+y-2 (2.9)
= 2t-x+1 (2.10)
Addition induces a partial order < such that, for all x,y € K,
r<y <= rv+y=y . (2.11)
Finally, the following properties must be satisfied for all x,y,z € K.
rz4+y<z = z"-y<z (2.12)
zox+y<z = y-2*<z (2.13)
Remark 2.2. Hollenberg has shown that the following symmetric version of (2.10),
=z +1, (2.14)

is derivable from these axioms [Hol96]. The converse is true. Indeed, if (2.10) were re-
placed by (2.14) in the axiomatisation of KA, then (2.10) would be derivable from these
axioms. Moreover, Kozen has shown in [Ko0z90] that (2.12) and (2.13) are independent.

(y = y-x+1) with (2.7), (2.10) and (2.13), and
(2.14) and (2.12).

Also, one can show z* =

H<
v = pu<(y = x-y+1) with (2.7),

Finally, in the presence of the other axioms, (2.12) and (2.13) are equivalent to the
following two.

= z"-z2<z (2.15)

zrx<z = z-2"<z (2.16)

The natural model of KA is regular languages. However, it is the study of relational
models of KA that led us to the lattice of Figure 1.4 and inspired us for the present
work. This is why, throughout this thesis, we elude regular languages.
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(i
/- 2\

Figure 2.1: Relation algebra over the set Sy ordered by C.

Consider the relations over the set S; = {1,2}. Interpreting + as union (U), - as
composition of relations (;), * as reflexive transitive closure, 0 as {}, 1 as {(1,1),(2,2)}
and < as inclusion (C), one gets a model of KA. Figure 2.1 displays the Boolean matrix
representation of the lattice of these relations ordered by C. It is a more detailed version
of Figure 1.1.

2.2 Kleene Algebra with Tests

KA, as defined in the previous section, is itself an algebraic foundation of the lower
part of the lattice of Figure 1.4. However, as we mentioned earlier, we want to define
demonic operators in the context of KA. For this matter (see Section 2.4), we need a
domain operator that cannot be defined without the concept of test.

Of course, at first, the purpose of tests was not to define a domain operator. His-
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Program Semantics
abort 0

skip 1

zly T4y

T3y Ty
iftthenxelsey |t-x+ -ty
while ¢ do x (t-z)*- -t

Table 2.1:  Angelic semantics of programs in KAT.

torically, tests have been firstly introduced to reason about programs. Indeed, a test
can be seen as a precondition that must be true in order to enable a program to be
executed.

Hence we present the definition of Kleene algebra with tests (KAT). It was first
proposed by Kozen [Ko0z97].

Definition 2.3 (Kleene algebra with tests). A Kleene algebra with tests (KAT) is
a structure K = (K, test(K),+,-,*0,1,7) such that test(K) C {t : K | t < 1},
(K,+,-,%,0,1) is a KA and (test(K),+,-,—,0,1) is a Boolean algebra.

In the sequel, we use the letters w, x, y, z for arbitrary elements of a KA and s,t,u,v
for tests. In proofs and discussions, we use the hint “Boolean algebra” to indicate
application of any Boolean properties of tests.

The usual semantics of programs as given by KAT is shown in Table 2.1, where
x|y is the non-deterministic choice between x and y. Note that in this table, we use
the letters ¢, x and y for elementary programs as well as for their semantics. Having
in mind the relational model, one can see that this semantics focuses on the set of all
possible behaviours. This interpretation is pictured in the following example. Suppose
there are four possible states for programs P; and Py. Note Sy = {1,2,3,4} the set of
possible states and suppose that P; and P, are respectively represented by the relations
r = {(1,1),(1,4),(2,4),(3,2)} and y = {(2,1),(2,3),(3,4)}. Now take the test t =
{(1,1),(3,3)}. We have

if ¢t then Py else Py = if ¢ then x else y
t-x4 -ty
= {11, 3,3)}-{(1,1),(1,4),(2,4),(3,2)} +
—~{(1,1),3,3)}-{(2,1),(2,3), (3,4)}
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1,1
2,2
1,1

= {(1,1),(1,4),(2,1),(2,3),(3,2)}
which is the set of all possible behaviours. It is now easy to see that the semantics
presented in Table 2.1 are angelic ones.

2.3 Kleene Algebra with Domain

It is useful to have a grip on the inputs of the aforementioned programs. The domain
operator encapsulates the necessary properties. Moreover, it is an essential operator in
the definition of demonic operators in the context of KA (see Section 2.4).

Here is the definition of Kleene algebra with domain (KAD) as defined by Desharnais,
Méller, Struth and Tchier [DMS04, DMS06b, DMTO06].

Definition 2.4 (Kleene algebra with domain). A Kleene algebra with domain (KAD)
is a structure K = (K, test(K),+,-,*,0,1,-,7) such that (K, test(K),+,-,* 0,1,7) is

a KAT and, for all x € K and all t € test(K),
r < Tx-x, (2.17)
t-z) < t, (2.18)
(z-Ty) < Hz-y) . (2.19)

Remark 2.5. It turns out that these axioms force the test algebra test(X') to be the
maximal Boolean algebra included in {t : K |t < 1} (see [DMS06b]).

Note that (2.19) is satisfied for relation algebras'. It is called locality. However,
there are KATs where it does not hold. Indeed, the following counter-example appears
in [DMO1].

Ezample 2.6. Take K = {0,1,a,b} and test(K) = {0,1}. The operators defined by
the following tables make (K, test(K),+,-,*,0,1,—) a KAT.

+]0 1 a b 01 ab : - -

0[O0 1 a b 0(0 0 0 O 01 01 00

111 1 b b 110 1 a b 1|1 110 1]1

ajla b ab a0 a 0 a alb a|l

b|b b b b b/O b a b blb b1l
'For a relation R on a set S, "R = {(s,s): Sx S| (3t:S5](s,t) € R)}.
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N\
N/

Figure 2.2: Hasse diagram of Example 2.6.

The refinement ordering corresponding to + is represented in the lattice of Fig-
ure 2.2. It turns out that the present algebra is a KAT where (2.17) and (2.18) hold
but not (2.19). Indeed, "(a-"a) =1 £ 0="(a-a).

Here is an illustration of the domain operator for the familiar model of relations.

{(0,0),(0,1),(2, 1)} = {(0,0),(2,2)}
'_{(070)7(071)7(072)} = {(070)}
= {

Hence the domain operator gives the states (represented by an appropriate test) from
which there is a possible transition.

There are many properties about KA, KAT and KAD and we gather those that will
be used later on in the following proposition. See [DMS06b, DMT06, Ko0z94] for proofs.

Proposition 2.7. Let IC be a KAD. The following laws hold for all x,y € K and all
t € test(K).

1. (x4y)*=(z*-y)* -z

2. (x+y)=a* (y-az*)*

S r=y <= t-x=t-yN-t-x=-t-y
4. x=y <= x-t=y-tNv-~t=y-—t
5. T =minc{t:test(K) |t -z =z}

6. ' x-x==x

7 Tz <t «— x<t-zx

8 "x-Ty)="(xy)
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9. "'x-z=0

10. "t =1t

11. (t-x)=t-"x

12. (z-y) <™z

18 Mz +y) =2+

Iy x<y = "o <ly

15 (z-t) <t <= Ta*-t) <t

16. (a*) =1

The following operator characterises the set of states from which no computation
as described by x may lead outside the domain of y. It facilitates the presentation and
the comprehension of further definitions and results.

Definition 2.8 (KA-implication). Let K be a KAD and take x,y € K. The KA-
implication x — y is defined by

aj—>y:—|'—(gj-—\’_y) .

2.4 KAD-Based Demonic Operators

We are now ready to introduce demonic operators in the context of KAD. What do
we need them for? When we constructed the upper part of the lattice displayed in
Figure 1.4 in the introduction, we took the elements of the bottom part of the same
lattice and we (partially-)ordered them by demonic refinement. Those elements are
relations and it is possible to define not only demonic refinement on them, but many
demonic operators (see [BvdW93, BZ86, DBST95, DMN97, Kah01, Mad96, TD99]).

What we are trying to develop is an algebraic description of the lattice of Figure 1.4
and of its connections, but for any model of KAD. Therefore, we need to look at the
definition of demonic operators, but from now, in the context of KAD. Most of them
were defined in [DMT00, DMTO06].

Here is the definition of demonic refinement.
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Definition 2.9 (Demonic refinement). Let K be a KAD and take x,y € K. We say
that x refines y, noted x Ty y, when

'_{L'7

IA A

My - o Yy .

The subscript A in E4 indicates that the demonic refinement is defined with the
operators of the angelic world. An analogous notation will be introduced when we
define angelic operators in the demonic world.

This definition can be simply illustrated with relations. Let @ = {(1,2),(2,4)}
and R = {(1,2),(1,3)}. Then "R = {(1,1)} € {(1,1),(2,2)} = "Q. Since in addition
"R-Q=1{(1,2)} C R, we have Q C4 R.

The following proposition helps understand the definition of T, (see [DMTO06] for
proof).

Proposition 2.10 (Demonic upper semilattice).

1. The relation Ty defined in KAD is a partial order and it induces an upper semi-
lattice with demonic join Hy:

T4y <= zhHiy=1vy .

2. Demonic join satisfies the following two properties.

iy = -y (v +y)

(why) = T Ty="z-Ty
Remark 2.11. Note that for all s,t € test(K),

syt <— t<s .

Figure 2.3 represents the relations over the set Sy = {1,2} ordered by C4. It is
a more detailed version of Figure 1.2. It can also be seen as the demonic version of
Figure 2.1.

Then we present the definition of demonic composition. The way it is defined
corresponds to doing the composition of x by y, but without those states from which
x may lead outside the domain of y. This last sentence reminds of the KA-implication
operator (see Definition 2.8) and this is not a coincidence.
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(5 1)
SN
(i 1) (0 0)
/\ /\

// \x

Figure 2.3: Relation algebra over the set Sy = {1,2} ordered by LC,.

Definition 2.12 (Demonic composition). Let K be a KAD and take x,y € K. The

demonic composition of x and y, written x o4 y, is defined by

ray=(—y) -y .

Again using relations, we illustrate this definition. Let @ = {(1,2),(1,4),(2,3),
(4,1)}, R=1{(1,1),(2,4)} and suppose the state space is Sy = {1,2,3,4}. Then

Q—R = {(1,2),(1,4),(2,3), (4, D)} — {(1,1),(2,4)}
~{(1,2),(1,4),(2,3), (4, D} - 2{(1, 1), (2,4)})
T{(1,2),(1,4),(2,3), (4, D} - ~{(1, 1), (2,2)})
~{(1,2),(1,4),(2,3), (4, D} - {(3,3), (4,4)})
—H{(1,4),(2,3)}
~{(1,1),(2,2)}

= {B3,3),(4,4)}

SO
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There are many properties about KA-implication and demonic composition and
we gather those that will be used later on in the following proposition. See [DMT00,
DMTO06] for proofs.

Proposition 2.13. Let K be a KAD. The following laws hold for all x,y,z € K and
all t € test(K).

1. xog(yoaz)=(roqy)oaz
2. toyrx=t-x

3. 'y=1 = xquy=x-y
4 woy)=(r—y)-To
Sbor—-y=ax—-"y

6. (x—y)a=(@—y 2Ty
7 (x-y) mz=0— (y — 2)
. t<r—t <= t<a"—t
9. 2 <y — y—z<r—2
10 y<z = z—y<zrz—=z
11. zopy<x-y

12. 254y = w0420 4y04 2

13. 254y = zo42 L4204

In this section, we are defining a demonic version of the usual operators of KAD.
Knowing that #* = u<(y = y-x + 1) (see Remark 2.2), the demonic version of the
Kleene star ought to be 274 = ug,(y = y 54 # by 1). This is the object of the following
definition, lemma and proposition.

Definition 2.14 (Demonic iteration operator). Let IC be a KAD and take x € K. The
demonic iteration operator *4 is defined by x4 = x* o4 "x.
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Lemma 2.15. Let K be a KAD and take x € K. Then

(") =a" -T2 .

PROOF :

I‘(:L-XA)

— ( by Definition 2.14 )
(" o4 )

- ( by Proposition 2.13-4 )
(2" — ) - (")

= ( by Proposition 2.7-16 and Boolean algebra )

Proposition 2.16. Let K be a KAD and take x,y,z € K.

1. 24 =z oy by 1

2. xo4202 = %0520, 2

S 24282 — 2414 L,z

4. xop 2z yCy 2z = x40 04y Ly 2

b zogxayLyz = yoqu ™ Ly 2

PROOF :

1. T4 oy x 1
= ( by Definition 2.14 and Proposition 2.13-1 )
¥ oq (Trog )y 1
= ( by Propositions 2.13-2 and 2.7-6 )

T ogx byl

22
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= ( by Propositions 2.10 and 2.7-10, and (2.7) )
(a*eqz) (2" sz +1)

= ( by Proposition 2.13-4 and Definition 2.12 )
(x* = z)-T(z*) - ((a* = z)-2*-x+1)

= ( by Proposition 2.7-16 and (2.7) )
(z* =) ((z*—>x) -2 x4+ 1)

= ( by (2.8) and Boolean algebra )
(z* —x) - (x*-x+1)

- ( by (2.10) )

(z* —z)-x*

= ( by Propositions 2.13-6 and 2.7-6 )

*

(z" —z)-x*-Tx

= ( by Definitions 2.12 and 2.14 )

xxA
2. T4 o4 2 C4 2
= ( by Definition 2.14 and Proposition 2.13-1 )

x¥0("r e 2) Ly 2
= ( by Proposition 2.13-2 )
¥ oq (Tw-2)Cy 2
= ( by Definition 2.9 )
<@ (-2) ANz (a" e (w-2) <z
= ( by Proposition 2.13-4 and Definition 2.12 )
<@ - (r-2)-"(x) ANz (2= (Tw-2) 25 Tx-2< 2
= ( by Proposition 2.7-16 and (2.7) )
<= (r-2) ANz- (¥ = (x-2) 2" Tx-2< 2
= ( by Boolean algebra )
<t = ("r-2) Nzt -Tr2< 2
— ( by Proposition 2.7-6, Boolean algebra and since "z < "z,
z="zz=T0-Tz.-z2="a-2)
<o AN z2<zx*—>2 AN Tz- 2" 2<%

= ( by Proposition 2.13-5, (2.8) and Boolean algebra )

23
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<Te N <" > AN (2ot T2x) 2 < 2
— ( by Propositions 2.13-8 and 2.7-1 )
< ANZ<z—->"2 AN - () zea) - (Tea) 2 < 2

= ( by Boolean algebra, Propositions 2.13-4 and 2.13-6,
and since "z < x — "z,

Zr="2-(xr—->"2)re="2-(x>"2)x-T2="2-2-T2)
< ANZ2<z—->"2 AN - ((zrx-T2) - ATza) - (2a)t 2 < 2
= ( by (2.10) )

<Te N "z2<z2—"2 A
- ((('—z-:c~'—z)*~'—z-x"—z+1)'—l'—z~m)*~('—z-x)*«2§z
= ( by (2.9), (2.4) and Boolean algebra )
<t ANZ<zr—->T2 ATz (") () 2 < 2
= ( by Proposition 2.13-5 and (2.14) )
< AN2<z—2 AN Z-(zx- (") 4+ 1) ()2 < 2
= ( by (2.8), (2.4), (2.7) and Boolean algebra )
Z<Te N 2<zr—2z N2 (zx) 2<2
— ( by Proposition 2.7-6,
(zox) z2<z="z-(z-2)" 2<2)
<t ANz2<z—2z A (z-2)"-2<z
= ( by (2.15) )
<z N 2<2s—>2 AN "z-2-2<z
= ( by Boolean algebra )
Z<(x—=z2) ANz (z—o2z2)x-2<2
= ( by Proposition 2.13-4 and Definition 2.12 )
<Mzogz) N Tz-(ves2) <z

= ( by Definition 2.9 )

rog 2y 2

3. zogx Ly 2
= ( by Definition 2.9 )
<Mz x) N "2z (z2o42) <z
— ( by Proposition 2.13-4 and Definition 2.12 )

Z<(z—x) 2N 2z (z—2x)2z-x<2
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— ( by Boolean algebra and Proposition 2.7-6 )
Z<(z—x) 2 AN zx<z
= ( by Proposition 2.13-5 and (2.16) )

Z<(z—=Tz)- "2 ANz 2" <z
This derivation thus gives

(z—Tx) Tz, (2.20)
2. (2.21)

IN A

Mz

IN

( by (2.20) )
(z —Tx) -T2

( by (2.21) and Proposition 2.13-9 )

IN

(z-2) = ) -7z
— ( by Proposition 2.13-7 )

Mz

(z = (2" = "2)) -
= ( by Proposition 2.7-16 and (2.7) )
(z = (=" = T2) - "(z7))) - =
= ( by Propositions 2.13-4 and 2.13-5 )

Mz

(z — (2" o4 2)) -
= ( by Proposition 2.13-4 )
(2 ea (2" 92 "))
- ( by Definition 2.14 )

"(zoa ™)
The following inequality is also needed.

T2 (294 x74)

= ( by Definition 2.14 )
T2 (z o4 (2" 54 "))

< ( Proposition 2.12-11 )
T2z (2" 04 1)

( Proposition 2.12-11 )

IN
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Z.z-x* T

< ( by (2.21) and because "z < 1 and "z <1)

The result then follows from Definition 2.9.

4. Suppose x o4 2y y Ly 2. Then y T4 2z and x 04 2 T4 2 by Proposition 2.10. Then
Part 2 of the present proposition gives x4 o4 2 C4 z. This is used in the following
derivation.

x4 o4y
C, ( by the hypothesis and Proposition 2.13-13,
YLy xoazHay Ly 2 )
TXA oy 2

Ty ( derived above from the hypothesis )

5. The proof is similar to the previous one. O

Based on the partial order L4, one can focus on tests and calculate the demonic
meet of tests.

Definition 2.17 (Demonic meet of tests). Let K be a KAD. For each s,t € test(K),
define
syt=s+1 .

Remark 2.11 together with Proposition 2.10 confirm that the operator Ay really is
the demonic meet of tests with respect to C4. We now define, for any test ¢, the t¢-
conditional operator Fy, that generalises the demonic meet of tests to any elements of
a KAD. Since the demonic meet of z and y does not exist in general®, x Fy, y is not the
demonic meet of x and y, but rather the demonic meet of t o4 x and —t o4 y.

Definition 2.18 (#-conditional operator). Let IC be a KAD. For each z,y € K and
t € test(K), the t-conditional operator is defined by xFa,y = t-x+—t-y. The family of
t-conditional operators corresponds to a single ternary operator Fa, taking as arguments
a test t and two arbitrary elements x and y.

1 0 0 1
2 . .
Indeed, look at <1 O) and (0 1> in Figure 2.3.
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The following proposition says that the t-conditionnal operator does generalise the
demonic meet of tests and that it calculates the demonic meet of t oy x and —toy for
any test .

Proposition 2.19. Let K be a KAD. The following properties hold for all x,y € K
and all s,t € test(K).

1. 1yt =5t

2. The demonic meet of t oq x and —t oq y with respect to Ty exists and it is equal to

PROOF :
1. 1Ry, ¢

= ( by Definition 2.18 )
s-1+-s-t

= ( by Boolean algebra )
s+t

= ( by Definition 2.17 )
sFyt

2. We have to show that x Ay, y Ty t 0q4 @, x A4y y T4 =t 04 y and that x Ay, y is the
greatest element with these two properties.

zCatopx N 254 ~togy
= ( by Proposition 2.10 )
zEptopz =togx N zHy topy=—toqy
— ( by Proposition 2.13-2 )
zgt-z=t- 2 N 2y T-y=—t-y
= ( by Proposition 2.10 )
T (ta) () =tea AT (otg) (24t y) =ty
{

= by (2.8), Boolean algebra and Proposition 2.7-6 )

'_<t‘$)'2’-|—'—2't-x:t'l‘ N '_(—|t~y)-z_|_|—z.—|t.y:_|t,y

= ( by (2.8), Propositions 2.7-11 and 2.7-10, Boolean algebra, (2.6)
and (2.4) )
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t-z)-z+"(~t-y) 24+"2-t-x+"2-~t-y=t-x+-t-y

= ( by (2.8) and (2.9) )
(Tt 2) + Tt 9)) 2472 (t 2kt oy) =ttty
= ( by Proposition 2.7-13 )
x4ty z+2-(t-z+-t-y)=t-z+-t-y
= ( by Definition 2.18 )
"(@Fay) 2+ "2 (P y) =2 Fa y
= ( by Proposition 2.7-6, Boolean algebra and (2.8) )
@ Fay) - (4 (@ y) =2 Fay
= ( by Proposition 2.10 )
2By x Py y
We derived
2Latopx N 20 toqgy <= 2z 2P,y . (222)

Taking z = x Fs, v in (2.22), we see that x Fy, y is a lower bound of ¢ o4 z and
—t o4 y. Then (2.22) says that = A4, y is the greatest lower bound of ¢ 54  and
=t oq Y. O

The demonic join operator Hy is used to give the semantics of demonic non-deter-
ministic choices and o4 is used for sequences. Among the interesting properties of oy,
we cite t oy x = ¢ - z (Proposition 2.13-2), which says that composing a test ¢ with an
arbitrary element x is the same in the angelic and demonic worlds, and x oy = x - y if
Ty = 1 (Proposition 2.13-3), which says that if the second element of a composition is
total, then again the angelic and demonic compositions coincide. The ternary operator
Flae is similar to the conditional choice operator _<_1>_ of Hoare et al. [HHJ 87, HJ98|.
It corresponds to a guarded choice with disjoint alternatives. The demonic iteration
operator *4 rejects the finite computations that go through a state from which it is
possible to reach a state where no computation is defined (e.g., due to blocking or
abnormal termination).
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2.5 A Framework for Demonic Algebra with Do-
main and {-Conditional Within KAD

We now present four theorems about the demonic operators introduced in the previous
section. Theorem 2.20 contains laws relating Wi, o4 and *4. Theorem 2.21 concerns
the Boolean lattice of demonic tests. Theorem 2.22 is about the relationship between
Ha, o4, "4 and ™. And Theorem 2.21 concerns the t-conditional operator Fa,.

These theorems are the best witnesses of what might be an algebraic structure that
has the upper part of the lattice of Figure 1.4 as its intended model. Consequently,
their laws will be taken as axioms of demonic algebra with domain and Py (DAD-Fy,)
in Chapter 3.

As usual, unary operators have the highest precedence, and demonic composition
oy binds stronger than Wy and A4, which have the same precedence.

Theorem 2.20. Let K be a KAD. The following properties hold for all x,y,z € K, so
(K, Ha, 84,74,0,1) is a demonic algebra (see Definition 3.1).

1.xdy (yh2) = (xay) a2
2. xHay=ykthx

3. xhyr=2x

4. Oy x =0

5. woa(yoaz)=(xoay) oz

6. 0yz=29540=0

7. 1lyr=ax94l==x

8 wog(ysz) =xoqgyaz oy 2
9. (xhy)oaz=woy 2y z
10. x4 =z oy xy 1

11. 254y <= xHyy=y

12. zogpaxhyCyz = youax™ Ly 2

15. l‘DAZHAyEAZ — g4 DAyEAZ
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PROOF : See [DMTO06] for the proof of 1 to 9 and 11. Refer to Proposition 2.16 for the
proof of 10, 12 and 13. O

Theorem 2.21. Let K be a KAD. Then (test(K),Hs,Fa, =, 1,0) is a Boolean algebra,
so (K, test(K),Hy, 04, *4,0,1,,F4) is a demonic algebra with tests (see Definition 3./).

PROOF : The fact that (test(K),Us,Fs, —,1,0) is a Boolean algebra is a direct conse-
quence of Proposition 2.10 and Definition 2.17. Therefore, (K, test(K), by, 04, 4,0, 1,
—,F4) is a demonic algebra with tests by Theorem 2.20. O

Theorem 2.21 together with Remark 2.11 show that the Boolean lattice of tests in
the demonic world is the same as in the angelic world, but reversed. Therefore, in any
relational model, the demonic tests are the subidentities.

Theorem 2.22. Let IC be a KAD. The following properties hold for all x,y € K and
allt € test(K), so (K, test(K), s, 04, *4,0,1,2,F4,") is a demonic algebra with domain
(see Definition 3.8).

1. '—(l‘DAt> DszxDAt
2. (weay) ="(xoay)
3. Mexhy) ="z "y

4. l—(ZL’ DAt> L, —= l—(ZEXA DAt> C,t

PROOF :
1. '_(x =)'} t) OpA T
= ( by Propositions 2.13-2, 2.13-4 and 2.7-6 )
(x —t) x
= ( by Propositions 2.13-6 and 2.7-10 )
(x —t)-x-t
= ( by Definition 2.12 )
T Bp t
2. "(z5ay)

= ( by Proposition 2.13-4 )
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(x—y)- o
— ( by Proposition 2.13-5 )

(x —"y) "o

= ( by Proposition 2.13-4 )
(@ eay)

3. Nxyy)

( by Proposition 2.10 )

( by Boolean algebra )
'_:C . |—y . (l—x _'_ I—y)
( by Propositions 2.10 and 2.7-10 )

Uy Ty
4. (xoat) Tyt
— ( by Remark 2.11 and Proposition 2.13-4 )
t<(x—t)-x
= ( by Boolean algebra )
t<z—t AN t<Tzx
= ( by Proposition 2.13-8 )
t<z*—t Nt<Tx
= ( by Proposition 2.13-10 )
t<z*—=t Nt<z"—=Tx

These two inequalities will be used.

t < ot ot (2.23)
t < ¥ =Tz (2.24)
Mx™ 2oy t) Tyt
<~ ( by Remark 2.11 and Proposition 2.13-4 )
LS @) )
= ( by Boolean algebra )

t<a*r —t Nt <T(x*4)
= ( by Definition 2.14 )
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t<(x*op"x) =t Nt <T(2*o4 )

— ( by Definition 2.12, Propositions 2.13-4 and 2.7-16, and (2.7) )
t<((z*—"z) 2" T2) >t Nt<az*—Tzx
— ( by (2.24) )
t<((z*—="z) 2" Tx) >t
— ( by Proposition 2.13-9 )
t<zx*—t
= ( by (2.23) )
true

Therefore, (K, test(K),by,04,”4,0,1,—,F4," ) is a demonic algebra with domain by
Theorem 2.21. O

Theorem 2.23. Let K be a KAD. Then
mHAty:Z < tDAx:tDAZ/\—\tDAy:—\tDAz

for all z,y,z € K and all t € test(K), so (K, test(K),Hy, 04, 4,0, 1,7, Fa,™ ,Flay) is a
demonic algebra with domain and t-conditional (see Definition 3.18).

PROOF :

rFuy =2
= ( by Definition 2.18 )
t-x+-t-y==z2
= ( by Proposition 2.7-3 )
t-(t-x+-t-y)=t-z AN ~t-(t-x+-t-y)=-t-z
= ( by (2.8), Boolean algebra, (2.6) and (2.4) )
t-x=%t-2 N ~t-y=-t-z
= ( by Proposition 2.13-2 )

togx=togz A —\tDAy:—d,‘DAz

Therefore, (K, test(K),s, 04, *4,0,1,-,F4," ,F4,) is a demonic algebra with domain
and t-conditional by Theorem 2.22. a



Chapter 3

Axiomatisation of Demonic Algebra
with Domain and ¢{-Conditional

In the previous chapter, we demonstrated that the demonic operators introduced in
Section 2.4 satisty Theorems 2.20, 2.21, 2.22 and 2.23. Since we want to know how do
KADs with the demonic operators but without the usual angelic ones behave, these laws
will become axioms for a new algebraic structure called demonic algebra with domain
and t-conditional (DAD-F,). Therefore, it is easy to see that any model of KAD can
be transformed into a DAD-FR, by taking the elements of the KAD and the demonic
operators defined in Section 2.4, and then forgetting the angelic operators.

We expect DAD-FR, to be an algebraic foundation for the upper part of the lattice
of Figure 1.4. Also, we want to define algebraic transformations between the lower
part and the upper part of this lattice. This last goal guided our choice of laws for
the theorems of Section 2.5 and hence, our choice of axioms for Definitions 3.1, 3.4, 3.8
and 3.18.

In the presentation of the next definitions, we follow the same path as for the defini-
tion of KAD. That is, we first define demonic algebra (DA) (Section 3.1), then demonic
algebra with tests (DAT) (Section 3.2) and demonic algebra with domain (DAD) (Sec-
tion 3.3). Finally, and it is a difference between DA and KA, we need an extra operator,
so we define demonic algebra with domain and t-conditional (DAD-F,) (Section 3.4).
The reasons why we need this operator will be discussed in Section 3.4.
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3.1 Demonic Algebra

In this section, we present demonic algebra (DA), we discuss some of its axioms and we
look at a first proposition about this structure.

Like KA, DA has a sum, a composition and an iteration operator. Moreover, its
sum induces a partial order.

Definition 3.1 (Demonic algebra). A demonic algebra (DA) is a structure A =
(A, 4,0, T,1) such that the following properties are satisfied for all x,y,z € A.

zH(ydz) = (zHy)Hz (3.1)
rHy = ydHuz (3.2)
rdr = x (3.3)
THx = T (3.4)
zo(yoz) = (xoy)sz (3.5)
Tox = xsT =T (3.6)
lor = xol =2 (37)
zo(yHz) = wxoyHuaoz (3.8)
(xHy)sz = xozHysz (3.9)
= xfoxdl (3.10)

There is a partial order T induced by Y such that for all x,y € A,
rLy < zHy=vy . (3.11)

The next two properties are also satisfied for all x,y,z € A.

rozHyLz = a*oyLz (3.12)
zogHyLz = yox*LCz (3.13)

When comparing Definitions 2.1 and 3.1, one observes the obvious correspondences
+ -0, * 0« T,1+« 1. The only difference in the axiomatisation between
KA and DA is that 0 is the left and right identity of addition in KA (+), while T
is a left and right zero of addition in DA (H). However, this minor difference has a
rather important impact. While KAs and DAs are upper semilattices with + as the
join operator for KAs and H for DAs, the element 0 is the bottom of the semilattice for
KAs and T is the top of the semilattice for DAs. Indeed, by (3.4) and (3.11),

zCT (3.14)
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for all z € A.

The following obvious refinements will be used in what follows.
rCaoxdy AN yCaxdy (3.15)

They hold by (3.11), (3.2) and (3.3).

All operators are monotonic with respect to the refinement ordering C. That is, for
all z,y,z € A,

rCy = zHz L zHy A 200 C zoy A zoz Cyoz A 2 Ty~ .

Monotonicity of b and o can easily be derived from (3.11), (3.8) and (3.9). That of *
is shown from (3.10) and (3.13) as follows:

rCy = Yy orH1ICy oyl < y ozH1LCy* — z* Ly~ .

Most of the time, this property will be used without explicit mention.

Remark 3.2. Like for the corresponding unfolding law (2.14) in KA, the following
symmetric version of (3.10),

¥ =xox*H1 | (3.16)

is derivable from these axioms. Indeed,

¥ Cxox*H1
— ( by (3.12) and (3.7) )
xo(rer*H1)H 1 C zox* W1
= ( by monotonicity of o and H )
roxr*d1L g~ —this is the other inequality we have to show
= ( by (3.10) )
rox*H1LC x*ox 1
= ( by monotonicity of 4 )
rox* E x¥ox
— ( by (3.13) )
r¥orozHa E x¥ox
= ( by (3.10), (3.9) and (3.7) )

true .
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Also, one can show z* = puc(y :: yoxr 4 1) with (3.7), (3.10) and (3.13), and z* =
pe(y = xoy W 1) with (3.7), (3.16) and (3.12).

Finally, in the presence of the other axioms, (3.12) and (3.13) are equivalent to the
following two.

xozLz = xXozLCz (3.17)

zox Lz = zox*LCz (3.18)

The following proposition presents properties of the iteration operator *. They
might be thought of as the demonic version of properties of the Kleene star *.

Proposition 3.3. Let A be a DA. The following laws hold for all z,y € A.

1. 1Cz*, x*ox C 2" and xox* C x*
2. v C g~
3. xoy Cyox = zx*oy L yox*

4. yoxr C oy —> yoxr* C x¥oy

6. (x°) =z~
7. wo(yox)* = (zoy) ox

8 (xHy) = a*o(yor ) = (z"oy) x>

PROOF :

1. This is direct from (3.10), (3.16) and (3.15).
2. This follows from (3.7) and Proposition 3.3-1. Indeed z = 1oz C x*ox C z*.
3. Assume xoy L yox.
x*oy L yox™
= ( by (3.12) )

royoxr* Hy L yox*
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— ( by the hypothesis )
yozoxr* Hy L yox™

= ( by (3.7), (3.8) and (3.16) )
true

4. Assume yox C xoy.

yoxr* C z*oy

= ( by (3.13))
zXoyox Hy C x*oy

— ( by the hypothesis )
zXozoyHy C x*oy

= ( by (3.7), (3.9) and (3.10) )
true

5. r*ox*

C ( by Proposition 3.3-1 and (3.17) )
-

C ( by Proposition 3.3-1 )
rXox*

6. We first derive (2)* T x*.

() C g~
— ( by (3.12) and (3.7) )
rXor* H1 L
— ( by Propositions 3.3-1 and 3.3-5 )

true
By Proposition 3.3-2, z* C (z*)*.

7. We first derive xe(yox)* E (xoy)*ox.

wo(yow)* L (zoy)*ox
— ( by (3.13) )
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(roy)*ozoyox da C (xoy) ox
= ( by Proposition 3.3-1, (3.9) and (3.7) )

true.

The derivation of (zoy)*sx C ze(yox)* is similar, using (3.12).

8. We first derive (x Hy)* C x*o(yox™)*.

(rHy)* Cx”o(yoz™)*

= ( by (3.12) and (3.7) )
(x " y)ez*o(yox™)* W1 L z”o(ysz™)"
= ( by Proposition 3.3-1, (3.7) and (3.9) )
zoxe(yor* )  Wyox*o(yer™)* L ro(yor*)”
— ( by Proposition 3.3-1 and (3.16) )
(yox)* E a*e(yox>)*
= ( by Proposition 3.3-1 and (3.7) )
true.

And here is the derivation of x*o(yox™)* C (x Hy)*.

true

= ( by (3.15) and Proposition 3.3-2 )
yC(xHy)* A 2*C (zHy)~

= ( by Propositions 3.3-5 and 3.3-6 )
(yor*)* T (zHy)* A 2L (zHy)*

= ( by Proposition 3.3-5 )

we(yor*)* L (zHy)”

The proof of (x Hy)* = (x*oy) sz is similar. O

3.2 Demonic Algebra with Tests

Now comes the first extension of DA, demonic algebra with tests (DAT). This extension
has a concept of Boolean algebra of tests like the one in KAT and it also adds the A
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operator. Introducing A provides a way to express the meet of tests, as will be shown
below. In KAT, + and - are respectively the join and meet operators of the Boolean
lattice of tests. But in Section 3.3, it will turn out that for any tests s and ¢, sHt = sot,
so that H and = both act as the join operator on tests (this is also the case for the
KAD-based definition of these operators given in Section 2.4, as can be checked).

In this section, we also discuss the implications of the definition of DAT and we
present a simple lemma related to demonic tests.

Here is how we deal with tests in a demonic world.

Definition 3.4 (Demonic algebra with tests). A demonic algebra with tests (DAT)
is a structure A = (A, test(A),d,s,*, T,1,—,A) such that {1, T} C test(4) C A,
(A,4,0,%,T,1) is a DA and (test(A),H,A,—,1,T) is a Boolean algebra. The elements
in test(A) are called (demonic) tests. The operator A stands for the infimum of elements
in test(A) with respect to C.

Note that 1 and T are respectively the bottom and the top of the Boolean lattice
of tests. We insist that the operators A and — are defined exclusively on test(A). In
the sequel, we use the letters w,z,y, z for arbitrary elements of DA and s,t,u,v for
demonic tests.

A basic property of demonic algebra with domain (DAD) (see Section 3.3) is that
sot = sHt (see Proposition 3.14-3). Therefore, in DAD, so—s = sd—=s =T and =1 = T.
This is why we are going to say that two tests s and t are disjoint when sot = sdt = T.
The following example presents a situation where this does not stand in DAT. It was
constructed using Mace4 [Mac].

Ezxample 3.5. For this example, A = test(A) = {T,s,t, 1}. The demonic operators are
defined by the following tables.

H{T s t 1 o | T s t 1 X
T T T T T T|T T T T T|T
s| T s T s s| T T T s s | T
t| T T t t t| T T T t t | T
11T s t 1 11T s t 1 111

= BlT s t 1

T 1 TIT s t 1

s |t s|s s 11

t|s t|t 1 t 1

1T 171 1 11
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N
N\

Figure 3.1: Hasse diagram of Example 3.5.

The demonic refinement ordering corresponding to H is represented in the semilattice
of Figure 3.1. It turns out that the present algebra is a DAT where sot = sUdt does not
hold. Indeed, sks =s # T = sos. Note that se(tAu) = sot Ascu does not hold either.
Indeed, so(sAt) =s # T = sosAsot.

Definition 3.4 does not even tell whether test(A) is closed under o. It is not the
case, as can be seen in the following example (also constructed by Mace4 [Mac]).
Ezxample 3.6. For this example, A = {T,s,t,1,a} and test(A) = {T,s,t,1}. The
demonic operators are defined by the following tables.

H|T s t 1 a ol T s t 1 a %
T(T T T T T T(T T T T T T T
s|T s T s a s|T a T s T s | T
t|T T t t T t| T T T t T t | T
1/T s t 1 a 1/T s t 1 a 171
a|l a T a a a| I T T a T a| I

- B|lT s t 1

TI1 TIT s t 1

s |t s|s s 11

t|s tjt 1 t 1

1T 111 1 11

The demonic refinement ordering corresponding to 4 is represented in the semilattice
of Figure 3.2. In that DAT, test(A) is not closed under s. Indeed, sss = a ¢ test(A).

The axioms provided by demonic algebra with domain (see Section 3.3) will bring
light to these questions. But before leaving this section, let us introduce the following

lemma.

Lemma 3.7. Let A be a DAT. The following refinements hold for all x € A and all
s,t € test(A).
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/\
D

Figure 3.2: Hasse diagram of Example 3.6.

1. Ctox A x E got

2. sHt L sot

3. tot=-tot =T

4. 1 E sot

S. tox Ly — T LC —fox

6. t C x*ot and t C tox™

PROOF :
1. true
= ( by Boolean algebra )
1C¢
= ( by (3.7) )
x L tox

The proof of the second refinement is similar.

2. By Lemma 3.7-1, s C sot and ¢t C sot. So st L sot by (3.3).

3. T
= ( by Boolean algebra )
tH—t
C ( by Lemma 3.7-2 )
to—t

So te—t = T by (3.14). The proof of the second equality is similar.

41
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4. By Boolean algebra, 1 C s and 1 £ ¢. So 1 L sot by (3.7).

D. tox C x
- ()
—totox © —fox
= ( by Lemma 3.7-3 )
Tox E —tox
= ( by (3.6) )

T LC —tox

6. By Proposition 3.3-1, t = 1ot C x*ot and ¢ = tel L tox*. ad

3.3 Demonic Algebra with Domain

Still following KAD’s footsteps, the next extension consists in adding a domain operator
to DAT to obtain the demonic algebra with domain (DAD). In this section, we also
demonstrate that axioms of DAD are independent, we present an important proposition
about the domain operator (Proposition 3.14) and we demonstrate a technical lemma
that is going to simplify many derivations in subsequent chapters.

In the demonic world, we denote the domain operator by the symbol .

Definition 3.8 (Demonic algebra with domain). A demonic algebra with domain
(DAD) is a structure A = (A, test(A),H,o,*, T,1,—-,A,™), where (A, test(A),H,0,* T,
1,—-,A) is a DAT, and the domain operator ™ : A — test(A) satisfies the following
properties for all z,y € A and all t € test(A).

Txot)ox = ot (3.19)
Maoy) = MaoTy) (3.20)
Mxdy) = TzdTy (3.21)
Maot) Lt = Ma"ot)Ct (3.22)

Remark 3.9. As noted above, the axiomatisation of DA (respectively DAT) is very sim-
ilar to that of KA (respectively KAT), so one might expect the resemblance to continue
between DAD and KAD. In particular, looking at the angelic version of Definition 3.8,
namely Definition 2.4, one might expect to find axioms like "xox C x and ¢ € "(¢tox).
These two properties can be derived from the chosen axioms (see Propositions 3.14-
7 and 3.14-10) but (3.19) cannot be derived from them, even when assuming (3.20),
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(3.21) and (3.22) (see Example 3.10). Nevertheless (3.19) holds in KAD-based demonic
algebras (see Theorem 2.22-1). Since our goal is to come as close as possible to these,
we include (3.19) as an axiom.

Examples 3.10, 3.11, 3.12 and 3.13 illustrate the independence of Axioms (3.19),
(3.20), (3.21) and (3.22). Except for Example 3.13, which is an infinite one, they were
all constructed by Maced [Mac].

Ezample 3.10. For this example, A = {T,s,t,1,a,b} and test(A) = {T,s,t,1}. The
demonic operators are defined by the following tables.

H|T s t 1 a b o|T s t 1 a b x
T|T T T T T T T|T T T T T T T T
s|T s T s a b s|T s T s a b s | s
t| T T t t T T t| T T t t T T t|t
1|T s t 1 a b 1/T s t 1 a b 11
a|T a T a a b a|T b T a b b a|b
b/T b T b b b b|T b T b b b b|b

- AT s t 1 m

T]1 T|IT s t 1 T T

s | t s|s s 11 s |s

t|s t|t 1 t 1 t |t

I 111 1 11 111

als

bls

The demonic refinement ordering corresponding to 4 is represented in the semilattice
of Figure 3.3. This algebra is a DAT for which "zoz C 2, ¢t € "(tox), (3.20), (3.21) and
(3.22) all hold, but (3.19) does not. Indeed "(ass)ca = a # b = ass.

Then why choose (3.19) rather than "xoz C x and ¢ C "(¢oz)? The justification
is twofold. Firstly, as already mentioned in Remark 3.9, models that come from KAD
satisfy property (3.19). Secondly, there are strong indications that this law is essential
to reach the main goal of this thesis (refer to item 8 of Section 1.3).

Law (3.20) is locality in a demonic world.

In KAD, it is not necessary to have an axiom like (3.21), because additivity of
™ (Proposition 2.7-13) can be demonstrated from the laws of KAD. However, it is
necessary in the context of DA since the following example satisfies all prescribed laws
except that one.
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s\l/t

Figure 3.3: Hasse diagram of Example 3.10.

SN
N

Figure 3.4: Hasse diagram of Example 3.11.

T

Ezxample 3.11. For this example, A = {T,s,t,1,a} and test(4) = {T,s,t,1}. The
demonic operators are defined by the following tables.

H|T s t 1 a ol T s t 1 a x
T(T T T T T T(T T T T T T T
s|T s T s T s|T s T s a s|s
ty T T t t T ty T T t t T t|t
1T s t 1 T 1T s t 1 a 111
a|T T T T a a|T T T a T a| Tl

- BlT s t 1 m

TI1 TIT s t 1 T T

s |t s|s s 11 s|s

t|s t|t 1 t 1 t |t

I 111 1 11 111

al|s

The demonic refinement ordering corresponding to W is represented in the semilattice
of Figure 3.4. This algebra is a DAT and, in addition, (3.19), (3.20) and (3.22) are
satisfied, but (3.21) is not. Indeed "(1Hda) =T #s="T1d"a.
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N

/
L\
N

Figure 3.5: Hasse diagram of Example 3.12.

a

t

Ezxample 3.12. For this example, A = {T,s,t,1,a,b,c,d} and test(4) = {T,s,t, 1}.
The demonic operators are defined by the following tables.

Hl/T s t 1 a b c d o|T s t 1 a b ¢ d x
T|IT T T T T T T T T|T T T T T T T T T|T
s| T s T s T s T T s|T s T s T s T T s|s
t|T T t t a d ¢ d t|T T t t a d c d t|t
1/T s t 1 a b ¢ d 1/T s t 1 a b ¢ d 11
a|lT T a a a ¢ c c a|lT T a a a T T T a|a
b|T s d b ¢ b ¢ d b|T s T b T b T T b|b
c|T T ¢ ¢ ¢ ¢ ¢ c c|T T T ¢ T T T T c| T
d|T T d d ¢ d c d d|T T T d T d T T d| T

- AT s t 1 ™

T 1 T|IT s t 1 T|T

s |t s|s s 11 s|s

t]s t|t 1 t 1 t |t

LT 11 111 1|1

a |t

b|1

c| t

d|t

The demonic refinement ordering corresponding to 4 is represented in the semilattice
of Figure 3.5. In this DAT, (3.19), (3.21) and (3.22) are satisfied, but (3.20) is not.
Indeed "(acb) = T #t = "(ao"b).

Finally, we add Axiom (3.22) since it is true in KAD-based demonic algebras (see
Theorem 2.22-4) and it helps manipulating * with ™. Moreover, like Axiom (3.19),
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there are strong indications that this law is essential to reach the main goal of this
thesis.

Examples 3.10, 3.11 and 3.12 show that Axioms (3.19), (3.20) and (3.21) are inde-
pendent from each other and also from (3.22). The following example completes the
proof of independence of (3.19), (3.20), (3.21) and (3.22).

Ezample 3.13. For this example, A = {E : p(N) | E is finite} and test(A) = {{},{0}}.
The demonic operators are as follows.

H:AxA — A
FEUF if E#{}and F # {}
RN S

s:AXxA — A
(E,F) — {x:N|@e:E, f:Fle=e+f)}

A — A
{0y itE={0)
b {{} if 12 # {0)

T:A — test(A)
L[y
i+ fE={}
Hence {} is the top of the upper semilattice (A,C) and {0} is neutral for demonic

composition. Since the only tests are {0} and {}, the operators — and A are trivially
defined. In this DAT, (3.19), (3.20) and (3.21) are satisfied, but (3.22) is not. Indeed,

T{1}={0}) CE {0} <= true #*= false < "({1}*={0}) C {0} .

By Proposition 3.14-7 below, "z is a left preserver of x. By Proposition 3.14-14, it
is the greatest left preserver. Similarly, by Proposition 3.14-17, ="z is a left annihilator
of x. By Proposition 3.14-16, it is the least left annihilator (since Proposition 3.14-16
can be rewritten as ="x C t <= T L tox). Hence, on the left of the equivalence of
Proposition 3.14-13, t acts as a left preserver of x and on the right, —t acts as a left
annihilator.

The axioms of DAD impose important restrictions on demonic tests. It turns out
that these restrictions are actually useful properties and they are presented in the
following proposition together with properties of ™.
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Proposition 3.14. Let A be a DAD. The following laws hold for all x,y € A and all
s,t,u € test(A).

1. t=t
2. tot =1t
3. sHt = sot and hence test(A) is closed under o
4. so(tAu) = sotAsou and (sAt)ou = souRtou
5. sot =tos
0. * Ctioy <= tox Ctoy
7. "xox =z
8. xCy = T LMy
9. "toz) =tz
10. t T "(tox
11. xdy ="wo"ys(x Hy)
12. "(xos)o(zot) = "(wosot)
13. tox Ty < T L —fox
1. tCTy < toxCyx
15. "z = maxc{t : test(A) | tox = z}
16. tCTy < TELC—tox
17. ="gox =T
18. "x & M(zoy)
19. "z =T < =T
20. to(xHy) =toxHy = xUtoy
21. "po"y =T = "oy = "yox

22. "p =1 = "z¥) =1

PROOF :
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1. This is direct from (3.19) with z := 1 and (3.7).

2. This is direct from (3.19) with z,¢ :=¢,1, (3.7) and Proposition 3.14-1.

3. sot

IF

(by (3.15) )
(sHt)o(sHt)
— ( by Proposition 3.14-2 )

IF

( by Lemma 3.7-2 )

sot
4. This follows from Proposition 3.14-3 and Boolean algebra.

5. This follows from Proposition 3.14-3 and Boolean algebra.

6. x E toy
= ()
tox C totoy
= ( by Proposition 3.14-2 )
tox E toy
= ( by Lemma 3.7-1 and transitivity of C )

z L toy

7. This is direct from (3.19) with ¢ := 1 and (3.7).

8. rCy
= ( by (3.11))
cHy=vy
= ( by Leibniz and (3.21) )
U=
= ( by (3.11))
Ty C My
9 to'x

48
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- ( by (3.20) )
Ttox)

10. By Lemma 3.7-1 and Proposition 3.14-9, ¢ C ¢o"z = "(tox).

11. zHy
— ( by Proposition 3.14-7 )
"(zUy)o(zdy)
_ { by (3.21) )
(e e y)o(zHy)
— ( by Proposition 3.14-3 )

Traye(z Uy)

12. M(xos)o(xot)
- ( by Proposition 3.14-3 )

M(xos) W M(xot)

— ( by Proposition 3.14-3 )

T(zosot)

13. tox C x
= ( by Lemma 3.7-5 )
T E —tox
— ( by Proposition 3.14-8 )
T C "(—~tox)
= ( by Propositions 3.14-1 and 3.14-9 )
TLC ¢z
= ( by Boolean algebra )
te"x T ¢ox Aty
= ( by Proposition 3.14-4, Boolean algebra and (3.7) )

toTy C My

49
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— ( by Proposition 3.14-7 )

tox C x

14. [=] By assumption, monotonicity of o and Proposition 3.14-7, tox C "xox = .

(=]

tox C x

= ( by Proposition 3.14-8 )

= ( by Proposition 3.14-10 )

tC Ty

15. This is direct from Proposition 3.14-14.
16. This is direct from Propositions 3.14-14 and 3.14-13.
17. This law follows directly from Proposition 3.14-16 and (3.14).

18. Since "ro(zoy) = ("xox)oy = xoy, the result follows from Proposition 3.14-14.

19. e =T
= ( by (3.14) )
TC ™
= ( by Proposition 3.14-14 )
Tox Ex
= {(by (3.6))
TCx
= ( by (3.14) )
r=1T
20. tox Hy

— ( by Proposition 3.14-11 )
"(tex)aTya(toz Uy)
— ( by Proposition 3.14-9 )
tozoyo(tox Hy)
= ( by Propositions 3.14-5 and 3.14-2, and (3.8) )
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toTxotayo(tox U toy)

= ( by Proposition 3.14-9 )
"(tex)a"(toy)e(toz Winy)

= ( by Proposition 3.14-11 and (3.8) )
to(zHy)

The derivation for the second equality is similar.

21. TpoTy =T
— ( by Propositions 3.14-19 and 3.14-9, and Boolean algebra )
oy =T A Tyoxr =T
— ()
Twoy = "yow
22. T =1
= ( by (3.7) and Boolean algebra )
Mxol) C 1
— ( by (3.22) )
Mx*el)C 1
= ( by (3.7) and Boolean algebra )
M) =1

All the above laws except 12 are identical to laws of ™, after compensating for the
reverse ordering of the Boolean lattice (on tests, T corresponds to >).

Although Proposition 3.14-1 is a quite basic property, its proof uses (3.19). Further-
more, Proposition 3.14-1 and (3.19) are used in the proof of Propositions 3.14-2, 3.14-3,
3.14-4, 3.14-5, 3.14-6 and 3.14-7. Since (3.19) is not as natural as the others, it would
be interesting to find an argument that only involves (3.20) and (3.21). It turns out
that it is not possible. Indeed, see Example 3.15 (also constructed by Mace4 [Mac]).

Ezxample 3.15. For this example, A = test(4) = {T,s,t,1}. The demonic operators
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are defined by the following tables.

N

N

Figure 3.6: Hasse diagram of Example 3.15.

H{T s t 1 o | T s t 1 X
T T T T T T|T T T T T|T
s| T s T s s| T T T s s | T
t| T T t t t| T T T t t | T
11T s t 1 11T s t 1 111
= ABlT s t 1 m
T 1 TIT s t 1 T|T
s |t s|s s 11 s | T
t|s tjt 1 t 1 t| T
11T 111 1 11 11T
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The demonic refinement ordering corresponding to U is represented in the semilattice

of Figure 3.6. This algebra is a DAT and, in addition, (3.20), (3.21) and (3.22) are

satisfied, but (3.19) and "t = ¢ are not. Indeed "(sol)ss =T #s=soland "1 =T # 1.
Note that Propositions 3.14-2, 3.14-3, 3.14-4, 3.14-6 and 3.14-7 are not satisfied neither.

For those who are wondering, the major difference between Example 3.10 and Ex-

ample 3.15 is that "zox € z is satisfied in the former and not in the latter.

The following derivation closes the discussion about the choice of axioms for DAD.
Suppose "rox C x and ¢t C "(tox) for all z € A and all t € test(A). Then, by Lemma 3.7-
1, one has Mot C ¢t € "ot, so that "ot = t. Therefore,

IF

IF

( by Lemma 3.7-1)

( by the hypothesis with z,t:=1,t)
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Mot
= ( derived above from the hypothesis )

t,

so "t = t.

In conclusion,

Trox T At ET(tox) A (3.20) A (3.21) #&= (3.19) ,
(3.19) A (3.20) A (3.21) = Moz Ca A tLE(tox) ,

(3.20) A (321) #&= M=t

rox T A tCT(toz) A (3.20) A (321) = TMt=t.

Remark 3.16. Since in any DAD A, sot = sHt for all s,t € test(A) (see Proposition 3.14-
3), the Boolean algebra of demonic tests test(A) may be viewed as (test(A),d,RA,—,1,T)
or as (test(A),o,A,—,1,T). Therefore, each time we use a law from Boolean algebra,
whether it is written with K or with o, we will invoke “Boolean algebra”.

We finish this section with a lemma that will mostly be used in Sections 4.4 and 4.5.
It is presented here because it is a natural continuation of Proposition 3.14.

Lemma 3.17. In any DAD A, the domain operator satisfies the following properties
for all z € A and all s,t € test(A).

1. "zo™(zot) = "(aot)
2. ="xo(zet) =T

3. —xo="(zot) = ="z

4. "(wot)e(zo—t) =T

5. Mxot)o="(zo—t) = "(xot) and hence ="(zo—t) T "(zot)

6. "(xo(sAt)) C "(zos) and "(xo(sAt)) C "(aot)

PROOF :

1. It follows from Propositions 3.14-9 and 3.14-7.
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2. It follows from Propositions 3.14-9, 3.14-17, and 3.14-1, and (3.6).

3. true
= ( by Proposition 3.14-18 )
Tr C "(xot)
— ( by Boolean algebra and Proposition 3.14-3 )

_|n_xD_|”_(£L‘Dt) —= _|IT_$

4. It follows from Propositions 3.14-12, and 3.14-1, and (3.6).

d. true
= ( by Lemma 3.17-4 )
Mxot)o"(zo—t) =T
— ( by Proposition 3.14-3 and Boolean algebra )
—"(xo—t) C "(zot)
= ( by Boolean algebra and Proposition 3.14-3 )

T(zot)o="(xo—t) = "(xot)

6. It follows from Boolean algebra and Proposition 3.14-8. O

3.4 Demonic Algebra with Domain and ¢-Conditio-

nal

At this point, we have defined DA, which is an algebraic foundation for the upper part
of the lattice of Figure 1.4 and we have extended it to DAT and then to DAD in such
a way that we followed the same path as for the definition of KAD. In this section, we
define another operator, the t-conditional operator F,. We also demonstrate that the
definition of the R, operator is independent from the definition of DAD.

There are two important reasons why we need this extra operator. Now that we
have an algebraic foundation for both the lower and the upper part of the lattice of
Figure 1.4, we are looking for connections between those parts of the lattice. The
upward link from KAD to DAD is well defined thanks to Theorems 2.20, 2.21 and 2.22.
The strategy to define a downward link from DAD to KAD could be inspired by the
one for the upward link: define angelic operators from DAD and demonstrate that the
elements of DAD together with these angelic operators constitute a KAD. But it is
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not that easy. It seems impossible to achieve without the F, operator (the reading of
Chapter 4 might convince you).

The other reason why we add an operator to DAD is related to the A operator
defined on test(A). Of course, it is essential since it ensures that we have a Boolean
algebra of demonic tests, but it is unfortunate that it is exclusively defined on test(A).
Therefore, F, is an operator defined on A that is introduced as a generalisation of A. In
KAD, the addition of an analogous operator is not necessary since - already corresponds
to the meet of tests.

At first sight, this extra operator could complicate things with the upward link
established by Theorems 2.20, 2.21 and 2.22. Does the link from KAD to DAD extend
to a link from KAD to DAD-R,? Thanks to Theorem 2.23, the answer is yes. And then
the downward link we are looking for is from DAD-F, to KAD.

The axiom for the operator F, (see (3.23)) was chosen having two things in mind.
Firstly, it has to respect A when evaluated on demonic tests. Secondly, we want it to
behave like a choice operator.

Definition 3.18 (Demonic algebra with domain and ¢-conditional). A demonic algebra
with domain and ¢-conditional (DAD-F,) is a structure A = (A, test(A),H, 0, %, T, 1, -,
A,™, ), where (A, test(A),d,o,*, T,1,-,A,™) is a DAD and the t-conditional operator
P is a ternary operator of type test(A) x A x A — A that can be thought of as a family
of binary operators. For each t € test(A), A, is an operator of type A x A — A, and of
type test(A) x test(A) — test(A) if its two arguments belong to test(A). It satisfies the
following property for all x,y,z € A and all t € test(A).

xFAy =2 <= tox =toz \ —toy = —~toz (3.23)

The following example shows that (3.23) is independent from laws of DAD. It was
constructed by Maced [Mac].

Ezxample 3.19. For this example, A = {T,s,t,1,a} and test(A) = {T,s,t, 1}.

X

v = + 0n —|LC

i I

1
T
S
t
1
1

i I

1
T
s
t
1
a

s t a o
T T T T
s T s s
T t t t
s t 1 1
s t a a

s t a
T T T
s T s
T t t
s t a
s t a

LV o= o+ o —

T
s
t
1
1
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Figure 3.7: Hasse diagram of Example 3.19.
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The demonic refinement ordering corresponding to 4 is represented in the semilattice

of Figure 3.7. This algebra is a DAD, but (3.23) is not satisfied. Indeed,

true <= sol =sol A msol =-sol < 1F;1=1

and

true <= sol =soa A msol =-sna < 1FA;1=a

would give 1 = a.

We now prove some properties of F;.

Proposition 3.20. Let A be a DAD-R,. The following properties are true for all
T, X1, T2, Y, Y1, Y2, 2 € A and all s,t,u € test(A).

1. to(x Ay y) =tox A —to(zFy) = —toy

2. xF,y=yRyx

3. (tox) Ay =Py
4. x Py (0toy) =x Py
5. xB;, T =tox

6. T A, x=—tox
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7. (xR y)oz = xoz Ay yoz

8. so(x Ay y) = sox F; soy

9. vA (yHz) = (P y)H (x Ay 2)

10. 2 (yFy2) = (xHy) F (x H 2)

11. 1Ast =sAt

12. sB;u = tos A —tou

13. P,z ==x

14. 2Cy — xR, 2CyA,; 2z

15, 20y —= zF, 2 C 2Ry

16. x Ty <= tox Ctoy A\ —tox C —toy
17. x =y <= tox =toy A ~tox = —toy
18. 2CyFR; 2 <= xCtoy A x C —toz
19. (21 Fs y1) Be (22 Fs y2) = (21 Fe 22) As (1 A 42)
20. (xR y) ="2A, "y

21. The demonic meet of tox and —toy with respect to T exists and is equal to x P, y.

Proor :
1 true
— ()
rRyy=rRy
= ( by (3.23) )
te(z Py y) =tox A —to(z P, y) = —toy
2. rR,y=yRA 2

= ( by (3.23) )

tox =to(y Ay x) A —toy = —to(y P, 1)
— ( by Boolean algebra )
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tox = =—to(y Ay x) A —toy = —te(y A o)

= ( by Proposition 3.20-1 )
tox = ——tox A —toy = —ioy
— ( by Boolean algebra )
true
3. (tox) Py =x Py
= ( by (3.23) )
totox = to(z P y) A —toy = —to(z P y)
= ( by Proposition 3.20-1 )
totox = tox N —toy = —toy
— ( by Boolean algebra )
true
4. x Ay (—toy)

— ( by Proposition 3.20-2 )
(mtoy) Ay x

= ( by Proposition 3.20-3 )
YR x

— ( by Proposition 3.20-2 )

TPy
5. X F‘t T =tox
= ( by (3.23) )

tox = totox A\ —to T = —totox
= ( by Boolean algebra )
tox =tox A T = Tox
= ( by (3.6) )

true

6. THx
— ( by Proposition 3.20-2 )
rHA_; T
= ( by Proposition 3.20-5 )
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—tox
7. xoz Ay yoz = (x Ay y)oz
= ( by (3.23) )
texoz =to(x Ay y)oz A —toyoz = —to(x F, y)oz
= ( by Proposition 3.20-1 )
true
8. sox Ay soy = so(z A y)
= ( by (3.23) )

tosox = tose(x A, y) A —tosoy = —tose(x A, y)
= ( by Boolean algebra )

sotox = soto(x A y) A so—toy = so—to(z A y)

= ( by Proposition 3.20-1 )
true
9. rF (yHz2)= (xR y)H (2 2)
= ( by (3.23) )
tox =to((zFy)H (xR 2)) A —te(yHz) =—te((zFy) H (x Ay 2))
— (by (3.8))
tox =to(x Py y)Hto(x Py 2) A —toyd —toz = —to(x Ay y) H —to(z A, 2)
— ( by Proposition 3.20-1 and (3.3) )
true
10. (xHy) A (zHz) =2 H (yFA; 2)
— ( by (3.23) )
to(zHy) =to(zH(yF 2)) A —to(xHz)=—to(xH (yFA, 2))
— { by (3.8))
tex Htoy = toxHito(yF, 2) A —toxd—toz = —tox H —to(y Fy 2)
= ( by Proposition 3.20-1 )
true
11. 1Rt =sAt

= ( by (3.23) and Boolean algebra )



Chapter 3. Axiomatisation of Demonic Algebra with Domain and t-Conditional 60

s=so(sAt) A —sot =-so(sAt)

= ( by Boolean algebra )
true
12. s A u = tos A —touy
= ( by (3.23) )
tos = to(tes A —tou) A —tou = —to(tos A —tou)
= ( by Boolean algebra )
true

13. This is direct from (3.23).

14. rLCy
— ( by (3.11) )
cHy=vy
= ( by Leibniz )

(xHy) A z=yHR, 2

( by Proposition 3.20-2 )
Ay (zHy)=yR, 2

( by Proposition 3.20-9 )

~ 1.1

A x)H (2Ay) =y R 2

( by Proposition 3.20-2 )
xR 2)H(yFy2) =y R, 2

(by (3.11))

cRzCyf; 2

[

15. rLCy
= ( by Proposition 3.20-14 )
rA2CyR 2
= ( by Proposition 3.20-2 )

2Ry xC 2Ry

16. rCy
= ()
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tox C oy A —tox E —toy
— ( by Proposition 3.20-14 )

tox A, ~tox E oy {y —tox A —tox A foy E —toy A, toy
— ( by Proposition 3.20-2 )

tox Ay ~tox E oy {y —tox A toy [y —fox C toy A, ~ioy
= ( by transitivity of C )

tox Ay —tox L foy [, —toy

= ( by Propositions 3.20-3 and 3.20-4 )
rFxCyfy
= ( by Proposition 3.20-13 )
zCy
17. tox = toy A —tox = —toy
= ( by (3.23) )
TRy =1y
= ( by Proposition 3.20-13 )
r=1{Y
18. rCyA; 2
= ( by Proposition 3.20-16 )

tox Cto(y M, z) A —tex T —te(y Ay 2)
= ( by Proposition 3.20-1 )

tox C toy A —tox C —toz
= ( by Proposition 3.14-6 )

zCtoy N & —toz

19. This is direct from (3.23) and Propositions 3.20-8 and 3.20-1.

20. e A, Ty = "(x P y)
= ( by (3.23) )
to"x = to"(x P y) A =ty = —ta"(x A, y)
= ( by Proposition 3.14-9 )

Mtew) ="(ta(z Ary)) A "(ntey) ="(te(z P y))
— ( by Proposition 3.20-1 )
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true

21. By Proposition 3.20-18, x F; y is the greatest lower bound of tox and —toy. O

If we draw up what we got, tests have quite similar properties in KAT and DAT.
But there are important differences as well. The first one is that H and o behave the
same way on tests (Proposition 3.14-3). The second one concerns Laws 16 and 17 of
Proposition 3.20, which show how a proof of refinement or equality can be done by case
analysis by decomposing it with cases t and —t. The same is true in KAT. However, in
KAT, this decomposition can also be done on the right side, since for instance the law

zLy < -ty tNz-—t<y-—t

holds (see Proposition 2.7-4), while the corresponding law does not hold in DAT. With
the t-conditional operator, there is an asymmetry between left and right that can be
traced back to Propositions 3.20-7 and 3.20-8. In Proposition 3.20-7, right distributivity
holds for arbitrary elements, while left distributivity in Proposition 3.20-8 holds only
for tests.

Propositions 3.20-14 and 3.20-15 simply express the monotonicity of F; in its two
arguments. On the other hand, f, is not monotonic with respect to its test argument.
Indeed, TA; 1 = Tand TA+1 =1,s0 1 C T 4 THA 1 C TAy 1 Proposi
tion 3.20-11 establishes the link between f, and A and makes it clear that the former is
a generalisation of the latter. This is a generalisation since it has the same behaviour
on demonic tests and it still calculates a meet with respect to C on other elements.
Proposition 3.20-21 tells us that x A; y is the demonic meet of tox and —toy.

Note that the axiom for F, (refer to (3.23)) is satisfied by the conditional choice
operator _<t> _ of Hoare et al. [HHJ"87, HJ98]. We list the correspondence between
the axioms of DAD-F,, the properties of the F, operator and the properties of Hoare et
al.’s conditional choice operator in Table 3.1, using the same notation as the authors.
The A, operator satisfies a lot of additional laws, as shown by Proposition 3.20. Note
that the F, operator and the conditional choice operator of Hoare et al. are also related
to the conditional forms of McCarthy presented in the precursor paper [McC63].

To simplify the notation when possible, we will use the abbreviation

rAy=xRAgy . (3.24)

It turns out that it is consistent with the demonic meet on demonic tests. Under

special conditions, A has easy to use properties, as shown by the next corollary. The

most useful cases are when A is used on tests and when Tzoy = T.
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DAD-R,

Laws of programming [HHJ*87]

UTP [HJ98]

rCy<=zcHy=y
zH(yUz)=(zHy)dz

rHy=yHx
rHxr ==x
THz=T

zo(yoz) = (zoy)oz
Tox =x2o0T =T

log =zl =2
zo(yHz) =zoyHdzoz
(xUy)oz =xozHyoz
cRiy=yRx
clrx=x

(xF; y)oz = zoz A yoz
= puc(y = yoxrdl)

PCQ<=PUQR=Q
PU(QUR)=(PUQ)UR

PUQ=QUP
PUP=P
lUP=_1

Pi(Q:R) = (P;Q) R
1L;,P=P;1l =1

I, P=PII=P

P (QUR) = (P;Q)U(P;R)
(PUQ);R=(P;R)U(Q; R)
PabrQ=Q<—-b>P
P<brP=P
(P<b>Q); R = (P;R)<1br> (Q; R)

P=Q = [P1Q=Q]
P(QMNR)=(PNQ)NR
rPnQ=Qne

pPnP=P

true M P = true
Pi(Q:R) = (P;Q) R

true; P = P;true = true
HQP;P:P;HQPZP
Pi(QMR) = (P;Q) 1 (P;R)
(PT1Q);R=(P;R)N(Q; R)
PabrQ=Q<x-b>P
PabrP=P

(PabrQ); R=(P;R)<b>(Q; R)
I/RO(P;Rl_lHa(p;R))

Table 3.1: Correspondence between the axioms of DAD-R,, the properties of the R,
operator and the properties of Hoare et al.’s conditional choice operator.

Corollary 3.21. Let A be a DAD-R,. The following properties are true for all x,y, z €

A and all s,t,ty,t, ..., u € test(A) (n > 2).

1. sAt as defined by (3.24) is equal to the meet of s and t in the Boolean lattice of
tests defined in Definition 3.4 (so there is no possible confusion).

2. xAy=xA-"xoy

3. TRz=2RT =2

4. to(xAy) = tox Atoy

5. (sRAt)sx = sox Atox

6. v =tox A —tox

7. " Ct = to(zRAy) =tox

8 -t Ct = to(xRAy) =toy
9. x A,y = uox A —uoy

10. "oy ="yoxr = xRAy=yAx
11. xRz =2

12. xAyCx
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18. (zRAy)Az=zRA(yAz2)

14. zd(yAz)=(zHy)A(zH2)

15. zA(ydz2) = (zAy)H (xR z2)

16. "(zRAy)="zATy

17. "xo"y =T = (xRAy)oz = xozAyoz

18. zez=ax Nyoz=y — (e y)oz=xFyy A (zAy)ez=xRy

19. If ty Aty A ... At, =1 and ty, tq, ..., t, are pairwise disjoint (n > 2), then

T Ly <= tjox Ctioy A teox Etgoy A ... A tox Etoy .

PROOF :

1. From (3.24), we get

sAt

= ( by (3.24) and Proposition 3.14-1 )
sHAgt

= ( by Boolean algebra and Proposition 3.20-3 )
1At

From Definition 3.4, we get

sAt
= ( by Proposition 3.20-11 )
1R8,t.
2. rAy=2A-"zoy
= ( by (3.24) )

T Ay = x A, —\”_;L‘Dy
= ( by Proposition 3.20-4 )

true
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3 THz
= ( by (3.24) and Proposition 3.14-1 )
T ATz
= ( by Proposition 3.20-6 )
- Tox
= ( by Boolean algebra and (3.7) )
x
= ( by Propositions 3.20-5 and 3.14-7 )
B T
- (by (3.24) )
xAT
4. tox Atoy = te(z Ay)
= ( by (3.24) )
tox Brgog) toy = to(z Ag y)
= ( by (3.23) )
T(tox)otor = "(tox)ote(x FAg y) A —"(tox)otoy = =" (tox)ote(x A y)
= ( by Propositions 3.14-9 and 3.14-7, and Boolean algebra )
tox = to"zo(z Ag y) A to-"zoy = to="zo(z A y)
= ( by Propositions 3.20-1 and 3.14-7 )
true
5. (sAt)ox = sox Atox
= ( by Proposition 3.20-17 )
se(sAt)ox = so(soxAtox) A —so(sAt)ox = —so(sox Atox)
= ( Boolean algebra, Corollary 3.21-4 and (3.6) )
sox = so(xAtox) A —sotoxr = T A -sotox
= ( by Corollaries 3.21-2 and 3.21-3 )
sox = so(x A —"xotox)
— ( by Boolean algebra, Proposition 3.14-17, (3.6) and Corollary
3.21-3 )

true
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6. T = tox A —tox
= ( by Proposition 3.20-17 )
tox = to(tex A —tox) A —tox = —te(tox A —tox)
= ( by Corollary 3.21-4, Boolean algebra and (3.6) )
tox =tox AT A —tox=THA—tox
= ( by Corollary 3.21-3 )
true

7. Suppose "x C t. Hence t = to"z by Boolean algebra.

to(xAy) = tox

= ( by (3.24) and the hypothesis )
to"zo(x A y) = tox

— ( by Propositions 3.20-1 and 3.14-7 )
true

8. Suppose ="z C t. Hence t = to="z by Boolean algebra.

te(zRAy) = toy

= ( by (3.24) and the hypothesis )
to="zo(x A, y) = toy

= ( by Proposition 3.20-1 and the hypothesis )
true

9. r Ay y = uox A —uoy

— ( by (3.23) )
uex = us(usx A —usy) A —wusy = —wus(usz A —usy)

— ( by Corollary 3.21-4 and Boolean algebra )
uox = uox A Toy A —wuoy = Tox A -uoy

= ( by (3.6) and Corollary 3.21-3 )
true

10. Suppose "roy = Tyox.

66
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rRAy=yRx
= ( by Proposition 3.20-17 and (3.24) )
"wo(z Ay) ="wo(y g ) A —Tzo(zAy) =-"rs(yAa)
— ( by Proposition 3.20-8 and Corollaries 3.21-4, 3.21-7 and 3.21-8
)
Trox = Tzoy A w Trox N ="zoy = —"zoy A -"zox
= ( by Propositions 3.14-7 and 3.14-17 )
x="Troy Py x N —zoy =-TzoyRT
= ( by Corollary 3.21-3 )
x="roy P x A true
= ( by the hypothesis )
z = "yox An x
= ( by Propositions 3.20-3 and 3.20-13 )
true
11. rHax
- (by (324) )
T Ar, x

— ( by Proposition 3.20-13 )

x
12. true
= ( by (3.14) )
yC T
= ( by Proposition 3.20-15 )
TApyCxfg T
= ( by (3.24) and Propositions 3.20-5 and 3.14-7 )
zRAyLCx
13. rA(yAz)=(xAy)Az
= ( by (3.24) )

A (yA2) = (zFAg y) A 2
= ( by (3.23) and Proposition 3.14-7 )
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r="Tro((xAgy)Az) A ="zo(yAz)=-"zo((x P y)A 2)
— ( by Corollaries 3.21-7 and 3.21-4, Proposition 3.20-20, (3.24)
and Boolean algebra )
r="z0(xAry) A —"xoyA-"zoz = —"wo(x P y) A -"zoz
— ( by Propositions 3.20-1 and 3.14-7 )

14. (xHy)A(zHz) =2 (yAz)
( by (3.24), (3.21) and Proposition 3.14-3 )
Y) Ao, (xH2) =2z H (yA 2)
( by (3.23), Proposition 3.14-11 and De Morgan )
H(yAz)) A
(=" A ﬂ”—y)ﬂ(l‘ z) = (=" A-"y)e(zH (y A 2))
— ( by (3.8), Corollary 3.21-7 and Propositions 3.14-11 and 3.14-7

[

true A (2" A-"y)o(xHz) = (""zA-"y)e(z H (y A 2))

— ( by Propositions 3.14-7 and 3.14-20, and Boolean algebra )
—Tys(zdz) = ys(z H (y A 2))

= ( by (3.8) and Corollary 3.21-8 )

true

15. Ay z)
= (by (3.24) )

A, (yH 2)
- ( by Proposition 3.20-9 )

(2 A y) H (7 P, 2)
- (by (324) )
(xAy)H (zA2)

16. Tz Ay)
_ by (3.24) )

= ( by Proposition 3.20-20 )
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= ( by Proposition 3.14-1 and (3.24) )
T A Ty

17. Suppose "zo"y = T, hence —="zo"y = "y by Boolean algebra.

(rAy)ez
- (by (3:21) )

(2 P y)oz
— ( by Proposition 3.20-7 )

roz A yoz

= ( by Corollary 3.21-9, Proposition 3.14-7 and the hypothesis )

oz Ayoz

18. Suppose zoz = x and yoz = y.

(xFAry)oz
— ( by Proposition 3.20-7 )

xroz Ay yoz
= ( by the hypothesis )

TPy

(xRAy)ez
= (by (3.24) )

(x A y)oz

= ( see the previous derivation )

x A y
= (by (3.24) )

TRy

19. We prove Corollary 3.21-19 by induction.

Basis case n = 2. For any t; and 5 such that t; Aty =1 and t10ty = T, ty = =ty
by Boolean algebra. Thus, Proposition 3.20-16 gives

r Ly < tiox Ctioy A teox T tyoy .
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Induction hypothesis. Suppose that for any ¢y, to, ..., t,_1 such that ¢t; At A ... A
t,—1 = 1and ty, tg, ..., t,_1 are pairwise disjoint,

T Ly < tiox Ctijoy A teox Etgoy A ... ANt 1o T E, 1oy .

Suppose now that ¢t Aty A...At, = 1 and ty, to, ..., t,, are pairwise disjoint. Then
(tyAty) AtsA...At, =1 and (t; Aty), t3, ..., t, are pairwise disjoint by Boolean
algebra.

zCy
= ( by the induction hypothesis )

(tl Htg)ﬂl' C (tl A tg)ﬂy N tgﬂl' C tgﬂy VAN tnﬂl' C tnﬂy
— ( by Proposition 3.20-16, the hypothesis and Boolean algebra )

tiox Ctyoy A toox Eigoy A .. A tpox B0y

By Corollary 3.21-14 and (3.2), (xAy)Hz = (zH2) A (yH z). However, (zHy)RAz =
(xRAz)H(yAz) is false in general. Take the relations z = {(0,0)}, y = {} and z = {(0,1)}
as a counter-example.

Furthermore, the equality (z A y)oz = xoz A yoz is also false in general (com-
pare with Proposition 3.20-7). Take the relations * = {(0,0),(0,1),(1,0),(1,1)},
y = {(0,1),(1,1)} and z = {(1,1)} as a counter-example. This counter-example
shows that the hypothesis of Corollary 3.21-17 is welcome. Another way of getting
(rAy)ez = xoz Ayoz is to focus on tests, as in Corollary 3.21-5.

In order to demonstrate a refinement x C y for x,y € A, rather than deriving it
directly, it is sometimes easier to break it in more refinements tjox C tyoy, toox C tyoy,
wooy tpox C t,0y. This can be done under suitable hypotheses thanks to Corollary 3.21-
19. This case analysis with many tests is going to be used several times in the proof of
Theorem 4.31.

There is a trivial and very useful contraction of Proposition 3.14-21 and Corol-
lary 3.21-10 which reads

Tpoly =T = xAy=yAz . (3.25)

By Corollary 3.21-12, x Ay C x. In general, z Ay C y does not hold. Take the
relations x = {(0,0)} and y = {(0,1)} as a counter-example. However it is true under



Chapter 3. Axiomatisation of Demonic Algebra with Domain and t-Conditional 71

suitable hypotheses. The following lemma presents hypotheses that help manipulating
A operators involved in different refinements.

Lemma 3.22. Let A be a DAD-F,. The following properties are true for all x,y, z € A.

1. yCr — zRAyLC xRz

2.2y —= xzLCyRx

3. 7CyN"z=Ty = zAzCyAz

4. 2 Ey ANTpoz =T = xAzCyAz

5. (xRy) ="z Ax=Teoz ANy="Tyoz = xzRAy==2
6. tCyAz <= 2Ly A zC-yoz

7. Txoy =Twe"z =T = (wAz)H(yAz)=(wHy)A(xHz)

PROOF :

1. This follows from (3.24) and Proposition 3.20-15.

2. Suppose x C y

yRAx
= ( by Corollary 3.21-2 )
yA-"yox
= ( by Proposition 3.14-9 and Boolean algebra,
n_yun_(ﬁﬂ_yux) = T7
then apply (3.25) )
ﬁn?ymx il Y
= ( by Proposition 3.14-7 )
ﬁn?ymx il n_yuy
a ( by the hypothesis and Lemma 3.22-1 )
_||1?ny il n_yux

= ( by Corollary 3.21-6 )
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3. This follows from (3.24) and Proposition 3.20-14.

4. Assume "zo"z = T.

rAzLCyHAz
= ( by Proposition 3.20-16 )
Tro(xAz)EMzo(yAz) A —"zo(zFAz) E-"zo(y A 2)
— ( by Corollaries 3.21-7, 3.21-8 and 3.21-4, and Proposition
3.14-7 )

Tpox € Tpoy ATxoT2z02 A —"20"202 E —="goTyoy A =Tz 202
— ( by the hypothesis, Boolean algebra, (3.6), Corollary 3.21-3
and Proposition 3.14-7 )

Trox € "goy A 2 E —"zoyAz

= ( by Proposition 3.14-8, Boolean algebra, (3.6) and Corollary
3.21-3 )

z Ly
5. Assume z = "roz, y = "Tyoz and "(z Ay) = "z. Hence,
—TzoTy = =Txaz (3.26)

by Corollary 3.21-16 and Boolean algebra.

rRy ==z

= ( by (3.24) )
TRy ==z

= ( by (3.23) and Proposition 3.14-7 )
x="zoz AN —goy=—"xoz

— ( by the hypothesis )
true A —"xoyoz = =Txoz

= ( by Proposition 3.14-7 and (3.26) )
true

6. rCyHRz

= ( by (3.24) )
rEyfng 2

= ( by Propositions 3.20-18 and 3.14-7 )

rCy A xC-yoz
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7. Assume "zo"y = T and "wo"z = T.

(wAz)H (yAz)
= ( by Corollary 3.21-14 )

(wAz)Hy)A(wAx)H 2)
= ( by (3.2) and Corollary 3.21-14 )

(wHy)A(zHy)A(wHz2)A(zH=2)
= ( by Proposition 3.14-11, the hypothesis, (3.6) and
Corollary 3.21-3 )
(wHy)RA(zH2)

Propositions 3.20-21 and 3.14-7 with Definition 3.24 imply that £ Ay is the infimum
of z and —"zroy with respect to L.



Chapter 4

Definition of Angelic Operators in
DAD

As mentioned at the beginning of Section 3.4, we are looking for a downward link —
refer to Figure 1.4— from DAD-F, to KAD for any model of KAD. The idea is to define
angelic operators in the context of DAD-F, and then demonstrate that the elements of
a DAD-F, together with those angelic operators form a KAD. This is exactly what is
done in this chapter.

In Sections 4.1, 4.2 and 4.3, we respectively define angelic non-deterministic choice
+p, angelic sequential composition o and angelic finite iteration . In Section 4.2,
we also define decomposable elements. These are indispensable for the definition of the
p operator. In Section 4.4, we demonstrate many properties about decomposable ele-
ments. Finally, in Section 4.5, we demonstrate that the elements of a DAD-F, together
with those angelic operators form a KAD. This last result of the chapter is one of the
most important of this thesis. Indeed, it is the second step toward the desired duality
(refer to Section 1.3).

We add a subscript D to the angelic operators defined here, to denote that they are
defined by demonic expressions.
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4.1 Angelic Refinement and Angelic Choice

We start with the angelic partial order <p. It is easy to see that this definition is the
demonic version of Definition 2.9.

Definition 4.1 (Angelic refinement). Let A be a DAD-R, and take xz,y € A. We say
that x <p y when

IF

)

"y
x oy .

T
C Ty

Proposition 4.3 below states that <p is a partial order. Moreover, it gives a formula
using demonic operators for the angelic supremum with respect to this partial order.
In order to demonstrate this proposition, we need the following lemma.

Lemma 4.2. Let A be a DAD-F,. The function

f:AxA — A
(z,y) +— (zHy)A-"TyorA-"zoy

satisfies the following four properties for all x,y,z € A. Note that f is well defined by
Corollary 3.21-135.

1. "f(z,y) =" A"y

2. flz,2) ==

3. f(x,y) = f(y,x)

4. f(@, f(y,2)) = f(f(z,p),2)

PROOF :

1. f(x,y)
= ( by definition of f )

"((zHy) A-"ysz A —rey)
— ( by Corollary 3.21-16 )

Mz dy) AT (="yox) AT(="zoy)
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= ( by (3.21) and Propositions 3.14-3 and 3.14-9 )
Moy A ="TyoTz A ="zaTy

— { by Boolean algebra )
T ATy

2. f(z, x)

= ( by definition of f )
(zHz)A-"zox A -"rox

— ( by Proposition 3.14-17 )
(xHz)ATAT

= ( by Corollary 3.21-3 and (3.3) )

T

3. f(z,y)
= ( by definition of f )
(xHy)A-"yox A -"zoy
= ( by Proposition 3.14-9 and Boolean algebra,
"(FMyoz)e(=roy) = ~TyeTweTraTy = T
then apply (3.2) and (3.25) )
(ydx)A="zoy A ="yox
= ( by definition of f )

fly,x)

4. Here is the derivation. It repeatedly invokes (3.25). Using (3.21), Boolean algebra

Y

and Proposition 3.14-9, it is easy to check that the operands of the various A
operators are pairwise disjoint, so that the condition "zo"y = T of (3.25) is
satisfied. This is what allows permuting the operands.

f(x, f(y, )

= ( by definition of f and Lemma 4.2-1 )
(zH ((yH2) A~"zoy A =Tyoz))A

—("yA2)ox A-"zo((y Y 2) A —"20y A -"yoz)

= ( by Corollaries 3.21-14 and 3.21-4, and Boolean algebra )
(xHyHz2)A(zH-"zoy)A(xHd="yoz) A

=Tyo=zox A="zo(y H2) A =Tzo="20y A ="Tzo="Tyoz
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= ( by Proposition 3.14-20 and (3.25) )
(xHyHz)A-"20(xUy)A-"ys(zH2)A-"2o(y U 2) A
—Tyo="zox A -"go-"zoy A -"zo-Tyoz
= (by (3.2), (3.21), Proposition 3.14-9, (3.25) and Boolean algebra
)

(zHdzHy)A-"yo(zdz)A-"zo(zHy)A-"20(z Uy) A
—Tgpo="yoz A -"zo="Tyox A ="z0-"zoy
= ( by Proposition 3.14-20 and (3.25) )
(zHdzHy)A (24 -"yoz) A (2 d ="zoy) A ="xo-"yo2 A
—"zo(xHy) A —"zo="Tyox A ="zo0="Tzoy
= ( by Corollaries 3.21-14 and 3.21-4, and Boolean algebra )
(zH ((zHy)A-"yox A="zoy)) A—("zATy)oz A
—"zo((x Hy) A-"yox A "zoy)
= ( by definition of f and Lemma 4.2-1 )

fz f(2,y))
= ( by Lemma 4.2-3 )

f(f(z,y),2)

O

Proposition 4.3 (Angelic choice). The angelic refinement of Definition 4.1 satisfies
the following three properties.

1. Forallx, T <px.

2. For all z,y,
t<py = flz,y)=y,

where [ is the function defined in Lemma 4.2.

3. <p is a partial order. Letting x +py denote the supremum of x and y with respect
to <p, we have

PROOF :
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1. From (3.14) and Proposition 3.14-8, we have "z C "T. Also, from Proposition
3.14-1 and (3.6), "Tox = T, so T C "Tox. These two refinements are those from
Definition 4.1, so T <p z.

2. f(xy) =y
= ( by Propositions 3.20-17, 3.14-7 and 3.14-17)
o f(zy) =y A STyaf(ay) =T
= ( by Proposition 3.20-17 and (3.6) )

Twoys f(z,y) = "woy A TwemTysf(z,y) =T A
—Tzoys f(z,y) = 2"wey A —TwemTyof(z,y) =T
= ( by definition of f, Corollaries 3.21-4 and 3.21-3, Propositions
3.14-7, 3.14-17 and 3.14-11, Boolean algebra and (3.6) )

TreMyo(zHy) = Tzoy A =Tyox =T A =Tgoy=="goy A T =T

= ( by Proposition 3.14-11 and Boolean algebra )
Tro(xUy) ="woy A =yox =T

— ( by Propositions 3.14-20, 3.14-7, 3.14-19 and 3.14-9 )
" Tpoy =Tgoy A =Ty =T

— ( by Proposition 3.14-16 )
o Troy ="Tgoy A Ty C My

= ( by (3.11) and Definition 4.1 )
r<py

3. It follows from the previous point of the present proposition and by the fact that
f is reflexive, symmetric and transitive (see Lemma 4.2). a

Proposition 4.3 and Lemma 4.2 show that <5 and 4+p do what we expect them to
do and the following corollary is a direct consequence of these results.

Corollary 4.4. Let A be a DAD-F,. For all x,y,z € A,

1. r4+py=(xHy)A-"yox A -"xoy,
2. <p 1s a partial order and x +py =y <= x <p v,
8 Mx4py) ="zA"y,

4. (x4py)+p2z=24p (y +p 2),
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S r+py=y-pz,
0. x4px =1,
7. THprx=x+p T ==x.
Remark 4.5. Note that for all s,t € test(A),
s<pt <= tLCs

by Definition 4.1, Proposition 3.14-1 and Boolean algebra. This equivalence is the
demonic version of the one of Remark 2.11.

Remark 4.6. Since the domains of z Hy, —"zoy and —"yox are pairwise disjoint by
(3.21) and Proposition 3.14-9, the three terms in the definition of f (see Lemma 4.2)
commute. In the next sections and chapters, we will use any of the following equalities
by refering to Corollary 4.4-1.

z4py = (zHy)A-"yox A-"roy
r4py = (zHy)A-"TzoyA-"yox
r4py = —"yoxA-"zoy A (zHy)
r4py = —"yoxA(xHy)RA-"roy
r4py = —"xoyRA-"yoxA(zHy)
r4py = —TwoyRA(rHy)A-"yox

Other major properties of +p will be presented in Section 4.5.

4.2 Angelic Composition and Demonic Decomposi-

tion

We now turn to the definition of angelic composition. But things are not as simple as
for <p or 4+p. The difficulty is due to the asymmetry between left and right caused by
the difference between Proposition 3.20-7 and 3.20-8, and by the absence of a codomain
operator for “testing” the right-hand side of elements as can be done with the domain
operator on the left. Consider the relations

Q = {(070)7(071)7(1’2)7(273)}a
R = {(0,0),(2,2)} .
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The angelic composition of @ and R is @ - R = {(0,0),(1,2)}, while their demonic
composition is Q=R = {(1,2)}. There is no way to express @ - R only in terms of Qs R.
What we could try to do is to decompose () as follows using the conditional operator:

Q=Q-"RAQ:""RA(Q1 HQ2) ,

where @; = {(0,0)} and Q2 = {(0,1)}. Note that @="R = {(1,2)} and Qo—="R =
{(2,3)}, so that the domains of the three operands of A are disjoint. The effect of A is
then just union. With these relations, it is possible to express the angelic composition
as Q- R = QoRAQ 0 R. Now, it is possible to extract ()1 H Qs from @), since Q1 H Qs =
="(Qo"R)o="(Qo="R)s@. The problem is that it is not possible to extract Q; from
@1 H Q2. On the one hand, ); and ()5 have the same domain; on the other hand, there
is no test ¢ such that 1 = (Q1 & Q2)ot. This is what leads to the following definition.

Definition 4.7 (Decomposition). Let A be a DAD-F, and taket € test(A). An element
x € A is said to be t-decomposable if and only if there are unique elements x; and x—;
such that

r = zotRAzo—tA(zHay) , (4.3)
xy) = Maoy) = "(xot)o="(zo=t)e"x | (4.4)
Ty = @0t (4.5)
Ty = x_ot . (4.6)

Moreover, x is said to be decomposable if and only if it is t-decomposable for all t €
test(A).

Remark 4.8. The domains "(xot), "(zo—t) and "(x;) (or "(z—;)) obtained by decom-
posing z as in Definition 4.7 are pairwise disjoint. That "(z;) and "(x—;) are disjoint
from "(zot) and "(xo-t) is obvious from (4.4). By Lemma 3.17-4, "(zot) and "(zo—t)
are disjoint as well. This disjointness is often used in applications of (3.25) and Corol-
lary 3.21-17.

Moreover,

&q
I

Mzot) A (xo—t) A(xy) (4.7)

since

M(xot) A T(xo—t) A ™(2y)
= ( by (4.4))

M(zot) A" (xo—t) A="(xot)o="(zo—t)o 2
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= ( by Boolean algebra )

Mzot) A(xo—t) A"

= ( by Proposition 3.14-18 and Boolean algebra )

Then from Corollary 3.21-16, Boolean algebra and Remark 4.8, it is easy to see that

MxotAxz) = —"(xo—t)e"z | (4.8)
v T MaotRAay) , :
—Tgox, = T . (4.10)

Remark 4.9. Any element x € A is 1-decomposable and T-decomposable. Indeed,
TL=x7=1T

by (4.4), Boolean algebra, (3.6) and Propositions 3.14-1 and 3.14-19.

Looking at Definition 4.7, many questions arise. Before defining angelic composition,
we answer them.

e Are demonic tests all decomposable?

Indeed they are, the t-decomposition of a test s is
s=sotRAsotA(THT) (4.11)
by (4.4), Boolean algebra and Propositions 3.14-1 and 3.14-19.

e [s there a DAD-F, containing an element that is not decomposable?
The following example presents such a scenario.

FExample 4.10. For this example, we consider the following nine relations defined

on Sy = {1,2}.
(o) ) ) )
=(19) o=() () o= (0 0) = ()
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Figure 4.1: Hasse diagram of Example 4.10.

Take A = {T,s,t,1,a,b,c,d,e}, test(A) = {T,s,t,1} and the demonic operators
defined by the following tables, omitting F,.

H|T s t 1 a b c d e o|T s t 1 a b c d e
T|T T T T T T T T T T|T T T T T T T T T
s|T s T s s d d d T s|T s T s s d d d T
t|T T t t e t e T e t| T T t t e t e T e
1|T s t 1 a b c d e 1|T s t 1 a b c d e
a|lT s e a a c c d e allT s T a a c¢c c d T
b|/T d t b ¢ b ¢ d e b|/T T t b ¢ b ¢ T e
c|T d e ¢c ¢ ¢ c d e c|T T T ¢ ¢ ¢ ¢ T T
d|{T d T d d d d d T d|{T T T d d d d T T
e|T T e e e e e T e e|T T T e e e e T T
x m -
T|T T|T T 1
s|s s|s s |t
t |t t |t t|s
1)1 1)1 1| T
al|a a|l
b|b b|1
c|c c|1
d| T d|s
e | T e |t

The demonic refinement ordering corresponding to H is represented in the semi-
lattice of Figure 4.1. It is easy to convince oneself that it is a DAD-F,. Look
at Figure 2.3. The present example is simply a subalgebra of that figure. The
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elements a, b, c,d and e are not decomposable. For instance, to decompose ¢ with
respect to s would require the existence of the relations

10 0 1
f_(1 o) and g_(o 1) ’

e Let t be a demonic test. May an element of a DAD-R, have more than one ¢-

which are not there.

decomposition? In other words, is it relevant to ask for uniqueness in Definition
4.77

Example 4.12 is one where there is an element with nine different ¢-decomposi-
tions. This example is constructed from the general structure introduced in the
following lemma.

Lemma 4.11. Let (A, test(A),H,0,*, T,1,-,A, " R) be a DAD-R,. Consider
E={(x,t): Axtest(A) | "t Tt} and T = {(¢,t) : test(A) X test(A)} and define
the following operations for elements of E, where xz,y € A and s,t,u € test(A).

(z,5)® (y,1) = (rHy,sH1)
(z,5) © (y,1) = (xoy,"(soxot))
(z,8)® = (z*,(z"s))
(s,s) (—s,—s)
(s,s)m(t,t) = (sAt,sAL)
M(x,s) ("z, ")
(@, 8) Muw) (,1) = (#Auy,sFut)

Then (E,T,®,®,%,(T,T),(1,1), .M, ", M) is a DAD-M, and the partial order
related to @ satisfies

(,8) C (y,t) <= Ly AsLCt.

PROOF : The proof of Lemma 4.11 contains no new idea and is ten pages long.
Therefore, it is postponed to Appendix A. a

Here is a DAD-F, where the t-decomposition of x is not unique.

Ezxample 4.12. Take the structure constructed in Lemma 4.11 with relations on
the set Sy = {1,2} as carrier set A. Take the following relations

N RS RN GRS O
(1) () ()
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and define T = (T, T). Then (¢, T) admits nine different (s, s)-decompositions.

(e, T) = TaTm((f,T)® (g, T)) (4.12)
(¢, T) TaTm((f,s)® (g,t)) (4.13)
(¢, T) TaTm((f,t) ® (g,s)) (4.14)
(e, T) = TaTm((f,s)® (g T)) (4.15)
(¢, T) TAaTm((f,t)® (g, T)) (4.16)
(¢, T) = TaTm((f,T)®(g,s)) (4.17)
(¢, T) TaTm((f,T)®(gt)) (4.18)
(¢, T) = TaTma((f,1)®e(gT)) (4.19)
(e, T) = TaTa(f,T)®(g1)) (4.20)

Lemma 4.11 is going to be used in Section 6.1 in order to give a possible semantics
for DAD-F, containing nondecomposable elements.

e Do the decomposable elements of a DAD-F, A together with the demonic opera-
tors form a subalgebra of A7
The answer is no and here is a counter-example. Go back to Example 4.12. It is
easy to see that the elements (f,s) and (g, t) are (s,s)-decomposable, because
(f,s) = (f,s)yMmT @ (T o)
(g:t) = Ta(gt)m(TeT)

since

(g,t) = (g,t)O(s,s) .

For the same reason, (f,s) and (g, t) are (t,t)-decomposable. Also, (f,s) and (g, t)
are (1, 1)-decomposable and T-decomposable by Remark 4.9. Therefore, (f,s) and
(g, t) are decomposable.

However, (f,s) @ (g,t) has two possible (s,s)-decompositions (see (4.13) and
(4.14)):

(f,s)®(g,t) = (¢, T) = TATm((f,s) ®(gt)
(f,s)®(g,t) = (¢, T) = TaTa((ft)®(gs)) .

So (f,s) @ (g, t) is not decomposable, while (f,s) and (g, t) are.

e Therefore, are there maximal subalgebras of decomposable elements?

Fortunately, the answer is yes. It is the subject of the following proposition.
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Proposition 4.13 (Maximal subalgebra of decomposable elements). Let A be a
DAD-R,. There is a mazimal subalgebra (not necessarily unique) of decomposable
elements containing test(A).

The proof of Proposition 4.13 involves Zorn’s Lemma (which is equivalent to the
axiom of choice, see [Jec73]) and here is how it reads.

Lemma 4.14 (Zorn’s Lemma). FEuvery non-empty partially ordered set in which
every chain has an upper bound contains at least one mazximal element.

Now let us prove Proposition 4.13. To ease the presentation of the proof, we make
no distinction between a DAD-FR, and its carrier set.
ProoF : Consider

E={I:p(A)|test(A) CIA Iis a subalgebra of decomposable elements} .

Since all tests are decomposable (see (4.11)), test(A) € E so E is not empty.
Trivially, E is partially ordered by inclusion.

Let C C E be a chain. We will demonstrate that
Ie=J1
IeC

is an upper bound for C. Then, by Zorn’s Lemma, the proof is done.

Take z,y,t € Io. There are I’ ", 1" € C such that x € I', y € [" and t € [".
Without loss of generality, I’ C " C I" so x,y,t € I"". Then, since I" is a
subalgebra of decomposable elements, x Hy, xoy, £ and z [, y are decomposable
and belong to I and thus to I¢. Since, for all I € C, test(A) C I, then test(A) C
Ic. Therefore, I is an upper bound for C. a

That proposition brings back confidence in the concept of decomposition. Indeed,
considering any DAD-FR, A, Proposition 4.13 guarantees that there is a part of A
containing test(A) that is a subalgebra of decomposable elements. If A is itself
a subalgebra of decomposable elements containing test(A), then we say that A is
an algebra of decomposable elements.

Definition 4.15 (Algebra of decomposable elements). A DAD-F, A is an algebra
of decomposable elements if x is decomposable for all x € A.

In Section 4.4, we will consider algebras of decomposable elements and study
many of their properties. In Section 4.5, we will show that the elements of an
algebra of decomposable elements together with the angelic operators defined
in Sections 4.1, 4.2 and 4.3 form a KAD. In Chapter 5, we will demonstrate
that this result of Section 4.5 can only be valid within algebras of decomposable
elements. We will also demonstrate that all KAD-based DAD-FR,s are algebras of
decomposable elements.
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We are now ready to define angelic composition.

Definition 4.16 (Angelic composition). Let x and y be elements of a DAD-Fy such
that = is "y-decomposable. The angelic composition x o y is defined by

rpy=xoyRrgoy .

Proposition 4.17. Let x,y, z be elements of a DAD-F, A. Then

~

Adpr=xpl=nx,

2. Tprx=xzpl =T,

3. tpx=tox,

4. "y=1 = xzpy=uaxoy.

5. If x is "y-decomposable, then "(x p y) = "Tro="(xa="y).

6. If x is "y-decomposable and "(y p z)-decomposable, y is "z-decomposable and x py
is "z-decomposable, then "(x p (y p 2)) ="((z py) » 2).

7. If x is "y-decomposable, then x py = (xa"y A xg)oy.

The hypotheses of Propositions 4.17-5, 4.17-6 and 4.17-7 ensure that each angelic
composition involved is well defined. There is no need for such assumptions for Propo-
sitions 4.17-1, 4.17-2, 4.17-3 and 4.17-4 since all tests are decomposable by (4.11) and
any element is 1-decomposable and T-decomposable by Remark 4.9.

These comments illustrate how careful one must be when dealing with angelic com-
position. However, in further sections, when decomposition is involved, we will suppose
that A is an algebra of decomposable elements. Therefore, all angelic compositions will

be well defined.

PROOF :

1. lpx
= ( by Definition 4.16 )
loz A 1nox
- (by (411))
loz A Tox
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= ( by (3.7), (3.6) and Corollary 3.21-3 )

x
= ( by (3.7) and Corollary 3.21-3 )
xol A Tol
= ( by Remark 4.9 and Proposition 3.14-1 )
rol Aznol
= ( by Definition 4.16 )
zpl
2. Tpx
= ( by Definition 4.16 )
Toz A Trox
- (by (4.11))
Tox A Tox
= ( by (3.6) and Corollary 3.21-11 )
T
= ( by (3.6) and Corollary 3.21-11 )
zoTAToTl
= ( by Remark 4.9 and Proposition 3.14-1 )
zol AxroT
= ( by Definition 4.16 )
Tp 1
3. tpx
= ( by Definition 4.16 )
toxr Atgox
- (by (411))
tox A Tox
= ( by (3.6) and Corollary 3.21-3 )
tox

4. Suppose "y =1

TpyY
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= ( by Definition 4.16, the hypothesis and Remark 4.9 )
roy A a0y

= ( by Remark 4.9 )
xoy A Toy

= ( by (3.6) and Corollary 3.21-3 )

xroy

5. Suppose z is "y-decomposable.

"z py)
= ( by Definition 4.16, Corollary 3.21-16 and (3.20) )
(aay) A (ago"y)
= { by (4.5) with z,t :== 2,y )
"(ze"y) A (zr)
= ( by (4.4) with z,t :==z,"y )
”_({Ijun_y) ml —|n_<(pun?y)u—|n_(xu—|n_y)un_x
= ( by Boolean algebra )
”_(Q;D”_y) @ —|”_<xu—|”_y)u”_x
= ( by Boolean algebra, Lemma 3.17-5 and Proposition 3.14-18,
—Mzo="y)oTz C M(zoTy) <=
—"(zo=y) C "(zoTy) ATx & T(20"y) <= true,
then apply Boolean algebra )

n_xu—\n_(xuﬂn_y)

6. Suppose x is "y-decomposable and "(y p z)-decomposable, y is "z-decomposable
and x - y is "z-decomposable.

"o (yp2)

- ( by Proposition 4.17-5 )
n—xnﬂﬂ—_(,xmﬂ(”—yuﬂﬂ—_(ymﬂ”—,_z)))

- ( by De Morgan )
oo Twa(~y A Tyo—"2)))

- ( by (4.3) with z,t:=z,"y )

Tro="((we"y Awe=Ty A (vg Ha-g))o(="y A "(y=—"2)))
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= ( by Corollary 3.21-17 and Remark 4.8 )

"wo(zeys (="y A(ys—"2)) Aae=Tys (="y A (y=="2)) A
(wry H 25 ) (="y A T(yo"2)))

= ( by Corollaries 3.21-8 and 3.21-7, and Boolean algebra )
”_xuﬁn_(mun_yun_(yuﬁn_z) ml q;uﬁn_y A (;pn—y [ xﬂn—y)u<—|n_y il n_<yu—|”_z>))

= { by Proposition 3.14-18 and Boolean algebra )
Tro="(zo(yo="2) Aoy A (zg Hag)o(2"y A (y=-"2)))

= ( by Corollary 3.21-16 and (3.20) )
"wo=(woyoTz Azo=Ty A (25 B zg)o(="y A(yo"2)))

= ( by (4.5) with z,t := z,"y, (4.6) with z,¢ := 2,y and (3.9) )
n—x\j—\”—(x\jyu—\”—:z @ (]jD—\n—y A

(2r2"yo (2"y A (yo="2)) B ooge=Tys (2Ty A (y=-"2))))

= ( by Corollaries 3.21-8 and 3.21-7, and Boolean algebra )
”_xnﬁ”_(x\:\yuﬁ”_z ml xu—|”_y il (x@\:\”_yu”_(y\:\ﬁ”_z) | xﬁryﬂﬁﬂ_y))

= ( by Proposition 3.14-18 and (4.6) with z,t := z,"y )
”—xu—\”—(,ﬁuyu—\”—z A gju—|”—y A (xn—yun—(yu—\“}) 4 (]jﬁn—y))

= ( by Corollary 3.21-16 and (3.21) )
Two("(aeye-"2) AT (ze="y) A (g (ys-"2)) H (2x)))

= ( by (4.4) with z,t := 2,y and Proposition 3.14-18,

(@) = Nam) E Nans"(yon"2)) )

Tom(Troye=2) R o) A TrgeTye =)

= ( by Boolean algebra and (3.20) )
n—m\jﬁﬂ—(m\jﬁn—y)Dﬁn—zwuyﬂﬂn—z)ﬂﬁﬂzx@\]yuﬁn—z)

= ( by Boolean algebra and Corollary 3.21-16 )
”_gjuﬁ”_(gjuﬁ”_y)mﬁn_(:pmyuﬂ”_z A :L'n—yElyD_!n_Z)

= ( by Corollary 3.21-17 and Remark 4.8 )
”_;puﬂ”_(;puﬁn_y)mﬁn_((l'uy il ;L'n—yuy)uﬁn_z)

= ( by Proposition 4.17-5 and Definition 4.16 )
"((zpy)p2)

7. Suppose x is "y-decomposable.

TpyY
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= ( by Definition 4.16 )
roy A rroy
= ( by Proposition 3.14-7 )
weyoy Aagey
= ( by Remark 4.8 and Corollary 3.21-17 )

(zo"y A ag)oy

Knowing the main result we are looking for (refer to Section 1.3), one would expect
us to demonstrate the associativity of . and its distributivity over +5. We postpone
these demonstrations and many others until Section 4.5 since we need more properties
about decomposition before being able to get these results. These properties about
decomposition are gathered in Section 4.4.

Remark 4.18. By Definition 2.8 and Proposition 2.13-4,
(wony) =2~z 1Y) .

Comparing this expression with the one given in Proposition 4.17-5, namely
(@ py) ="wem(aey)

reveals a nice duality.

4.3 Kleene Star

The last angelic operator that we define here is the angelic iteration operator that
corresponds to the Kleene star.

Definition 4.19 (Angelic iteration operator). Let x be an element of a DAD-F,. The
angelic iteration operator * is defined by

P = (zA1)* .

The following laws are technical results needed in Section 4.5.

Lemma 4.20. Let A be a DAD-F,. The following laws hold for all x,y € A.
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L. Mz A1)
= ( by Corollary 3.21-16 )
TrAM
= ( by Proposition 3.14-1 and Boolean algebra )

1
So "(z*?) = "((x A 1)*) = 1 by Definition 4.19 and Proposition 3.14-22.

2. TM1Hzo(xA1)X)
= ( by (3.21), Proposition 3.14-1 and (3.20) )
1M zo"((xA1)))
= ( by Boolean algebra, Lemma 4.20-1 and (3.7) )

T

3. By (3.7) and Proposition 3.3-1, "y = "(1oy) C "((z A 1)*oy). O

Major results about the *» operator will be presented in Section 4.5. As for the
operator, the proof of these results requires many properties about decomposition that
are presented in Section 4.4.

4.4 Crucial Identities

In this section, we present many properties about t-decomposition. Without them,
it would be highly difficult, if not impossible, to demonstrate the main theorem of
Section 4.5 stating that, under a suitable hypothesis, the definition of 4+p, p and
lead to angelic operators that satisfy the laws of KAD. We already mentioned in the
introduction of Chapter 4 that this theorem is one of the most important of this thesis.
The suitable hypothesis previously mentioned is that the algebra A must be an algebra of
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decomposable elements. In Chapter 5, it will be shown that this hypothesis is necessary
and sufficient.

We spread the results among three theorems and several intermediate results. The-
orems 4.23, 4.27 and 4.29 respectively give algebraic expressions for (zHy);, (zoy); and
(x A, y);- The other results of the section are meant to facilitate the demonstration
of Theorems 4.23, 4.27 and 4.29, and to help for the demonstration of the results of
Section 4.5. Note that we do not give any algebraic expression for (z*), since it is not
necessary for the demonstrations to come. Also, we did not find any compact expression
for it.

In this section, the proofs involve new ideas and illustrate how the theory developped
until now can be used. Although the results are easy to understand, some proofs are long
while others are subtle. For these reasons, at first reading, one might just concentrate
on results rather than verify all the details of each demonstration.

Let us present a general scheme of argumentation that will be used throughout this
section. As mentioned previously, this section deals with t-decomposition. Therefore,
Definition 4.7 is involved in many derivations. Let A be a DAD-FR, and take x € A and
t € test(A). Suppose we have to demonstrate y = x; and z = z_; for some y,z € A.
According to Definition 4.7, we have to establish

r = zxotAze—tA(yHz) ,

‘T_y IT_Z = ﬁ”—_(xmt)aﬁ”—(gjuﬁt)mn—x ,
Y yet

z = zo—t .

In such a situation (Proposition 4.22-4 for example), we will say that we have to show
that y and z satisfy (4.3), (4.4), (4.5) and (4.6). Once we have established these previ-
ous four equalities, we can conclude that y = x; and z = x_; since the t-decomposition
of z is unique (see Definition 4.7).

Remark 4.21. 1If we succeed in proving that y and z satisfy (4.4), there is a way to
simplify the proof that y and z satisfy (4.3). Indeed, suppose y and z satisfy (4.4).

x=2xotAzo—tA(yHz)
— ( by Proposition 3.20-17 and Corollary 3.21-4 )
Mxy)ox = "(xy)oxot A () ozo—t AT (z)o(y L 2) A

—"(x)ox = =" (ay)owot A =" (ay)oxo—t A ="(z;)o(y U 2)
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— ( by Proposition 3.14-7, the hypothesis, (3.8), Remark 4.8 and (3.6)

)

Moz =TATA(yYz2) A ="(zy)ox = ="(x;)oxct A="(zy)oxo~t AT

= ( by Corollary 3.21-3 )
Mxy)ox =ydz A ="(z)ox = ="(x;)oxot A =" (x;)oxo—t

= ( by Proposition 3.14-7, (4.4), De Morgan and Boolean algebra )
Mxy)ox=ydz A ("(zot) AT (zo—t))ox = zot Axo—t

= ( by Lemma 3.17-4, Corollary 3.21-17 and (3.19) )
"(a)or =ydz

At some places (Proposition 4.25 for example), when we need to show that y and z
satisfy (4.3), we will rather work on "(z;)oz = y U 2.
The following laws are useful in what comes next.

Proposition 4.22. [f A is an algebra of decomposable elements, then the following
equalities are valid for all x,y,z € A and all s,t € test(A).

1. zo(y A z) = oy Rao-"yoz A (xgoy H x_go2)
2. May)ow =z Wy

3. Mxy)oxot =T

4. (w08)y = "(xos)oxy

5. (sox), = somy

6. "(zos)oxyos = "(xos)om,

7. (xs)ios = (xs):

8. Mxgot) = "(x4)o"(xo(msAL))

9. Mxgot) = =M(wosot)o="(zo—s)o(xo(—sA L))

10. "((xg)y) = ="(xo(=sAt))o="(xo(—s A —t))o-"(xos)ox

PROOF :
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1. xo(y A z)
= ( by (4.3) with a,t :=z,"y )
(z="y A ze="y A (zg U r-g))=(y A 2)
= ( by Remark 4.8, Corollary 3.21-17 and (3.9) )
walyo(y A 2) Aaee="ys(y [ 2) A (zgo(y A 2) W a-go(y A 2))
= ( by Corollaries 3.21-7 and 3.21-8, (4.5) with z,¢ := z,y,
(4.6) with z,t := x,"y and Proposition 3.14-7 )

zoy A xe—Tyoz A (zrgoy H r_m02)

2. T(xy)ox
= (by (4.3))
M(x)o(zot Rao—t A (2, W)
= ( by Corollary 3.21-4, Proposition 3.14-7, Remark 4.8, Boolean
algebra and (3.6) )
(TATAx)o(x Hay))
= ( by Corollary 3.21-3 )
M(z¢)o (v Haoy)
= ( by Propositions 3.14-20 and 3.14-7 )
T Hry
3. This is direct from Proposition 3.14-7, Remark 4.8, Boolean algebra and (3.6).
4. We have to show that "(zos)oz; and "(zos)oz_, satisfy (4.3), (4.4), (4.5) and (4.6)
with x,t := zos,t (see Definition 4.7).
(4.5) and (4.6) are easily obtained from (4.5) and (4.6) with z,t := x,t.
Here is the proof for (4.4). First note that
"(Mzos)ow)
= ( by Proposition 3.14-9 )
"(wos)a"(x)
= (by (4.4) )
Mzes)aMo)
= ( by Proposition 3.14-9 )

"((wos)or—y) -

And here is the main derivation.
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M(Mxos)ox,)

= ( by Proposition 3.14-9 and (4.4) )
M(zos)o="(xot)o="(zo—t)o"z

= ( by Boolean algebra and Lemma 3.17-1 )
—"(xot)o="(xo—t)o"(x0s)

= ( by Boolean algebra )
(="(was) A="(wet))o (2" (wes) A -"(zamt))a (wes)

= ( by De Morgan )
~(Mwas)a(wat))an(T(wes)e (wet))o (zos)

- ( by Proposition 3.14-12 )

—"(zosot)o="(zoso—t)a(xos)
= ( by (4.4) with z,t := xos,t )

"((zos)e)

Finally, we conclude with the proof of (4.3).

true
— ( by (4.3) )

x=zxotAzo—tA (z,Hay)
= ( by Corollary 3.21-4 and (3.8) )

Mzos)ox = M(xos)oxot AM(zos)oxo—t A ("(zos)ox, U (xos)ox_y)
= ( by (3.19) )

ros = xosot Axoso—t A (T(xos)ox, M (zos)oz—y)

5. We have to show that sox; and sox_, satisfy (4.3), (4.4), (4.5) and (4.6) with
x,t = sox,t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5) and (4.6) with z,t := x, .
Here is the proof for (4.4). First note that

T(soxy)

— ( by Proposition 3.14-9 )

s0"(y)

= (by (4.4))
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so(x—y)

= ( by Proposition 3.14-9 )
M(sox—y) .

And here is the main derivation.

M(somxy)

= ( by Proposition 3.14-9 )
so™(xy)

= (by (4.4) )
SD—\”—((EDt)D—\n—(xD—\t)D”—x

= ( by Boolean algebra )
(—s A _||T_(:L'Dt))|:l(_|8 A ="T(zo—t))oso

= ( by De Morgan )
ﬁ(SDn_(ngt))Dﬁ(sun_(gjm—\t))usmn_x

= ( by Proposition 3.14-9 )
ﬁn_(guxmt)uﬁn_(smxuﬁt)un_(SDx)

= ( by (4.4) with z,t := sox,t )
"((sex),)

Finally, we conclude with the proof of (4.3).

true

— ( by (4.3))
x=zxotAze—tA (v, Hay)

= ( by Corollary 3.21-4 and (3.8) )
sox = soxot A soxo—t A (soxy H sox—y)

6. If we demonstrate that "(zos)ozyos = (xos),, then we are finished thanks to

Proposition 4.22-4.

Hence, we have to show that "(zos)oz,os and "(wos)ox_yos satisfy (4.3), (4.4),

(4.5) and (4.6) with z,t := zos,t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5), (4.6) with x,¢ := z,¢ and Boolean

algebra.
Here is the proof of (4.3).
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true
— ( by (4.3) with z,t := xes,t)
xos = xosot Axoso—t A ((xos), H (ros)~y)
— ( by Corollary 3.21-17, Remark 4.8 and (3.9) )
xosos = xosotos Axoso—tos A ((xos)osH (xos)—0s)
= ( by Boolean algebra )
xos = xosot Azoso—t A ((zos)os H (z08)408)
= ( by Proposition 4.22-1 )

xos = xosot Axoso—t A (TM(xos)oxos W M(xos)ox_408)

Finally, we conclude with the proof of (4.4).

true

— ( see the last derivation )

xos = wosot Axoso—t A (T(xos)oxzos H(xos)ox_yos)
= ( by Proposition 3.14-7, Remark 4.8, Corollary 3.21-4, Boolean
algebra and (3.6) )

T((xo8)g)owos = TATA((zos))o("(wos)owyos H(wos)ow_yos)

= ( by Corollary 3.21-3 )
T((zos))oxas = "((xos),)o(N(xos)oxos HM(z0s)ox_y0s)

= ( by Propositions 3.14-9 and 3.14-3, and (3.21) )
"((zos))a(wes) = T((wes))e"((wos)owios)e"((wos)or—yos)

= ( by (4.4) with z,t := xos,t and Boolean algebra )
((zos5)e) = "((wes)e)o"((zas)ex,25)="((zos) oz 05)

= { by Boolean algebra )

"("(wos)ozios)a"(N(wos)om—yos) B ((z0s):)

We note that last refinement
T(M(xos)owyos)o(M(wos)ow_yos) C T((xos)) . (4.21)

The following derivation will establish "("(zos)ox0s) = "((xos),).

"("(wos)oz,os)
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C ( by Boolean algebra )
"((wos)omos)e"("(wos)or—yos)
C ( by (4.21) )

"((zos)e)

( by Proposition 3.14-18 )
- ( by Proposition 4.22-4 )

("

IF

xos)exos)

Since, in the proof of (4.4), ¢ may be replaced by —t and —t may be replaced by
t without affecting the refinements, the proof is complete.

7. We have to show that (x;);os and (x5)—sos satisfy (4.3), (4.4), (4.5) and (4.6) with
x,t = xg,t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5), (4.6) with z, ¢ := z,t and Boolean
algebra.

Here is the proof for (4.3).

true

— ( by (4.3) with z,t := x4, t )
s = a0t Axgo—t A ((xs) H (Ts)-r)

— ( by Corollary 3.21-17, Remark 4.8 and (3.9) )
xs08 = xgotos Axgotos A ((z4)os H (25)08)

= ( by (4.5) with z,t := x, s and Boolean algebra )

s = xsot Axgo—t A ((x)0sH (x5)—408)

Finally, we conclude with the proof of (4.4).

true
= ( see the last derivation )
Ty = xsot Axgoat A ((24)osH (T5)—0S)

— ( by Proposition 3.14-7, Remark 4.8, Corollary 3.21-4, Boolean
algebra and (3.6) )

"((zs)e)ows = TATA((z5)e)o((2s)o8 H (25)-75)
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= ( by Corollary 3.21-3 )
"((@s)e)ows = T((5)e) o ((25)e08 H (25)-u05)

= ( by Propositions 3.14-9 and 3.14-3, and (3.21) )
((z)0)a"(ws) = "((ws)r)o((we)r28)a" () -25)

= ( by (4.4) with z,t := x,,t and Boolean algebra )
"((@e)e) = "((2s)e) 2 ((ws)e=5)((5)-¢5)

= ( by Boolean algebra )

rl—(($5>tms)‘j”—(<x8)ﬁtms) - n—((xS)t)
We note this last refinement
"(25)¢08) ((25)~408) & "((2s)e) - (4.22)

The following derivation will establish "((x,):0s) = "((24):).

"((ws)io5)

( by Boolean algebra )

n_((x8>tms)']n_((IS)ﬂtD3)

C ( by (4.22) )
"((zs)e)

( by Proposition 3.14-18 )

"((2:)ems)

IF

IF

Since, in the proof of (4.4), ¢ may be replaced by —t and =t may be replaced by
t without affecting the refinements, the proof is complete.

8. Mxg)oM(xo(—sAL))

= ( by Proposition 3.14-9 )
"((zs)oz=(—s AL))

= ( by Proposition 4.22-2 )
M(xsHaw_g)o(—sFAL))

= ( by (4.5) and (4.6) with z,t :=z,s )
T((zgos Wz so8)e(ns A L))

= ( by (3.9) and Boolean algebra )
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10.

M(zgosot Hx_4o0-5)

( by (4.5) and (4.6) with z,t :=z,s )

M40t Hay)

( by (3.21) and Proposition 3.14-3 )

”_(xsut)']n_(x 8>

Y
n_(xsut) Dnsz)
v

( by (4.4) with z,t .= z,s)

( by Proposition 3.14-18 and Boolean algebra )

n_(xsut)

—"(zosot)o="(zo=s)o"(zo(—sFAL))

( by Boolean algebra )

="(xzo(=sAt)os)o="(zo(=sAt)o=s)o(zo(—sAL))

( by (4.4) with z,t := xe(—sAt),s )

((ze(-s 1))

( by Proposition 4.22-4 )

"("(wo(=sAt))oms)

( by Proposition 3.14-9 and Boolean algebra )

"(z)e"(z=(=s A1)

( by Proposition 4.22-8 )

( by (4.4) with z,t := x4, t )

ﬁ”'_(‘”ﬂsmt)mﬁ”—_(xsmﬁt)un—(xs)

( by Proposition 4.22-8 )

—("(as)a"(@a (s AL)))2 (") (2o (ms A 1)) (2s)

(=

( by De Morgan )

( by Boolean algebra )

—(za(=sAt))e"(we(=s A 1)) (2,)

( by (4.4) with z,t :=z,s)

(25) A="(@a(ns AL)))o(="(xs) A -"(2a(=s A )" ()

100
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ﬁ”_(l‘m(—hg A t))u—ﬂ-’_(;pm(—hs A ﬁt))Dﬁn_(l'DS)Dﬁn_(xD_\S)Dn_x
= ( by Lemma 3.17-6 and Boolean algebra )
ﬁ“_(;pu(ﬁs A t))u—f'—(xm(—hg A ﬁt))uﬁ”_(xus)u”_x

O

Theorem 4.23. Suppose A is an algebra of decomposable elements. The following
equality is valid for all x,y € A and all t € test(A).

(xdy)y = (yo—t)oxot A (yo—t)ox, A (xot Hy,) A
T(xo—t)oyot AT(xo—t)oy, A (z; Hyot) A (z; Hy;)
PRrROOF : We use the notation

L; = "(yo—t)oxot A" (yo—t)ox; A (zot Hy,) A
T(xo—t)oyot A T(zo—t)oy, A (v, Hyot) A (v Hyy) -

Substituting —t for ¢, we find

L—\t = rr(yut)uxuﬁt A n_(yut)uxﬁt A ([L’D—F[; H y—\t) A
M(zot)oyo—t AT(zot)oy—y A (zy Hyo—t) A (v Hy—y) .

Hence, we have to establish L; = (x Hy);. In order to do so, we have to show that L;
and L, satisfy (4.3), (4.4), (4.5) and (4.6) with z,t := 2 Hy,t (see Definition 4.7).

(4.5) and (4.6) follow from (3.9), (4.5), (4.6), (4.5) with z,t = y,t, (4.6) with
x,t:=y,t, Boolean algebra and Corollary 3.21-18.

Here is the proof of (4.4). Note that

(L) = "yo—t)e"(xot) A (yont)o"(2,) A (wot)o (y,) A
n_(xu_‘t)']n_(yut) A ”_(xu—‘t)uﬂ_(yt) A n_(xt>5”_(y'jt> A n_(xt)']n_(yt)
(L) = "(yot)o"(zo—t) A (yot)o (2) A (zo=t)e (y-) A
"(wot)o(yont) A N(wot)o " (y—) A (w-)o (yont) A (@) (y-) -

by Corollary 3.21-16, (3.21), and Propositions 3.14-3 and 3.14-9. Also, we have "(L;) =
T(L-¢) by Boolean algebra, (4.4) and (4.4) with z,¢ := y,t.

(L)
= ( just established )
"(y=—t)e(wat) A (yat)o () A (2at)="(y,) A
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"(wo=t)o(yot) A (wo—t)o"(y:) A ()0 (yot) A ()0 (yy)
= ( by Boolean algebra )
"(@¢)o"(yot) A (@) o (ye) A "(2¢) 0" (yot) A
Mot)o"(ye) 7 (o) o (ye) B "(womt)o"(ye) A
Mao=t)e (yot) A T(wo—t)o"(y:) A
"(wat)o (y=—t) A(2)o"(yot)
= ( by Boolean algebra, Lemmas 3.17-5 and 3.17-1, (4.4) and (4.4) with
x,t =y, t)
A ="yot))o ;) o="(yo—t)e Ty
A ="(zot))e"(we—t)e Twe(y)
A ="(yet))e"(zo—t)o—"(ye—t)a"y A
A ="(wat))o="(wa—t)e zo (yot)
= ( by Boolean algebra )

M@)o ="(ys—t)e"y A (zy)o (yot) A
—(wet)ewe(y) A (wot)a we(y) A
"(wa—t)a="(y=—t)a"y A ()2 ~"(ya—t)="y A
—(wemt)ewa(ya—t) A ="z —t)aTwa"(y,)
= ( by Boolean algebra, Lemmas 3.17-1 and 3.17-5, (4.4) and (4.4) with
xr,t =y, t)

("(yet)
("(aet)
("(yet)
("(zot)

]
Py
)
[m}
i
=
=T
R
Py
<
1

A

A ="(zot))e"(zat)e"ze =" (yo—t)a"y A

A ="(yot))o="(we—t)o wo"(yot )=y

( by Boolean algebra )

"(4)e"y A "ze"(y,) A

wat)ara=(ya—t)ay A ="(zat)aTwa"(y=t)a"y

= ( by Boolean algebra, (4.4) and (4.4) with z,t := y,t )
~(wat)o=(we—t)oTzey A we="(yat)o="(ya—t)o"y A
~M(wat)elwe=(ya=t)a"y A ~"(wa—t)e"wa="(y=t)="y

= ( by Boolean algebra )
(="(zat) A ="(y=t))= (=" (we—t) A ="(y=—t))= 2"y

= ( by De Morgan and Proposition 3.14-3 )

=("(w=t) W (yot)) o= ((we—t) W (y=—t))= (T 4 Ty)
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= ( by (3.21) and (3.9) )
—((zHy)at)e="((zHy)ot)a"(z Uy)

We just established
"(Ly) = "(L-y) ="((xHy)) - (4.23)

Also, from (4.4) with x,¢ := x Hy,t and the last three equalities of this derivation, one
finds

”—((x L y)t) = ﬁ”—(xut)uﬁn—(xu—\t)u”—xnn—{g [l —\”—(xu—\t)\:”—gjmﬁn—(yut)nn—y ml
Twuﬁnzyut)mﬁn_(yuﬁt)un?y il n_xuﬁn_(xut>m—|”_(yu—|t>ur’?y . (424)

To finish the demonstration, it remains to show that L; and L_; satisfy (4.3). The
following derivation repeatedly invokes Lemma 3.22-7. Using Proposition 3.14-9, (3.21),
Corollary 3.21-16, Remark 4.8 and Boolean algebra, it is easy to check that the appro-
priate pairs of operands of the various U and A operators are disjoint, so that the
condition "zo™y = "wo"z = T of Lemma 3.22-7 is satisfied.

THy
= ( by (3.2), (4.3) and (4.3) with x,t :=y,t )
(yot Aye—t A (y; Hy—y)) Y (zet Axo—t A (2, Hzy))
= ( by Corollary 3.21-14 and (3.2) )

(zot W (y=t Ay=—t A (y: Hy-¢))) A
(za=t W (yot Aye—t A (y: Hy-))) A
(2 H ) " (yot Ays—t A (y: Hy)))
= ( by Corollary 3.21-14 and (3.2) )
(xot Hyot) A (xot Hyo—t) A (zot Wy Hy—y) A
(yot Hzo—t) A (ze—t Hyo—t) A (i H xe-t Hy_,) A
(e HyotHa ) A(z oy Hyot) A (s Uy oy Hy—y)
= ( by (3.21), Remark 4.8 and Boolean algebra,
the domains of xot U yo—t, xot Uy, Uy, yot H ot
and xo—t H yo—t are pairwise disjoint,
then apply (3.25) and (3.9) )
(xHy)ot A(xHy)o—t A (xot Hyo—t) A
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(ot Hy Hy—y) A (yst Hxo—t) A (y D xe—t Hy—y) A
(rpHyotHao ) A(z oy Hyot)A(xy oy Doy Hy—y)

= ( by (3.21), Remark 4.8 and Boolean algebra,
the domains of xot Uy, Uy, yot U xo—t, xo—t Hy Hyy,

H
H

rdx_y Hyot and x; H x—; Hyo—t are pairwise disjoint,
then apply (3.25) )
(xHy)ot A(xHy)o—t A (xot Hyo—t) A
(s dax—y Hyo—t) A (xot Uy Hy—y) A (yot Hxo—t) A
(yy Hxe-tHy)A(zy Hystdao_y) A(x Hy ooy Hy—y)
= ( by Propositions 3.14-7 and 3.14-20, and (3.2) )

(xHy)otA(xHy)o—t A
("(ye—t)oxet U M(xot)oyo—t) A (T(yo—t)ox, Hay Hyo—t) A
(zot Wy, d (wat)oy) A ((ao—t)oyst U (yst)ozo—t) A
("(wo—t)oy; Hxo—t Hy—y) A (2, Hyot H"(yot)ox_y) A
($t Hy Bz H yﬂt)

= ( by Lemma 3.22-7 )

(xHy)etA(xHy)e—tA
(("(yo—t)oxot AT(yo—t)oxy) H (T(zot)oyo—t A a_y Hyo—t)) A
(55t 0 4 Twet)oy-g) P (Twemt)oyet U Tyat)oant) 7
("(zo—t)oy; Hxo—~t Hy—y) A (2 Hyot U (yot)oz_;) A
(fft Hy Bz H yﬂt)

= ( by Lemma 3.22-7 )

(xHy)ot A (xHy)o—t A

(("(yo—t)ezst AT (ys—t)ox, A (zot Hy)) H
("(zot)oyo—t Aa_y Hyo—t A" (zot)oy-,) A

("(xo—t)oyot H M(yot)ozo—t) A (T(wo—t)oy, Hzo—t Hy_,) A

(xy Hyot WU (yot)ox—y) A (2 Hys oy Hyy)

= ( by Lemma 3.22-7 )

(xHy)ot A (xHy)o—t A

(("(ye—t)oxst A (ye—t)oz, A (zot Hy,) A (wo~t)oyst) Y
("(wot)oyo—t Ax_y Hyo—t A (xot)oy_, A (yot)oxo—t) A

("(zo—t)oy, Hxo~t Hy—y) A (2, Hyot U (yot)oz,) A

(xy Hy Doy Hy—y)
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= ( by Lemma 3.22-7 )

(xHy)ot A (xHy)o—t A
(("(yot)owat A (yo—t)ox, A (zot Wy,) A (wo—t)oyst A (wo—t)oy,) o
(M(zot)oyo—t Aoy Hyo—t A (xot)oy, A (yot)ozo—t A (zo—t Hy—,)) A
(s Hyot U (yot)ox—y) A (v, Hyp Hay Hyy)
= ( by Lemma 3.22-7 )
(xHy)etA(xHy)o-t A
(("(yo—t)oaot A M(yo—t)ox, A (zot Hy,) A
T(xo—t)oyot A M(zo—t)oy, A (z, U yot)) 4
("(wot)oyo—t Aa_y Hyo—t A" (xot)oy_; A
Tyot)oxo—t A (zo—t Hy_y) A (yot)ox_,) A
(xy Hy Doy Hy—y)
= ( by Lemma 3.22-7 )
(xHy)et A (xHy)o—t A
(("(yo—t)oaot A (yo—t)ox, A (zot Hy,) A
T(zo=t)oyot A T(wo—t)oy, A (x; Hyot) A (x; Hy,)) U
("(wot)oyo—t Aa_y Hyo—t A" (xot)oy_; A
Myot)oxo—t A (zo—t Hy_y) A (yot)ox—y A (24 Hy—y))

= ( by Proposition 3.14-9, (3.21), Lemma 3.17-4, Remark 4.8
and Boolean algebra,

the domains of "(xot)oyo—t, x_y Hyo—t, "(zot)oy_,,
T(yot)oxo—t, ro—tHy—, "(yot)oz_, and x_,Hy—, are pairwise disjoint,

then apply (3.25) )
(xHy)etA(xHy)o—t A (LW L)

O

Corollary 4.24. Suppose A is an algebra of decomposable elements. Then, for all
z,y € A and all t € test(A),

(xHy) = "(yo—t)oxot AT(yo—t)ox, A (xot Hy;) A
T(xo=t)oyot A "(xo—t)oy, A (zy H yot) A (v, Hy)

and any of the seven operands of the A operators can be permuted with another.

PROOF : The equality is the one of Theorem 4.23.
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By Propositions 3.14-9 and 3.14-3, (3.21), Lemma 3.17-4, Remark 4.8 and Boolean
algebra, the domains of the seven operands of the A operators are pairwise disjoint.
Then apply (3.25). O

Proposition 4.25. Suppose A is an algebra of decomposable elements. The following
equalities are valid for all x € A and all s,t € test(A).

1. xgmy = —"(xo(sAt))o((zs Hay) A="(xs)oxy A" (x4)omy)

2. Tgop = "(xos)oxy A (xs) Axgot

One might understand Proposition 4.25-1 intuitively by noting that
Torp = " (v0(s +p 1)) » (T5 +p 74)

by Corollary 4.4-1, Proposition 4.17-3 and Boolean algebra.

PROOF : Part 1 of the proposition is an expression for x4, but what is the correspond-
ing expression for x_qy? Actually, 2-(sm) = 7504 by Boolean algebra and part 2 of
the proposition gives an expression for that. So in order to demonstrate the proposition,
we need to work on both parts at the same time. These expressions must satisfy (4.3),
(4.4), (4.5) and (4.6) with x,t := 2z, s At (see Definition 4.7).

For these reasons, the demonstration is divided in five steps. We show that the
candidate for x4

—N(za(sAt))e((zs Hay) A—"(xg)ox, A—"(2)0m,)
satisfies (4.5) and (4.4) with =, t := x, sAt, then we show that the candidate for x50
”_($D—|8)DJI_¢ A (Jjﬁs)_‘t Ax_got

satisfies (4.6) and (4.4) with z,t := z,s At and we conclude with the demonstration
that
—M(zo(sAt))o((xsHay) A="(xs)oxy A="(z)0m,)

and
n_(xlj—\s)lzlaj‘_‘t A (x—\s)—\t A I‘_\SD_‘t

satisfy (4.3) with z,t := z, s A t.

1. We begin with the proof that
—M(xo(sAt))o((zsHay) A="(zs)ox, A—"(2)o0m,)

satisfies (4.5) with =, ¢ := z, s At. Firstly we have
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(xsHaxy)o(sFAtL)
= (by (3.9))
xrgo(sAt)Hayo(sAL)
= ( by (4.5) with z,t := x,s and (4.5) )

xgos0(sAt)Hayoto(sAt)
= ( by Boolean algebra, (4.5) with z,t := x,s and (4.5) )

Q:slzlxt )

secondly

—"(xy)oxo(s A L)
= (by (4.5))
—"(xs)oxoto(sAL)
= ( by Boolean algebra and (4.5) )

ﬁn_(xs)uxt
and finally
—"(xy)oxso(sAL)
= ( by (4.5) with z,t :=x,s )
—"(xy)oxs080(s AL)
= ( by Boolean algebra and (4.5) with z,t := z,s )
—"(xy)ow, .
Hence
(ws Hay) A="(xg)oxy A="(2y)om)o(sAt) = (wH ay) A ="(2s)oxy A —="(2y)o0m,
by Corollary 3.21-18, so

=M(zo(sAt))o((zs Hay) A-T(xs)oxy A="(z4)om,)o(sAL)
= ="(xo(sAt))o((xs Uay) A-"(x,)0m, A-"(2;)0,)

and (4.5) is established.
2. Now we show that
="(xo(sAt))o((zsHay) A—"(zs)oxy A="(z)om,)

satisfies (4.4) with z,t := z, s At.
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"(M(we(s At))a((zs W) A="(2s)ox, A -"(24)ox,))

= ( by Corollary 4.4-1 )
(e (s At))o(zs +p 71))

= ( by Proposition 3.14-9 and Corollary 4.4-3 )
—Mw=(sAt))=("(zs) A (x2))

= ( by Boolean algebra, (4.4) with x,t := x,s and (4.4) )
="(zo(sAt))o="(zos)o="(zo—s)o"x A
="(xo(sAt))o="(zot)o="(zo—t)o x

= ( by Lemma 3.17-6 and Boolean algebra )
—"(zo(sAt))o="(zo=s)o"w A -"(zo(sAt))o="(zo—t)cTx

= ( by Boolean algebra )
—Nzo(sAt))e "z (="(xoms) A ="(zo-t))

= ( by De Morgan )
—Maa(sAt))a"wa—("(wems)a"(zat))

= ( by Proposition 3.14-12 )
="(zo(sAt))o "wo-"(zomsot)

= ( by De Morgan and Boolean algebra )

="(za(sAt))o"(zo—(sAt))"z

3. Here comes the proof that

“_(xﬂﬁs)ﬂxﬁt A (xﬁs)ﬁt A SCﬁSD_'t

satisfies (4.6) with z,t := z, s At. Firstly we have

T(xo—s)ox_yo—so—t

— ( by Proposition 4.22-6 )
T(zo=s)ox_yo—t

- { by (46) )

Mzo=s)ozy

secondly

(2s)—gosot
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= ( by Proposition 4.22-7 )

(Ts) ot

— ( by (4.6) with @, := x_,t )

(x—'s)—'t

and finally

xﬁst\ﬁtﬂ_!SD_!t

= ( by (4.6) with z,¢ := x, s and Boolean algebra )

T 40t

Hence
(Mzoms)ow—y A (2-5)~ Axogomt)omsont = "(zoms)or—y A (0-5) Az_got
by Corollary 3.21-18, so (4.6) is established.

4. Now we show that
M(xo=s)ow_y A (2s)—¢ A g0t

satisfies (4.4) with x,t := z, s At. We want to establish
T(Mwo=s)ox—y A (22g)~¢ Az_got) = ="(zo(s A t))o="(zo-(sAt))o"x
but we will rather work to demonstrate
—"(Mxo=s)ox_y A (2-5)—t Ax_sot) = =(="(xo(sAt))o="(zo—so—t)o"x) |

which is equivalent by Boolean algebra and De Morgan.

(Mzoms)ow—y A (1) —¢ A z-s0-t)

= ( by Corollary 3.21-16 )
~("("(woms)ow—) AT((2-5) ) A" (@-5071))

= ( by Proposition 3.14-9 )
—(M(zo=s)o (@) A "((245)~) A (2-5071))

= ( by (4.4) and (4.4) with z,t := x_,t )
ﬁ(”_(xm—us)Dﬁ”_(mmﬁt)u—‘”_(xut)m”_x A

ﬁn_(I'ﬂSDﬁt)D—\n_("L'ﬁSDt)Dn_([L‘_‘S) il rr({,(j‘_‘su—rt))
= ( by Boolean algebra )
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—("(xo=s)o="(zo—t)o="(xot)o"x A ="(z_4ot)0"(x_s) A (z_s0t))

by Lemmas 3.17-5 and 3.17-1, and Boolean algebra )
~("we=s)e="(za—t)e—"(zat)e e A =" (2-s0t)o (1))

Boolean algebra, Lemma 3.17-1 and (4.4) with z,t := z, s

—(N(zo=s)o="(zo—t)o="(xot) A ="(z_sot)o="(xo-s)o="(z0s)a"z)
by De Morgan )
T(xo=t) A (xot))o("(xwogot) A (xo—s) A (zos) A -"x)
by Boolean algebra and Lemmas 3.17-5, 3.17-3 and 3.17-2 )

)
{
)
( by
)
)
{
(="(we=s) A
{

—"(zo=s)o (@ got) AM(xos) A ="z A

M(xo=t)o(z_sot) AT (zo=s)o (zo—t) A (xos)o (zo—t) A

T(zot)o"(x_sot) AT(zo—s)o (xot) A T(zos)o(zot)
= ( by Propositions 3.14-9 and 3.14-12 )

T(="(zo—s)ox_sot) AM(zos) A ="z A

T(M(xo—t)ox_sot) AT (xo=so=t) AT (zo—t)o"(zos) A

T(xot)o™(w_got) A (xomsot) A (xot)a(2os)
= ( by Propositions 3.14-7, 4.22-6 and 3.14-1, (4.4) with

x,t = x,s, Boolean algebra and (3.6) )

M(z-sot) AT(zos) A ="z A

M(xo=so—t) AM(xo—t)o(xos) A

M(xot)o™(w-got) A (xo—sot) A (xot)a(z0s)
= ( by Boolean algebra )

M(x—sot) AT (zos) A ="z A (zo—so—t) AT (zo—sot)
= ( by Proposition 4.22-8, Lemma 3.17-1 and (4.4) with x,t := z, s

ﬁ"_(xmﬁs)lﬁ”_(xms)un_(xm(s F¢))AN(xos) A"z ATN(zo—so—t) A T(xo-sot)
= ( by Proposition 3.14-12 and Boolean algebra )
—"(xo=8)o="(zos)o(zo(sAt)) A (xos)o (xo(sAE)) A"z A
T(xomsa—t) AM(ze—s)e(zo(sAL))
= ( by Boolean algebra )
(="(wo=s)o="(zos) AT (xos) A T(zo—s))o (xo(sAt)) A"z A T(zo—so—t)

Jo—
= ( by Boolean algebra )

Mzo(sAt)) A ="z A (zo—so—t)
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= ( by De Morgan and Boolean algebra )

~(=Twa(s 1 1)) o= Twomsot)o )

5. It remains to demonstrate that the two candidates
=M(xo(sAt))o((xsHay) A="(z,)ox, A="(2;)0xs)

and
Mxo=s)ow_y A (xs)— A g0t

satisfy (4.3). To be more precise, we need to demonstrate that

x = wxo(sAt)Azo(-so—t)FA
(="(zo(sAt))o((xs Hxy) A-"(2)0m, A -"(x;)0m,) U

((wo=s)ox_y A (2-5)—¢ Ax_301)) .
Thanks to Remark 4.21, it is sufficient to work on

Maam)or = —Two(sAt))o((z,dz) A-"(z)oz, A-"(z,)oz,) 4

(n—(xu—\s)uxﬁt A (ajﬁs)ﬁt A mﬁsﬂ_\t) .

Before working on this equality, we first work on each side of it.

"(@smt)ow
= ( by (4.4) with z,t := x, s At, Proposition 3.14-7 and Boolean
algebra )
="(zo(sAt))o="(zo—so—t)ox

= ( by Proposition 3.14-12 and De Morgan )

="(zo(sAt))o(="(xo=s) A ="(zo—t))ox

We note
L =-"(zo(sAt))o(="(xoms) A ="(zo—t))ox .

_'n_(ﬁm(s A t))m(($s = ft) A _‘n_($5)533t A ﬂ”_(xt)mxs) ]
((woms)ow—y A (2-0)~ A w-g0t)

(by (4.4) with z,t := x, s, (4.4), Proposition 3.14-7 and Boolean
algebra )

=M(zo(sAt))o((xsHay) A=(="(xos)o="(xo=s)o"x)o"xox, A
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—(="(wot)o="(xo—t)o ) "xrox,) Y
((zo=8)ox—y A (255)~¢ A 2-s0t)
= ( by De Morgan )
="(zo(sAt))o((xsHay) A (T(xos) AT(zo—s) A ="z)o wox, A
("(zot) A™M(zo—t) A ="z)o roz,) U
((wo=8)ox—y A (22s)~¢ A xos0t)
= ( by Lemmas 3.17-6 and 3.17-1, (3.8), Corollary 3.21-4 and
Boolean algebra )
(=M(zo(sAt))o(zsHay) A="(xo(sAL))o (xo—s)ox, A
="(xo(sAt))o"(xo—t)oz,) Y
("(wo=s)ox—y A (2-4)—t A x_30-1)
= ( by Proposition 3.14-20 )
—N(xo(sAt))o(((zsHx) AT (wo—s)ox, A (wo—t)ox,) U

("(wo=s)ow—y A (1-5)—¢ A x_g01))

We note

R = —"(zo(sAt))o(((zsHx) A N(zo=s)ox, A (zo—t)ox,) W

("(wo=s)ow—y A (2-5)—¢ A x_g01))
and we are looking for L = R. By Proposition 3.20-17,
L=R <= "(xo=s)oL ="(xo=s)oR A ="(xo—s)ol = ="(zo—s)oR .

The derivation of "(ze—s)oL = "(ze—s)eR is straightforward.

M(zo=s)oL

= ( by Boolean algebra )
M(zo=s)o="(xo(sAt))o—"(zo—t)ox

= ( by Lemma 3.17-6, Proposition 3.14-7 and Boolean algebra )
T(xo=s)o="(xo(sAt))o="(zot)o="(zo—t)o wow

= ( by (4.4), Proposition 4.22-2, Boolean algebra and (3.8) )
="(zo(sAt))o(T(wo—s)ox, H(wo—s)ox—y)

= ( by Propositions 3.14-7 and 4.22-10, Lemma 3.17-6, Boolean
algebra, (3.6) and Corollary 3.21-3 )

—Mwa(sAt))a("(wams)omy H (N(woms)ow—y A (w975)2(2-) 1))
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= ( by Propositions 3.14-7 and 3.14-20, (4.4) with z,t := x, s,
Boolean algebra, (3.6) and Corollary 3.21-3 )
—"(xo(sAt))o
(("(zo—s)o(zs Hay) AT (wo—s)ox; A (xo—s)o (wo—t)oz,) U
(o) A @oms)o (o) A Tzoms)ea—ot))

= ( by Boolean algebra, Corollary 3.21-4 and (3.8) )
T(xo—s)eR

To derive ="(zo—s)eL = —"(zo-s)oR, we use Proposition 3.20-17 with ¢ :=
T(xo=t). Therefore, we will derive the following two equalities.

n_(xuﬂt)mﬁn_(l‘uﬁs)ul/ = n_(aj‘D—rt)Elﬂn_([L‘DﬁS)DR (425)

—\ﬂ—(x\:!—\t)m—\n—(xm—\s)DL = —\n—_(:L‘D—\t)D—\n—(xD—\S)DR (426)

It will conclude the proof.

Before working on (4.25) and (4.26), first note the following two useful laws.

—(zo=s)o="(zo(sAt))o"™er = ="(zo(sAt))o"(xy) (4.27)
R = R (4.28)

(4.27) follows from Lemma 3.17-6, Boolean algebra and (4.4) with z,t := z,s.
(4.28) follows Propositions 3.14-20 and 3.14-7, (4.4) and Boolean algebra.

Proof of (4.25).

”_(xﬂﬁt)uﬁn_(xDﬁS)DL
= ( by Boolean algebra )
ﬁn_(xmﬁs)mﬁ”_(xm(s A t))un_(xm—rt)ux

= ( by Propositions 3.14-7 and 4.22-2, Boolean algebra, (4.27) and
(3.8) )
="(xo(sAt))o(xs)o(M(zo—t)ox, U T(xo—t)oz_,)
= ( by Propositions 3.14-7, 4.22-10 and 4.22-6, Lemma 3.17-6,
Boolean algebra, (3.6) and Corollary 3.21-3 )
—Maa(s At))a"(z,)a((we—t)oz, U ((zat)a(25) 4 A (2o t)oz-o 1))
= ( by Propositions 3.14-7 and 3.14-20, (4.4), Boolean algebra,
(3.6) and Corollary 3.21-3 )
—M(za(sAt))a"(zs)m
(M(zo—t)o(zs Hay) AN (zo—t)o (zo—s)ox, A T(wo—t)ox,) U
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("(zot)s " (zoms)ox—y A (womt)a(2-s) - A "(wo—t)ox_s0t))
= ( by Boolean algebra, Corollary 3.21-4 and (3.8) )
—"(xo(sAt))o"(xs)o (xo—t)oR
= ( by Boolean algebra, (4.27) and (4.28) )

”_(xﬂﬁt)uﬁn_(xDﬁS)DR
Proof of (4.26).

—"(zo=t)o="(zo—s)o L
= ( by (4.27) and Boolean algebra )
—Mae(s At))e (s)e (@) 0w
= ( by (3.15), Proposition 4.22-2 and Boolean algebra,
"we)oxs ©(wy)o(rsHas) = "(2)o (ws)ow = "(ws)o(z, Hay),
then apply Proposition 4.22-2 and (3.11) )
—(ae(s At))o(T(@s)e(ze H a) HT(@e)ozs)
= ( by Propositions 3.14-7 and 3.14-20, and (3.2) )
—"(xo(sAt))o(xsdaH N (xs)ox—y)
= ( by Propositions 4.22-5 and 4.22-2 )
="(xo(sAt))o(xs Uy H (s Hrg)—y)
= ( by Corollary 4.24 )
="(zo(sAt))o
(xsHay U
("(w—got)owo—t AT (z_got)o(xs)—y AT (2s0t)0(25s)—¢ F
(ot b (22g)=¢) A ((2g)— H (2s)—¢) A (ws0t) 0250t A
((z5)-¢ Hxst)))
= ( by (3.8), Corollaries 3.21-4 and 3.21-3, Proposition 4.22-9,
Boolean algebra, (3.6) and (3.4) )
="(zo(sAt))o
(xsHay H (T(wgot)o () A (w0t W (1)) A ((25) ¢ B (2s)~t) F
M(xgot)ow_go—t A ((24)-¢ Hx_so1)))
= ( by (3.2) and Corollary 3.21-14 )
—Mao(sAt))o
(x4 H ((xs H " (wsot)o(2-s)—¢) A (zs Hxgomt H (v-4)—¢) A
(s W (Tg)=¢ H (xs)—t) A (25 H "(wg0t)oa_g0t) A
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(s H (x5)—t Hx_g01)))
( by Lemma 3.7-1, (3.11) and Propositions 3.14-7 and 3.14-20 )

—(we(sAt))e

(xt H

(M(wsot)ows W (1os)—¢) A (g0t W (225)—¢) F
("((zs)=t)ows W (T5) ¢ H (2)—¢) A (T(wg0t) 0w, H x_go—t) A
("((zs)-t)ows H (25) ¢ Ha-s57t)))
( by (3.19), Proposition 4.22-2, (3.2) and (3.3) )

—wa(sAt))e

(:

H ((zsot & (2-s)-¢) A (255t H (25)~) A
((xs)s Y (xs)—t H (—s)—¢) A (x50t Hx_go—t) A
((xS) (xS)ﬁt g xﬁsm_‘t)))

( by Proposition 4.22-6, Boolean algebra and (3.6),
T(x)oxgot = (zy)oxgotot = "(zy)ow,e T =T,
then apply (3.4) and Corollary 3.21-3 )

—(we(sAt))e

(

0 (458 U (5-0) ) P (g5 4 (0-)0)
(zs)e H (25)~¢ H (25)~¢) A (x50t Hxgot) A
((¢)oxgo—t Hw_go—t) A ((2s): Y (24)-¢ Hxg01)))

( by Proposition 3.14-20 and Corollary 3.21-4 )

—Mwa(sAt))e

(:

U ((zsot H (2-s)-¢) A (2557t H (25)~) A
()0 3 (2)o0 Y (20)4) P (240 U gat)
(xgo-tHa_got) A ((2s) U (25)~¢ Hx_s0t)))

( by (3.2) and Corollary 3.21-14 )

=M(xo(sAt))o(xs H (((xsot Azgo—t A ((25)s H (25)—¢)) H (22s)~¢) A

((xsot Azgo—t A ((xs); H (x5)—t)) H xog01))
( by (4.3) with z,t := x4, t )

=M(za(sAt))o(x H (25 H (v-g)—) A (x5 H x_g0t)))

( by Corollary 3.21-14, (3.2) and Propositions 3.14-7 and 3.14-20
)

~(zo(sAt))a"(z)o(24)o (25 H g B ((2-5) 4 A 2-5571))

( by (3.8), Corollaries 3.21-4 and 3.21-3, Remark 4.8 and (3.6)
)

—Mwa(s At))e(ws)o (@)= R
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= ( by (4.27) and (4.28) )

—|”_(xm—|t)u—|n_(gju—|5)uR

This completes the demonstration. O

Corollary 4.26. Suppose A is an algebra of decomposable elements. The following

equalities are valid for all x,y,z € A and all r,s,t € test(A).

1.

2.

3.

10.

tCs = (zos) = (zos)y =T
Mxo(sAt))o(xs)o™(zy)ox = "(xo(sAt))o(x, U ay)

T(xo=s)oxsmy = "(xo—s)oxy

csot =T = gm0t T "(@gmot)oz,m

tCs = (xosHyo—s), = "(yo—t)oxos A (zosH (yos),)
tCs = (zsHx_y); = "(xogot)oxs A (24 H (2-4);)
sCt = (xosHyo—s), = "(yo—s)oxot A(yo—s)o(zos),
SCt = (xsHa_y); = x50t A (z4);

(wot Hyomt), = T(yo—t)oxot

xot Cyotd zo—t <= xot C"(zo0-t)oyot

PROOF :

. Assume t C s. By (4.4) with z,¢ := zos,t, the assumption and Boolean algebra,

"((zos)~) = "((wos)y) 2 —"(wosot)eT(xos) = —M(xos)a(wes) = T. Thus, by
Proposition 3.14-19, (zes) = (zes); = T.

. First, we derive an intermediate result.

"(wa(s A1) (xs)om,

= ( by Proposition 4.22-5 )
("(za(sAt))a"(ws)o),

= ( by Boolean algebra and (3.19) )
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("(ws)owe(s AL))s
= ( by Proposition 4.22-2 )

((zsHag)o(sAL)),
= ( by (3.9), (4.5) with z,t := x,s, (4.6) with z,¢ := x, s and
Boolean algebra )
(xs Hz_got),
= ( by Theorem 4.23 )

Ta_soto—t)oxgot A (z_gotot)o(xs), A (zgot U (x_got),) A
M(zgo—t)oz_gotot AM(xgo—t)o(x_sot); A ((zs); U w_gotot) A
((ws)e W (2-59t),)
= ( by Boolean algebra, (3.6), Proposition 3.14-1, (3.4) and
Corollary 4.26-1 )
TATATA z,o-t)ox ot AT A ((zs);Hagot) AT
= ( by Corollaries 3.21-3 and 3.21-15 )

((wgo—t)ox_got A (z5)) W (T(@sot)ox_s0t A 2x_401)
= ( by (3.7), Corollary 3.21-5 and Boolean algebra )
((wgo—t)ox ot A (z4)) W w_got
{(by (3.15) )

I

T_s0t

We note

oot C"(zo(sAt))o (zg)ozy . (4.29)

And now the main proof.

(wa(s A1) (ws)o (w)ox

= (by (3.3))
(zo(s 1)) (ws)o" (w)o(z W 7)

= ( by Boolean algebra and Proposition 3.14-20 )
(wo(s At))a"(zs)o () (T(ws)ow W () o)

= ( by Proposition 4.22-2 )

Mzo(sAt))o(xs)o (xy)o(vs Hros Uy Hay)
= ( by Boolean algebra and Proposition 3.14-20 )
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Mo(sAt))o("(x)ow, HM(zo(sAt))ow_g H (xy)oxy U (xo(sAt))ozy)
= ( by Proposition 4.22-6, (4.6) with z,t := z,s and (4.6) )
Mazo(sAt))o("(x)ows U M(wo(sAt))ox_gomso(sAL) Y
Mxg)ox, N (wo(sAt))ox_yo—to(sFAL))
= ( by Boolean algebra, (4.6) and Proposition 3.14-20 )
HEs
x

"

(
(sAt))o"(xy)oxs oot H(xo(sAt))o"(xy)oxs Hxyos
( by (4.29) and (3.11) )

o(sAt))o(zy)oxs H N (xo(sFAt))o ™ (x,)oxy
( by (3.8) and Propositions 3.14-20 and 3.14-11 )

Mzo(sAt))o(zs Hay)

3. T(xo=8) 0wy

— ( by Proposition 4.22-4 )

(Z'D_‘S)sﬁt
= ( by Proposition 4.25-1 )
—Mwamse(sAt))e(((zas)s H (wams)) A= ((z2s)s)a(z=2s), A
—"((ze=s)e)=(zas)s)
= ( by (4.4) with z,t := zo—s, s, Propositions 3.14-7 and 3.14-1,
Boolean algebra, (3.6) and (3.7) )
—"(xo=sot)e((T U (zo—s)y) A (xo—s) A T)
= ( by (3.4) and Corollary 3.21-3 )

—"(xo—sot)o(zo—s),
= ( by (4.4) with z,t := xo—s, t, Proposition 3.14-7 and Boolean
algebra )
(zoms),

= ( by Proposition 4.22-4 )

M(xo—s)oxy

4. Assume sot = T.

n_(xsﬁtmt)mxrﬂt

= ( by Proposition 4.25-1 )
T(="(xo(sAt))o((zs W) A="(xs)om A="(x4)0m)0t)0
="(zo(rAt))o((x, Hay) A="(x,)oxs A="(2¢)02,)
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= ( by (3.21), Boolean algebra and Propositions 3.14-9 and 3.14-3,
the domains of z, H zy, ="(z,)ox; and ="(z)ox,
are pairwise disjoint,
then apply Corollary 3.21-17 and (3.9) )
T(=M(zo(sAt))o((zsot WU ayot) A="(x,)oxot A ="(x;)oxs0t))o
="(xo(rAt))o((x, Uay) A-"(z,)on, A ="(x;)00,)
= ( by (4.5) with z,t := x,s, (4.5), the hypothesis, (3.4), (3.6)
and Corollary 3.21-3 )
"(Mwa(s At))a="(ws)om)o
="(zo(rAt))o((x, Uay) A-"(z,)on, A ="(z;)0,)
I ( by Proposition 3.14-9 and Lemma 3.7-1 )

—Mwa(s At))o="(ws)e (@) o (2 W) A =2 ) 0w, A =" (2)ox,)

= ( by Corollaries 3.21-4 and 3.21-3, Boolean algebra and (3.6) )
—(@o(s At))o"(ws)o (@) o ((z, B ae) A "2, )om)
i ( by (3.15) and Propositions 3.14-20 and 3.14-7,
"z, )oxy C 2 H (2, )on, = 2, H 2y,
by (3.21) and Propositions 3.14-3 and 3.14-9,
"("(@,)omy) = (@, W),
then apply Lemma 3.22-3 )
—Mao(s At))o="(ws)o (@) (@ )ox, A ="(a,)ome)
= ( by Corollary 3.21-6 and Proposition 3.14-7 )
=M(zo(sAt))o="(zs)oxy
= ( by (4.5) with z,t := x, s, (4.5), the hypothesis, (3.4), (3.6)
and Corollary 3.21-3 )
="(zo(sAt))o((xsot Hapot) A="(zs)oxot A ="(2,)oxs0t)
= ( by (3.21), Boolean algebra and Propositions 3.14-9 and 3.14-3,
the domains of 24 H xy, ="(z,)ox, and ="(z;)ox,
are pairwise disjoint,
then apply Corollary 3.21-17 and (3.9) )
—N(ao(sAt))o((ws Hay) A="(xs)oxs A ="(24)0m,)0t

= ( by Proposition 4.25-1 )

$sﬁtut

5. Assume t C s.

(225 U ya-s),
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= ( by Theorem 4.23, the hypothesis and Boolean algebra )

"(y=—t)ezas A (y=—t)e(zos), A (zes U (y=—s):) A
(20T )oyo—sot AT (woT)o(yo—s), A ((xos); Hyo—sot) A
((zos)i H (yo—s),)
= ( by (3.6), Proposition 3.14-19 and Corollary 3.21-3 )
T(yo—t)oxos AT (yo—t)o(xos), A (zos H (yo—s)) A
((zos): Hyamsat) A ((zos) H (yos))
= ( by Corollaries 4.26-1 and 3.21-3, (3.6) and (3.4) )

T(yo—t)oxos A (zosH (yo—s)y)

6. Assume t C s.

(s Haog),
= ( by (4.5) with z,t := z,s and (4.6) with z,t:=z,s )
(xsos Hx_goms),
= ( by Corollary 4.26-5, (4.5) with z,t := x, s, (4.6) with
x,t := x, s, the hypothesis and Boolean algebra )
Mx_sot)oxs A (25 H (2-5);)

7. Assume s C ¢, then =t C —s by Boolean algebra.

(xos Hyo—s),
= ( by Theorem 4.23, the hypothesis and Boolean algebra )

Myo—s)oxot AM(yo—s)o(zos), A (ot Y (yo—s);) A
T(zoso—t)oys T AT (woso—t)o(yo—s); A ((xos), HysT) A
((zos) H (yoms))

= ( by (3.6), (3.4) and Corollary 3.21-3 )
"yoms)oast A(ys—s)e(zes), A (zot U (ys—s),) A
"(zosamt)a(ya—s)e A ((wes) W (y=-s):)

= ( by Corollaries 4.26-1 and 3.21-3, (3.4) and (3.6) )
"(

yD_\S)DZUDt il ”_(ymﬁs)m(gjms)t

8. Assume s C ¢.

120
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(s Hx)y
= ( by (4.5) with z,t := x,s and (4.6) with x,t .=z, s )
(xsos Hxgoms),
= ( by Corollary 4.26-7, (4.5) with z,t := x, s, (4.6) with
x,t := x, s, the hypothesis and Boolean algebra )
Mxs)oxsot AM(wos)o(xs)s
= ( by Proposition 3.14-7, (4.4) with z,t := z, s, (4.4) with
x,t := x4t and Boolean algebra )
ot A (xs);

9. (zot W yo—t),
= ( by Corollary 4.26-5 )
T(yo—t)oxot A (zot W (yo—t),)
= ( by Corollaries 4.26-1 and 3.21-3, and (3.4) )

n_(yu—\t)mgjmt

10. rot C yot H zo—t

= ( by (3.11))
ot Hyot H zo—t = yot H zo—t

= ( by Leibniz )
(xot Hyot H zo—t), = (yot H zo—t),

= ( by (3.9) and Corollary 4.26-9 )
T(zo—t)o(wot Hyot) = "(zo—t)oyot

—= ( by (3.8) and (3.11) )
T(zo—t)oxot C "(zo—t)oyot

= ( by Proposition 3.14-6 )
xot T "(z0—t)oyot

— ( by Propositions 3.14-20 and 3.14-7 )
zot C yot H zo—t

O

Theorem 4.27. Suppose A is an algebra of decomposable elements. The following
equality is valid for all z,y € A and all t € test(A).

(zoy)e = "((woy))o(xo(yot Ay) A zryomy,)o(yot Ay))
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Remark 4.28. One might understand Theorem 4.27 intuitively by noting that

"((zoy)e)o(wo(yot Ay) Azryomy)o(yot Ay)) = "((zoy)e) o (zp (Y p 1))

by Proposition 4.17-3, (4.5) with z,¢ := y, ¢ and Definition 4.16.

PROOF : Since "((zoy);) = —"(xoyot)o="(xoyo—t)o"(xoy) according to (4.4) with
x,t:= xoy,t, we will rather demonstrate

(l’my)t = ﬁ”_(gjmymt)Dﬁ”_(g;uymﬁt)un_(l‘my)m(;L‘m(yut A yt) ml x"(yﬂtﬁyt)m(yut A yt)) .

In this proof, the following abbreviations are used.

A= —(zoyst)o-"(zoys—t)s(zoy)

B = xo(yot Ay) A xryomy) e (yot A y,)

C= wo(yot Ay) Azryomy,)oyot

D= we(ys—t Ay-) Azrgyomy.,)e(ys—t A y)
E = zo(ye—tAy)A Tr(yo—try_,) Yol

Hence, we have to show (zoy), = AsB. By symmetry, (zoy)-; = AsD. Therefore, we
verify that AesB and AsD satisfy (4.4), (4.5), (4.6) and (4.3) with x,t := xoy,t (see
definition 4.7), in this order.

1. Proof of (4.4). We have to show "(AsB) = "(AcD) = A. We begin by showing
"BLC A.

"BC A

= ( by Corollary 3.21-16, (3.20) and (4.5) with z,t := 2, "(yotFAy,)
)

Tzo(yot Aye)) A N(zryomy,)) E "(zoyot)a"(zoyo—t)a(zoy)

= ( by Boolean algebra )
"(wa(y=t Aye)) A (weyot) A (zaya—t) E(zoy)o"(wryomy,)
= ( by Corollary 3.21-12 and Proposition 3.14-8,

true = yot Ay, C yot = xo(yot Ay,) C zoyot
= Mao(yst Ay)) C "(aoyst),
then apply Boolean algebra and (4.4) with x, ¢ := z, "(yotFy,)

)

"(ao(yot Ay,)) A (zoyo—t)
E M(xoy)o—(="(zc(yot Ay,))o="(zo-"(yst Ay,))o )
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— ( by De Morgan, Boolean algebra and (3.20) )

"(we(yot Ay,)) A (woyot)
L "(2sTy)a" (s (yst Ay,)) A (aoy)e (we="(yst Ay)) A(zoy)s "2
— ( by Propositions 3.14-9 and 3.14-7, (3.19), Corollaries 3.21-4
and 3.21-3, (4.4) with z,t := y,t and Boolean algebra )

"o (yat Ay,)) AT(zoya-t)
C "(zo(yot Ay,)) A (zoy)a (zo="(yot Ay))
= ( by Lemma 3.22-1 )

”_(xl:lyﬂ_ft) C rr(g;uy) (q;u—| (ymt A yt))
= ( by Proposition 3.14-9 and (3.20) )
"(woyant) C(Mae"y)owe—"(y=t Ay,))
= ( by (3.19), (4.8) and De Morgan )
"(woya—t) E(z="y=("(y=t) A ="y))
= ( by Boolean algebra )
"(woyo—t) T Taa"ya"(yot))
= ( Proposition 3.14-18, Boolean algebra and (3.20) )
true

Using this result with ¢ := =t yields "D £ A. Hence, also Proposition 3.14-9 and
Boolean algebra,

"(AcB) = As"B = A= A"D ="(AsD) .

2. Proof of (4.5).

AoBot
- (by (3.24) )
Ao (2o (yot Argor Ye) Areoyoimy)) Tryomy) (Yot rgor ye)) ot
= ( by Proposition 3.20-7, Boolean algebra and (4.4) with
T, t:=y,t)
Ao (xu(yut F‘ﬂ‘(yut) yt) Hﬂ_(xm(yﬂtﬁyt)) In—(yutﬁyt)ﬂ(yﬂt Hr(ymt) yt))
- (by (3.21) )
AoB

3. Proof of (4.6). This follows from the proof of (4.5) with the substitution t := —t.
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4. Proof of (4.3). We have to show
xoy = xoyot Azoye—t A (AcBH AsD) .
It is sufficient to show that
"((xoy);)oxoy = AcBU AoD

by Remark 4.21.

So here is the proof of
ADJij = AD<B H _D) .

ADIDy

= ( by (4.3) with z,t :=y,t )
Aszo(yot Ayo—t A (y: Hy))

= ( by Corollary 3.21-15 and (3.8) )
Ac(zo(yot Aye—tAy) Hao(yst Ays—tAy—))

= ( by Remark 4.8, (3.25), Proposition 4.22-1 twice:
(1) with z,y, z := x,yot Ay, yot,
(2) with x,y, z := z,yo—t A y_y, yot,
and Boolean algebra )

Ao ((ﬂ?ﬂ(yﬂt M y) A zoyo—t A
(Tr(yomy,) © (Yot A y:) H 2oryomy,)oyo—t)) Y
(zo(yo—tAy-,) Axoyot A
(@r(yoimy-0) (Y27t A y-t) H T-ryoimyr) “y”t)>

= ( by (3.8), Corollary 3.21-4, Propositions 3.14-7 and 3.14-17,
and Corollary 3.21-3 )

Ae ((mu(ymt Ay,) A
(.Tr(yutﬂyt)ﬂ(ymt Ry, x_,r(ygtﬁyt)uymﬁt)) W]
(we(yo—t Ay~

(Tr(yo-try-) o (Yot A y—t) H Toryo-imy,) Dynt))
- ( by Corollary 3.21-15 )

Ao ((37‘3@575 A yt) A x"’(yﬂtﬁyt)‘](yut A yt)) =

(xo(yst Ay, A $ﬁn—(yut,=|yt)uyuﬂt) d
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(zo(yo—t Ay—) A wryomy o (yot Ay—)) o

(.fD(yD_‘t A yﬁt> A .Tﬁrl'(yuﬁtﬁyﬁt) Dy':'t>>
= ( by the definitions of A, B, C, D and E )

As(BUCUDUE)

We have to show that the last expression is equal to As(BH D).

As(BUCHDUHE) = As(BH D)

= ( by (3.8) and (3.11) )
AcCC As(BU D) N AsEC As(BHD)
= ( since the second conjunct follows from the first by symmetry,

using the substitution ¢ := —t )
AsC € Ao(BU D)
= ( by Proposition 3.14-6 )
CLC As(BU D)
— ( by Lemma 3.7-1 )
C C "(zoy)e(BH D)
= ( by Proposition 3.14-20 )
C C BU(xsy)sD
= ( by Proposition 3.20-16 )
"(za(yot Ay))oC T Nao(yot Ay))e(BH (zoy)eD) A
—(we(yot Ay,))oC T ~(wo(yot Ay))o(B Y (zoy)e D)
= ( by Corollaries 3.21-7 and 3.21-8, Proposition 3.14-7, (4.4) with
x,t:=x,"(yot Ay;) and Boolean algebra )
zo(yot Ay,) & zo(yot Ay;))o(B U (zoy)eD) A
Tryotry) 2yt © ="(ws(yst Ay))e (B H (zoy)=D)
= ( by (3.8), Corollary 3.21-7 and Proposition 3.14-7 )
e (yat Ayy) © wo(yst Ay) W (we(yet Ay))a"(zey)aD) A
T-ryowmy) 2yt © ' (we(yot A y))e(B Y (zey)eD)
= ( by (3.15) )
Ty 2yt E ' (wo(yot A y))e(B Y (zey)e D)

The proof of the last refinement follows.



Chapter 4. Definition of Angelic Operators in DAD 126

I

(5

—"(wo(yot Ay:))o(BH " (vey)oD)
( by (3.8), Corollary 3.21-8, Proposition 3.14-7, (4.4) with
x,t:=x,"(yot Ay;) and Boolean algebra )
Tr(yoimy) 2 (Yot Ay:) H ="(we(yot Ay,))o " (zoy)o D
( by Propositions 3.14-7 and 3.14-20, (3.20) and (4.5) with
x,t =z, "(yot Ay )
Triyoimy) 2 (Yot Ay:) W (@ryomy,)) o= (20 (yot Ay,)) o (zoy)o D
( by (3.15) )

Tr(yotry)) o (28 (Yot A yy))e (woy)eD
{ by (3.20), (4.4) with z,t := z,"(yot Ay,) and Boolean algebra
)

Tr(yoiry,)) o (oY )oD
( by the definition of D )

"

"

N@ryoimy) e (woy)o(vo(yo=t Ay-r) A zrya-my_ o (Yot A y-))
( by Corollary 3.21-4, (3.19) and (3.20) )

"(@ryoimy,) 2 (zaye (yo—t Ay-y) AT (@oy) ooy o (y=—t A y-.))
( by Proposition 3.14-7, (4.9) and Boolean algebra )
"(@rystryn) o (ze (Yot Ay—e) A (@oy)owryouny.) o (Yot A y))
{ by Corollary 3.21-4 and Proposition 3.14-9 )

T(@ryomy,))ozo(yo—t Ay—,) A

"("(@ryotmy) ) 220y )8 Triyo—my_) ° (Yot A y-r)
( by Proposition 4.22-2 )
”_(J;r(yﬂtﬁyt))DxD(yD_‘t A y-) A
n_((x"_(y'jtﬂyt) d l‘ﬁ"_(yﬂtﬁytﬂDy)ux"_(yﬂﬁtﬁyﬁt) o(yo—t A y-t)
( by (3.15) and Proposition 3.14-8,
Tr(yotry) T Tryaimy,) H T-ryaimy,)
= Tr(yotmy,) oY & (mn—(yutﬁyt) H :Eﬁrr(yutﬁyt))Dy
- ”_(x—\ﬂ_(yﬂtﬁyt)‘jy) C n_((xn—(yutﬁyt) H x—\ﬂ'(yﬂtﬁyt))my),
then apply Lemma 3.22-1 )

"(@ryomy,))ere(yo—t Ay-) A
n_(m—'"'(yﬂtﬁyt)‘]wDx"_(y‘jﬂtﬁyﬁt)‘jwu_‘t A y-)
( by Proposition 3.14-9, (3.20), (4.4) with x, ¢ := 2, "(yo—tFy—,),
Remark 4.8 and Boolean algebra,
the domains of the two operands of the main A are disjoint,

then apply (3.25) )
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n_(xﬁ"—(yutﬁyt)Dy)mmr(y':'ﬁtﬁyﬁt)D(yu_'t A y—\t) A
"(@ryomy,))eze(yo—t A y-)
= ( by Proposition 4.22-2 )
"(@-ryotmy) oY) o Tr(yo-imy-) o (Yot Ay-;) A
(@r(yotry) H T-ryoimy,))o (Yot A y-)
( by (3.15) and Lemma 3.22-1 )

(S

(@ -ryotry) oY) 2Tr(yotry-) ° (Yot Fy~)
Tr(yotay,)° (Yot A y-¢)
= ( by (4.6) with x,¢ := z,"(yot Ay,), (4.8) and De Morgan )
"(@r(yo-nr-5o("(yo-t) A 2"y)oy)orr(yo-imy.) o (Yot A y-) A
T-r(yotry) °("(yo—t) A ="y)a(yo—t Ay)
= ( by Corollaries 3.21-5 and 3.21-3, (3.19) and Proposition
3.14-17)
M@r(yo-m-moys ) eTryo -y 2 (Yot A y-) F
Tryoimy) °(T(yo—t) A ="y)e(yo—t A y—)
= ( by Corollaries 3.21-5, 3.21-4 and 3.21-3, Propositions 3.14-7
and 3.14-17, (4.4) with z,t := y,t, (3.6) and Boolean algebra

)

rr_(xr(yl:l—‘t)ﬁ_‘rymyl:lﬁt)D:Er(yu_‘t':‘yﬁt)ﬂ<yﬂ_|t A yﬁt) A Q'J'_Jr(yutﬁyt)ﬂyﬂﬁt

I

( It is shown immediately after this derivation that
T-r(yotry,) oyt refines the first operand of the main fA.
The result then follows from Lemma 3.22-2. )

[Eﬁn‘(ymtﬁyt) DyD_‘t

Thus, all what remains to do is prove the assertion in the justification of the last
equality.
"(ryo-nrameyt) owr(yo-my-) ° (Yo7t A y-r)
I ( by Lemma 3.17-2, ="ya"(yo—t) = T,
then by Boolean algebra
and Corollary 4.26-4 with r, st := "(y;), ="y, "(yo—t),
riya-nm-po (Yot
= T-mrrya-n)© (Yot
L "(2-mrryo-n=" (yat))ozry_mryo-t)

= nzxr(yg_‘t)ﬂ_‘n'yl:ln_(yﬂﬁt))‘jxﬂ—(y_‘t)ﬁﬂ—(yﬂ—‘t),
then apply Corollary 3.21-16 and (3.20) )
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Tr(yo-pn-5°" (Yoit)s (yot Ay
= ( by (4.8), De Morgan, Corollaries 3.21-4 and 3.21-3,
Proposition 3.14-7, (4.4) with x,t := y, t, Boolean algebra and

(3.6) )

xﬁ“—(yﬂtﬁyt) Dyﬂ_‘t
O

Theorem 4.29. Suppose A is an algebra of decomposable elements. The following
equality is valid for all z,y € A and all t,u € test(A).

($ Ay y)t = 2 Ay Yt

PROOF : We have to show that z; A, y; and z_; A, y—, satisfy (4.3), (4.4), (4.5) and
(4.6) with z,t := 2 A, y,t (see Definition 4.7).

With (4.5), (4.6), (4.5) with z,t :=y,t, (4.6) with z,¢ := y, ¢ and Corollary 3.21-18,
one gets (4.5) and (4.6).

Let us work now on (4.3). We have to demonstrate that

rA,y = (xR, y)ot A (z By y)o—-t A (2 Ay ye) H (2 Ay Yt)) -

This equality can be established by comparing the two members with the tests v and
—u and invoking Proposition 3.20-17.

Case u
us(x Ay, y)
= ( by Proposition 3.20-1 )
usx

= ( by (4.3))
uu(xut A xo—t A (th H Slf_.t))
= { by Corollary 3.21-4 and (3.8) )

usxet Rusxo—t A (usx, Husz_y)
- ( by Proposition 3.20-1 )

ue(z Ay, y)ot Aue(z A, y)o—t A (us(x; Ay, ye) Hus(z—y Ay y—t))
= ( by Corollary 3.21-4 and (3.8) )

uo((z Ay y)ot A (2 Ay y)o—t A (2 Ay ye) W (2 Fu y-)))
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Case —u
—wus(x Ay, y)
= ( by Proposition 3.20-1 )
_|uDy

= ( by (4.3) with z,t :=y,t )

—us(yot Ayo—t 7 (y Hy-))
= ( by Corollary 3.21-4 and (3.8) )

—uoyot A —uoyo—i A (—muyt 4 ﬂul:ly_‘t)
= ( by Proposition 3.20-1 )

—us(x Ay y)ot A —ue (@ Ay y) ot A (ous (2 Ay ) B -ue (2 Ay )
= ( by Corollary 3.21-4 and (3.8) )

—ue((x Ay, y)ot A (x Ay, y)o—t A (2 By ve) H (22 Py Y—)))

It remains to derive (4.4). First note that

)

= ( by Proposition 3.20-20 )
n—($t) Ay n—(yt)

= ( by (4.4) and (4.4) with z,t :=y,t )

n—(xﬁt) Ay, n—(yﬁt)
— ( by Proposition 3.20-20 )
"

Tt |=|u y—\t) .

And here is the main derivation.

_'n_((x Ay y)ut)u_'n_((x Ay y)u—qf)mn_(x R y)
= ( by Propositions 3.20-7 and 3.20-20 )
=(Maot) Ay "(yot))o~((wo—t) Ay "(yo-t))o ("2 A, Ty)
= ( by Proposition 3.20-12 )
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—(us"(zat) A —us"(yat))om(us"(zo—t) A —us"(y=—t))= (ua"e A ~us"y)
= ( by De Morgan )
(mu R ="(ot))o(u R ="(yot))s
(mu A ="(za=t))e(uf ="(yo—t))=(us"z A ~u="y)
= ( by Boolean algebra )
(—u A uo—"(xot))o(u A —~uo="(yot))e
(—u A uo="(xo=t))o(u A —us="(yo-t))o(us"z A —usy)
= ( by Boolean algebra )
(wo=t)ee A —uo="(yot) o= (ya—t)a"y
by Proposition 3.20-12, (4.4) and (4.4) with z,t :=y,t )

uo—"(xot

() A ()

by Proposition 3.20-20 )

)am
{
(
{
(2 Fu ye)

O

Corollary 4.30. Suppose A is an algebra of decomposable elements. The following
equalities are valid for all x,y € A and all r,s,t € test(A).

1. (xRAy); =z A -"zoy,
2. Tpe"y =T = (zAy)=x,Fy

3. rCtCs = "(r.08)ox; = x,08

Proor :

L. (@ Py
= (by (3.24) )

(z A )
= ( by Theorem 4.29 )

Ty A Yy
= ( by Corollary 3.21-9, Proposition 3.14-7, (4.4) and Boolean
algebra )

x, A —"Txoy,
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2. Suppose "zoy = T.

3. First,

(xAY):
= ( by Corollary 4.30-1 )

xy A-"zoy,
= ( by Proposition 3.14-7, (4.4) with z,t := y, t, the hypothesis
and Boolean algebra )

e Ay

we derive an intermediate result. Assume r C ¢.

Ty

= ( by (4.3) with z,t :=x,r )

(xor Aze—rA(x, Ha,)):
= ( by Corollaries 4.30-1, 3.21-4 and 3.21-13 )

(xor)y A ="(zor)o(zo—r) A ="(zor)o="(zo—r)o(z, Hz_,);
= ( by Propositions 3.14-7 and 3.14-3, (4.4) with z, ¢ := xo—-r,t,
(4.4) with z,t := x, Hx_,, t, (4.4) with x,t := z,r, Lemma
3.17-5, (3.21) and Boolean algebra )
(zor)y A (zo—r), A (2, B2 )y
= ( by Proposition 3.14-7, (4.4) with z,t := zo—r, ¢, Boolean
algebra and Theorem 4.23 )
(xor)y A="(zo—ro=t)e(xo—r)e(zo—r), A (x_,0—t)ox,.ot A
Mx—po=t)o(x,.) A (x.0t W (2-)¢) A (x,0-t)ox_,.0t A
Mapomt)e(z—p)e A ((20)e H2pst) A ((20)e H (20)0)
= { by the hypothesis and Boolean algebra,
—ro=t = —r,
then by (4.6) with x,t := z,r,
T_po—t = x_,omroat = x0T =2, )
(xor)y A="(zo—r)e"(xo—r)o(xo—r), A (2, )ox,ot A

Mx—r)o(x,)e A (0t W (2-,)¢) A (2,0-¢) 02,0t A
"wpomt)o(2-p): A ((2,) H2-pot) A ((2,): W (2-0)0)
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= ( by (4.6) with x,t := x,r, the hypothesis, Boolean algebra
and (3.6),
Tpot = x_,0rot =T,
by Proposition 4.22-7, (4.5) with z, ¢ := x_,, t, the hypothesis,
Boolean algebra and (3.6)
(=)t = (X )por = (2 )yoto—r = T,
apply Boolean algebra too )
(xor)y A To(xo—r), Az, )oz,ot A
T-r)a(, )0 P (@0t U T) A et T
Mapo=t)oT A (@) B T)A (@) HT)
= ( Boolean algebra, (3.6), (3.4) and Corollary 3.21-3 )

(xor), AMN(a_,)ox,ot A (2o, )0 (),
= ( by (4.4) with z,t := x,r, (4.4) with z,t := z,,t, Proposition
3.14-7 and Boolean algebra )
(zor);Az,otA(x,)

SorCt= x; = (xor); Az, ot A (z,);.

And now the main proof. Assume r C ¢ L s.

Mz, 08)0m,
= ( by the hypothesis and the intermediate result above )

M(z,08)o((zor); Ax,ot A (z,))
= ( by Corollary 3.21-4 )
T(z,08)0(xor), A (z,08)oz,0t A"(x,08)0(x,);
= ( by the hypothesis, (4.4) with z, ¢ := x,,t, Proposition 3.14-8
and Boolean algebra,
true =t C s = z,0t C x,08 = "(x,0t) C "(z,09)
= M(x,0t)o="(z,0t) C "(z,08)c(z,),
= "(2,08)0(x,); =T )
"(z,08)o(zor); A (x,08)ox, 0t AT
= ( by (4.4) with z,t := x,r, by (4.4) with z,t := zor,t,
Propositions 3.14-7 and 3.14-9, Boolean algebra and (3.6),
"(z,08)o(xor); = "(="(xor)ox,08)o " (zor)o(xor),
= —"(zor)o"(z,08)c (zor)o(xor), = To(zor), =T )
TAx,08)0m,0t AT
= ( by Corollary 3.21-3, (3.19), the hypothesis and Boolean
algebra )
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,08

4.5 A Framework for KAD Within DAD-F,

In this section, we present three theorems. Theorems 4.31, 4.32 and 4.33 respectively
state that, under suitable hypotheses, the elements of a DAD-F, together with the
angelic operators form a KA, a KAT and a KAD. They make up a downward link from
DAD-R, to KAD for any model of KAD —refer to Figure 1.4. These theorems are the
demonic versions of Theorems 2.20, 2.21, 2.22 and 2.23.

We give the same advices as at the beginning of Section 4.4. Firstly, in order to
demonstrate Theorems 4.31, 4.32 and 4.33, we need the algebra A to be an algebra of
decomposable elements. In Chapter 5, it will be shown that this hypothesis is necessary
and sufficient. Secondly, although the results are easy to understand, some proofs
are long while others are subtle. For these reasons, at first reading, one might just
concentrate on results rather than verify all the details of each demonstration.

Here is the first theorem of the section.

Theorem 4.31. Suppose A is an algebra of decomposable elements. For all x,y,z € A,
the following laws are true, hence (A,4p,p, ™, T,1) is a KA.

L (z4py)+pz=2+4p (y +p 2)
2.r4+py=y+px

3. rx4pr==

4. THpr==x

5 (xpy)pz=xp({YDp2)

6. Tpr=axp T =T

7. 1lpr=xpl==z

8 zply+z)=xpy+pxrp=2

9. (x+py)pz=xp24+pYD=2
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10. x> =x® px+4p 1
11. 2 <py <= v+py=y
12.z2pz4py<pz = 2P py<p=z

13. zprx4+py<pz = ypr? <pz

PROOF :

1. This is direct from Corollary 4.4-4.
2. This is firect from Corollary 4.4-5.
3. This is direct from Corollary 4.4-6.

4. This is direct from Corollary 4.4-7.

5. (xpy)pz=zp{YyDp2)
= ( by Proposition 4.17-7 )
(@ py)e2A(xpy)e)ez = (z2"(y p 2) Azryys)e(y » 2)
= ( by Proposition 4.17-7 )
((zpy)a"2 A (z py)m)ez = (22"(y p 2) Azryys)a(y="2 Ays)ez
— ( by Leibniz )

(T py)e2A(z Y = (x0"(y p 2) Azrypz)o(ye"2 Ays)
= ( by Proposition 4.17-5 )

(xpy)e"2A(x py)n = (.ru”_yu—'”_(yuﬂ”_z) A Zryo-ryo-m))e(y="2z A ys)
Since in the last formula z appears only as "z, it suffices to show (z py) pt =
z p (y pt) for an arbitrary test t.

(zpy)nt
= ( by Definition 4.16 and Proposition 3.14-1 )

(zoy Aagoy)et A (zoy A wgoy)ot
= ( by (4.5) with z,t := xoy Aoy, t )

(zey Aagoy)ot A (zoy A zgoy);
= ( by (3.20), (4.4) with x,t := z,"y, Remark 4.8

and Boolean algebra,
-

N(woy)o(zgoy) = T(woy)s"(ans"y) = T(woy)o(zg) =T,
then apply Corollaries 3.21-17 and 4.30-1 )
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zoyot A xgoyct A (zoy), A" (zey)e(zgoy);
= ( by (4.4) with x,t := xgoy, t, (4.4) with z,t := z,Ty, (3.20),
(4.5) with ., t :== z, Ty, Proposition 3.14-7 and Boolean algebra

)

woyot A wgoyot A (zoy), A (v50y),

Hence, by Proposition 4.17-6,

woyot Aagoyet A (roy), A (go0)) = oo (5 01)
Thus, by Lemma 3.22-5, it suffices to prove

zoyot = "(zoyot)s(z p (y pt)) (4.30)
wgoyet = "(anoyot)e(zp (yt)) (4.31)
(zey)r = "((zey))a(z o (ypt)) (4.32)
(rgoy)e = "((agoy))o(@p (ynt)) (4.33)

to show
zoyot A xgoyct A (zoy) A (zgoy)r =2 p (ypt) ,

which completes the proof of associativity of .

(a) Proof of (4.30).

(zayat)e(z p (y p 1))
= ( by Definition 4.16, Proposition 3.14-1 and (4.5) with
x,t =y, t)
"zoyot)o(zo(yot Ay) A Tryomy) o (Yot B y,))
= ( by Corollary 3.21-4 )

"(zoyot)oxo(yat Ay,) A (zoyst)oxryomy,) o (yot A y,)
= ( by (3.20), Proposition 3.14-7, (4.4) with
x,t:=x,"(yot Ay,), Boolean algebra and (3.19) )
zo(yot)o(yot Ay,) AN (zoyot)s="(zo(yot A y))oxryomy,) o (yot A y)
= ( by Corollary 3.21-12, Proposition 3.14-8
and Boolean algebra,
true = yot Ay, C yot = xo(yot Ay,) C xoyot
= "(@o(yot Ay,)) E "(woyot)
= Nwoyot)o="(wo(yot Ay)) = T;
apply Corollary 3.21-4 too )
e ("(yat)ey=t A (yot)ey,) A Tezrysmy,) = (y=t Ay
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= ( by Proposition 3.14-7, Remark 4.8, Boolean algebra, (3.6)
and Corollary 3.21-3 )

zoyot

(b) Proof of (4.31). First, we derive an intermediate result.

(zgoyot)owe(yot Ay.))
- ( by Proposition 3.14-9 )

"(wgayat)a"(za(y=t Ay,))
I ( by (4.9) and Proposition 3.14-8,
true = "y C "(yot A y;) = 20"y C xo"(yot Ay,)
s o) € oo yot A)),
then apply (3.20) and Proposition 3.14-18 )
)" (za"y)
( by (4.4) with x,t := 2,y and Boolean algebra )

(

I

—(aa"y)a"(z="y)
= ( by Boolean algebra )

T

And now the main proof.

"(agoyat)s(zp (y pt))
= ( by Definition 4.16, Proposition 3.14-1 and (4.5) with
x,t =y, t)
"(zgyoyst)a(z=(yat Ayy) A zryomy,) = (y=t A y:))
( by Corollary 3.21-4 )
)
(

oxo(yot Ay) A "(zgeyot)osryomy,) o (yet A y)
by the intermediate result above, Proposition 3.14-19 and
(3.20) )
T A (o (yot)) oxryomy,)© (Yot A )
= ( by (4.9), Corollary 3.21-16 and Boolean algebra,
"y © "yt Ay,) T "(yot),
then apply Corollaries 3.21-3 and 4.30-3 with
rys,t ="y, "(y=t), "(yot Ay,) )
o (yat)a(y=t A yy)
= ( by Corollary 3.21-4 )

xryo(T(yat)oyat A "(yot)oy,)

(.Trr uymt
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= ( by Proposition 3.14-7, Remark 4.8 and (3.6) )

Tro(yst A T)
= ( by Corollary 3.21-3 )

Zryoyot

(c) Proof of (4.32).

((zoy))e(zp (ypt))
= ( by Definition 4.16, Proposition 3.14-1 and (4.5) with
x,t:=y,t)
((@oy)i)e(we(yot Ay A zryomy,) = (Yot A )
= ( by Theorem 4.27 )

(zoy)
(d) Proof of (4.33). Again, we start with intermediate results.

("

wyoy)iowe (Yol A y:))
= ( by Proposition 3.14-9 )
((@goy))e (e (yot A )
I ( by (4.9) and Proposition 3.14-8,
true = "y C "(yot Ay,) = 20"y C 2o"(yot Ay,))
— "wa"y) & Tae"(yot Ayr))),
then apply (3.20) )
"((zm=y)e)="(z="y)
I ( by (4.4) with z,t := xroy,t and Boolean algebra )
"(zyoy)a"(z=Ty)
= ( by (3.20) and (4.5) with z,t := 2,y )
()= (2="y)

( by (4.4) with z,t := x,"y and Boolean algebra )

I

(

zaly)a"(za"y)
= ( by Boolean algebra )

—

—
Proposition 3.14-19 then yields

Txmoy)ozo(yet Ry) =T . (4.34)
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Looking at the previous derivation from the third step down to the last, we
also get
T(@noy)e(asTy) =T . (4.35)

There is a similar proof for
Nangoy)="(weny) =T . (4.36)
And here is the main proof.

"((zmey))s(@ o (y pt))
= ( by Definition 4.16, Proposition 3.14-1 and (4.5) with
x,t:=y,t)
"((zmey)e)e(@e(yot A y) A zryomy,) = (Yot Ay))
( by Corollary 3.21-4 )
)
(

((@goy))ews(yot Ay A (@goy)) owryomy) (Y=t Fy)
by (4.34) and (4.3) with x, ¢ := 2,y )

T A ((wroy)e)e(zo"y Azo=Ty A (25 U o) )ryomy,) o (yot A y,)
= ( by Corollaries 3.21-3, 3.21-13, 4.30-1 and 3.21-4 )

—

((@goy))e((wo"y)ryoimy) A ="(ze"y)o (20 ="Y)ryomy,) A
—(zey)o="(we="y)o (v W wg)ryomy,) )2 (yot A )
= ( by Propositions 3.14-7 and 3.14-3, (4.4) with
x,t = wo="y, "(yot Ay,), (4.4) with
x,t = an Uy, "(yot Ay, (4.4) with z,t := 2, "y,
Lemma 3.17-5, (3.21) and Boolean algebra )
"((@mey)e) o ((22"Y)ryoimy) 7 (@02"Y)ryomy) A (25 H 2-5)ryomy,))
(yot Ay)
= ( by Corollary 3.21-4, Proposition 3.14-7, (4.4) with
x,t = xo"y, (yotFAy,), (4.4) with x,t := zo="Ty, "(yotFAy,)
and Boolean algebra )

(Uwsow)e)eTeey)a (@)oo
"((zryoy)e) o (@ "y) e (zo="y)ryoumy,) A

)i
)
(e ey )a(ag Y o)y, ) =(y=t A y:)
= ( by (4.35), (4.36), (3.6) and Corollary 3.21-3 )
)
{
)

<

"((zgoy)e)= (2 H 25 ryomy) 2 (Y= A ye)
by Theorem 4.23 )

(o) D( -ryo " (yot A yy))owno(yot Ay,) A
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Ty o (Yot A y))o (@ ) ryomy,) A
b (2-m)r(yotmy,))
rr(x"@m "(yot Ay,))oa—mo " (yot Ay,) A
2eyo " (Yot A ye)) o (2-m)ryomy,) A
(T r(yotny,) H z-me " (yot Ay,)) A
(25)rtgimy) H (25 rtgorman) ) 2(yat Al)

= ( by (4.9) and Boolean algebra,
—"(y=t Ay Ty,
then apply (4.6) with z, ¢ := x,"y and Corollary 4.26-1 )
rr((%ﬂ@)t)ﬂ( (@)oo (yot A ye) AT (@-m )= (25)ryommy,) O
(o (yot Aye) U T) A (@ o"(yot Ay,))ezgoT A

Mago"(yot Ay))oT A ((Tg)ryomy) & T) A

(25)rtyoemy 8 T) ) (ot A ye)
= ( by (4.4) with z,t := z,"y, (3.4), (3.6) and Corollary
3.21-3 )
((wgoy)e)o((wg)oxg="(yat A y) A T(wg)e (2g)ryomy) )= (Y=t Ay
= ( by Proposition 3.14-7, (4.4) with z,t := xw, "(yot A y;)
and Boolean algebra )
"((ryoy)e)o (20 (yot Aye) A (25)ryomy) )2 (Yot Ay:)
= ( by (4.4) and Boolean algebra,

n_(aj@un_(ynt A yt))mn_«x“—y)”'(yﬂtﬁyt)) = T?
then apply Corollary 3.21-17 and Proposition 3.14-7 )

"((wryoy)e)e (e (yot Ay) A (25)ryomy,) (Yot A y))
= ( by Theorem 4.27 )

(zryoy):
6. This is direct from Proposition 4.17-2.
7. This is direct from Proposition 4.17-1.
8. First, we prove "(x p (y+p 2)) ="z py +p z p 2).
"z p (y+p 2))
= ( by Proposition 4.17-5 )

n—xuﬁ”_(xu—\”_(y +p z))
= ( by Corollary 4.4-3 )
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Now,

Because "(z p (y +p 2))

Tro=(we=(Ty A7)

( by De Morgan )
o Mae o)

( by Proposition 3.14-12 )
o (oo Tz 2)

( by De Morgan )
Too(~MwoT) A ~Tao2))

( by Boolean algebra )
Tro=T(zo="y) ATzo="(xo-"2)

( by Proposition 4.17-5 )
Mz py) Az p2)

{ by Corollary 4.4-3 )

"zpy+pzop2)

TpY+tpTpz
( by Corollary 4.4-1 )
(@ p 2)o(z py)
( by Definition 4.16 )
N pz)e(zpy)A-"(zpy)=(zp2)A
((xoy Azgoy) H (xoz Aznoz))
( by Corollary 3.21-14 )

—(zp2)e(xpy) A="(z py)e(rp2)A

(xoy Hzoz)

prove the following six equations.

(=@ p 2)e(x py))e(z p (y+p 2))
(=@ py)e(zrp2))o(zp (y+p 2))
"(woyHzoz)o(z p (y +p 2))
zoyHanoz)o(z p (Y +p 2))
ooy Hzoz)s(z p (Y +p 2))

"wryoy W anoz)o(z p (y +p 2))

A-"(zpy)e(zpz)A((zpy)H

(z p 2))

A (zoyHanoz) A (zrgoy Haoz) A (zgoy Hargoz) .

Mz p 2)=(z py)
Nz py)e(zp2)
royHzoz
royHrnoz

rmyoy oz

Tryoy H oz

140

="z py—+pxp2), it thus suffices, by Lemma 3.22-5, to
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Because H and +p are commutative (by (3.2) and Corollary 4.4-5), equations
(4.37) and (4.38) are symmetric in y and z, and similarly for (4.40) and (4.41).
Thus, we only need to prove (4.37), (4.39), (4.40) and (4.42).

(a) Proof of (4.37). Since

"(="(@p z)o(zpy))e(zp (y+p2) ="(x D 2)o(z pYy)
— ( by Propositions 3.14-9 and 3.14-7 )
=@ p2)o" (@ py)e(zp (y+p2) =-"(xpz)"(@py)(rpy)

— ( by Boolean algebra and Leibniz )
~@p2)e(zn(y+p2)=-""(zpz)e(xpy) ,

we only prove the last equation.

=@ p 2)s(zp (Y +p 2))
= ( by Proposition 4.17-7 )
(@ p 2)o(20"(y +p 2) AZryapa)o (Y +p 2)
= ( by Proposition 4.17-5, Corollary 4.4-3 and De Morgan )
(=" A (ze"2))o(ze("y A "2) A zgan )= (y +p 2)
= ( by Corollary 3.21-5 )
—Two(ze(Ty A"2) A zgare)s (y +p 2) A
Nze="2)e(zs("y A"2) Azgas ) (y +p 2)
= ( by Proposition 3.14-7, (4.9), Boolean algebra, (3.6) and
Corollary 3.21-3 )
Nwo="z)a(2e("y A"2) A znan)o(y +p 2)
= ( by Corollary 3.21-4 )
("(wo="2)oxa(Ty A"2) A (wo-"2)0agme )o (y +p 2)
= ( by (3.19), Boolean algebra and Corollary 4.26-3 )
(l'D_|n—,ZD(ﬂ—y A n—z) A n—(:L‘D—\n—:Z)D(]jry>D(y +p z)
= ( by Boolean algebra and Proposition 4.22-6 )
([pm”—yuﬁ”—z A ”—(;L'mﬁ”—z)mx@uﬁ”—;z)u(y +p z)
= ( by Remark 4.8, Proposition 3.14-9 and Boolean algebra,
(2aTy)e"(((zo"2)owg) = (wen"2)e (way)e (2g) = T
then apply Corollaries 3.21-17 and 4.4-1 )

(zey A (wo="2)og)o—"z0(="20y A ="yoz A (y H 2))
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= ( by Corollaries 3.21-4 and 3.21-3, Propositions 3.14-17 and
3.14-11, Boolean algebra and (3.6) )

(gjun_y A n_(;cuﬁﬂ_z)uxn—y)uﬁﬂ_zuy
= ( by Remark 4.8, Proposition 3.14-9 and Boolean algebra,
"(za"y)e"(M(we"2)ozg) = (womT2)o (e"y)o (2g) = T,
then apply Corollary 3.21-17 and Boolean algebra )
l’m—ﬂ_zm”_yuy @l ”_(qjm—\”_z)mxn—yuﬁ”_zuy
= ( by (3.19) and Propositions 3.14-7 and 4.22-6 )
n_(xuﬁn_z)uxuy @ n_(l‘mﬁn_z)mxn—ymy
= ( by Corollary 3.21-4 )
(o="2)e(wey A zgoy)
= ( by Corollaries 3.21-4 and 3.21-3, Proposition 3.14-7, (4.4)
with x, ¢ := z,"y, Boolean algebra and (3.6) )
—"zo(zoy A agoy) A T(awe—"2)o(xoy A zgoy)
= ( by Corollary 3.21-5 )
(=" A T(we="2))0(woy A g 0y)
= ( by De Morgan, Proposition 4.17-5 and Definition 4.16 )
~apz)a(zpy)
(b) Proof of (4.39).
NwoyHwoz)e(z p (Y +p 2))
= ( by (3.21), (3.20), Proposition 3.14-3 and Definition 4.16
)
zay)a(wa"2)a(z2(y +p 2) A Zrgy4p,.)2(y 4 2))
( by Corollary 3.21-4 )
xey)al(

Yo (xo2)oxo(y +p 2) A ”Txury)D”qur'})Dxr(y+Dz)D(y +p 2)

= ( by (4.4) with x, ¢ := z,"(y 4p z), Corollary 4.4-3,
Lemma 3.17-6 and Boolean algebra,
”—('f“rz)ﬂn—(ifr(yqtm))
2 Mao"z)o="(we"(y +4p 2)) = "(wo"z)o="(2e(Ty A "2))
I M(zo"2)o="(z0"2) =T,
then apply (3.19) twice, Corollary 4.4-1 and Proposition
3.14-7 )

wo oo (< Moy A~z P (y 5 2)) A oo )e Toary e (y 40 2)
= ( by Corollaries 3.21-4 and 3.21-3, Boolean algebra and

(3.6) )

(

(
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xoyozo(y H 2)
= ( by Proposition 3.14-11 and (3.8) )
royHxoz
(c) Proof of (4.40).
"oy Hanoz)s(z p (y+p 2))
= ( by (3.21), (3.20), Proposition 3.14-3, Definition 4.16 and
Boolean algebra )
"2no"2)o (2o y)o(zo(y +p 2) A Tr(ytp) o (Y 1D 2))
= ( by (4.5) with x,t := z,"z and Corollaries 3.21-4 and
44°3)
"(@n)o(Mao"y)ozo(y 4p 2) A (we"y)owgmno(y 4p 2))
= ( by (4.4) with z,t := x,"(y +p 2), Corollary 4.4-3,
Lemma 3.17-6 and Boolean algebra,
”_(;pun_z)un_(g(}r(y+Dz))
2 o) o=y +p 2)) = Tro™)o~Tao(Ty A2))
I M(ao"2)o="(2a"2) =T,
then apply (3.19) twice, Corollary 4.4-1 and Proposition
3.14-7)
"(wn)o (e yo(y 4p 2) A To(y 4p 2))
= ( by Corollary 4.4-1, (3.6) and Corollary 3.21-3 )
"(an)oxsTyo(~"2oy A-"ys2 A (yH 2))

= ( by Corollaries 3.21-4 and 3.21-3, Boolean algebra,
Propositions 3.14-7 and 3.14-11, and (3.6) )

" )oxo(="z0y A (y U 2))

= ( by Proposition 4.22-2 )
(v Hwr)o(="20y A (y H 2))

= ( by (3.9), (4.5) with x,t := z,"z and (4.6) with z, t := z,"2
)

o zo(=T2oy A (yH 2)) Haono-z0(="Tzoy A (y H 2))
= ( by Corollaries 3.21-4 and 3.21-3, Proposition 3.14-11,
Boolean algebra, (3.6) and (4.6) with z,¢ := x,"2 )
Tro(yHz)darnoy
= ( by (3.8) and (3.9) )
(x Ha_n)oyHanoz

= ( by Proposition 4.22-2 )
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"(2r)oxoy H ooz
= ( by Propositions 3.14-20 and 3.14-7 )

roy Hrrnoz

(d) Proof of (4.42). The proof uses the following abbreviations.

<

= nty\:‘
= Myom

My
Ty

J
Qq

Toy)o (n_<x7">un_(x8>u(xr‘:‘2 Hx,oy) A _‘n_(xr)uxsuy A _‘n_(xs)‘jxruz)
xum <xuz>

(z

UU:BWCA
J
—

q

() a)o (@roy Ha,oy) A =" )owgoy A - )ow, o) W
("(y)o™(x4) o (2,02 Haygoz) A =" (2, )00z A ﬂ”—(xt)mxruz)>

Before getting to the main proof, we need some intermediate results. The
first one is A = zgo(="zoy A Tyoz).

o (—"zoy A y=z)
= ( by Boolean algebra )

Tyms0(—"zoy A Tyoz)
= ( by Proposition 4.25-1 )

="(zo(rAs))o((z, Hay) A="(x,)oxs A ="(xs)ox,)o(=Tz0y A Tyoz)
= ( by Boolean algebra, (3.20) and Proposition 3.14-11 )

—N@oy)s ((a,)e"(@s)e(z, Has) A-"(2,)oxs A ="(2;)02,)o
(="zey Ayez)
= ( by Proposition 3.14-9 and Boolean algebra,
the domains of "(x,)o™(z,)o (2, H x,), ="(2,)oxs
and —"(x,)ox, are pairwise disjoint,
then apply Corollary 3.21-17, (3.9), (4.5) with x,t := z,r
and (4.5) with z,t ==z, s )
—M(wey)a (M@)o (ws) o (zrore(""2oy A yez) 4
24080 (="zoy ATyoz)) A
="(x,)oxsos0(="20y ATyoz) A
—"(z5)ow,ore(="z0y A Tyoz))
= ( by Corollaries 3.21-4 and 3.21-3, Boolean algebra, (3.6),
Proposition 3.14-17, (4.5) with x,¢ := x,r and (4.5) with
r,t:=x,8)
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A

The second one is B = wroy H ornoz.

Tryoy Hrrnoz

= ( by Boolean algebra )
TrAs°Y H TrAttz

= ( by Proposition 4.25-1 )
="(xo(rAs))o((x, Hxs) A="(z,)ox, A ="(z,)0m,)oy U
="(zo(rAt))o((x, Hay) A-"(z,)om, A -"(2;)00, )02

= ( by Proposition 3.14-9 and Boolean algebra,
the domains of (x, U x,), ="(x,)oxs and ="(x,)om,
are pairwise disjoint and the domains of (x, H z;),
—"(x,)oxy and =" (x;)ox, are pairwise disjoint,
then apply Corollary 3.21-17, Propositions 3.14-11 and
3.14-20, (3.9) and Boolean algebra )
B

Next, we show
rro(—"Tzoy ATyoz) E zroy Honoz. (4.43)

By the previous two derivations, this is equivalent to A T B. This will be
shown by using case analysis (Corollary 3.21-19) with the four disjoint tests
M2, )o(xs), ()0 (xs), ="(x, )0 (xs) and ="(z,)o—="(x,), which satisfy

"(,)o (ws) A (@,)0="(2s) A ="(2,)0"(zs) A="(2,)0="(2,) = 1

by Boolean algebra.
i. Test "(x,)o ().
"(xr)o"(xs)o B
= ( by Boolean algebra, (3.8), Corollaries 3.21-4 and
3.21-3, and (3.6) )
o)z, )o-Tasy)o—Tasz)o

(zpoy Hagoy W ("(2,) 0 (2o (202 Hayoz) A ="(2y)0x,02))
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I

( by Propositions 3.14-9 and 3.14-3, (3.21), (3.20),
(4.5), the definition of ¢ and Boolean algebra,
(") o ()0 (wr02 W y22))

Mz, )0 (x)o " (zp02 W ay02)

wr)e(e)o" (2roz)e" (202)

@p)o" (@) 0" (,02) 0" (2072)

r)a () o (2,22)

= "("(ar)="(m1)o,02)

then apply (3.15) and Lemmas 3.22-3 and 3.7-1 )

"(x,)"(ws)o"(woy)a

("(zr)o(xe) ooz A A" (24)03,02)
= ( by Boolean algebra, Proposition 3.14-7, Corollary
3.21-6 and (3.2) )
()0 (@s)o"(woy)o(z,02 W s0y)
= ( by Boolean algebra, Corollaries 3.21-4 and 3.21-3,
and (3.6) )
"(xr)o"(xs)s A
ii. Test "(x,)o=(zs).
"(a,)o="(xs)oB
= ( by Boolean algebra, (3.8), Corollaries 3.21-4 and
3.21-3, and (3.6) )
()= (ws) o (woy)o (e 2)e
(="(zo)ezrey U (T(r) o (21)o (202 H ayo2) A = (2y)2,22))
I ( by Propositions 3.14-9 and 3.14-3, (3.21), (3.20),
(4.5), the definition of ¢ and Boolean algebra,
) o0)s (0,07 U 02))

=" (@
=" (@

"

b

(xsoy

= M(2,)o"(x;) o (2,02 U xy02)

= ay)a"(z)o (2p02)0" (2422)
= "(@,)o (@) o (x,02)0 (2,0"2)
= "(x,)="(ze)o (2722)

= "("(ar)a () ozr22),
then apply (3.15) and Lemmas 3.22-3 and 3.7-1 )
"(@,)o="(w5)o="(woy)o("(2,)o " (21) 0202 A 2"(24)0,02)
= ( by Boolean algebra, Proposition 3.14-7 and Corollary
3.21-6 )
"(w,)o="(25) 0" (woy) oz, 02
= ( by Boolean algebra, Corollaries 3.21-4 and 3.21-3,
and (3.6) )
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"(w,)o="(ws)0 A
iii. Test —="(x,. )0 ().
—"(@)o"(2s)0 B

= ( by Boolean algebra, (3.8), Corollaries 3.21-4 and
3.21-3, Proposition 3.14-17 and (3.6) )

~(2,)8 (2s)s " (woy)o =" (woz)s (2" (2, )szs0y H =" (2, )o202)
I ( by Lemma 3.7-1, (3.15) and Boolean algebra )
~(z,)s (2s)5 " (oY )owsy
= ( by Boolean algebra, Corollaries 3.21-4 and 3.21-3,
and (3.6) )
—"(@,)o" ()2 A
iv. Test ="(x,)o="(xzy).
—"(@,)o="(zs)s B
= ( by Boolean algebra, (3.8), Corollaries 3.21-4 and
3.21-3, Proposition 3.14-17, (3.6) and (3.4) )

I

( by (3.14) )
_‘ﬂ—(xr)u_‘n—(xS)DA

And, finally, the main proof.

"agoyHanoz)s(z b (y +p 2))
= ( by (3.21), (3.20), Proposition 3.14-3 and Definition 4.16
)
wryo"y)o(wro"2)o(zo(y 4p 2) A Tr(y 0 (Y 4D 2))
= ( by (4.5) with x,t := z,"y, (4.5) with 2, ¢ := z,"z and
Corollary 4.4-3 )
(o) (wm)o(zo(y +p 2) Azgaes(y 4 2))
= ( by Corollary 3.21-4, Propositions 3.14-7 and 4.25-1, and
(3.20) )
(@) (@r)o (2o (y 4p 2))s2e (y +p 2) A
() (w)o="(2e(Ty A "2))o
((zmy H o) A="(zg)orn A-"(2r)ory)o(y +p 2)
= ( by Corollaries 4.4-3 and 3.21-4, Proposition 3.14-11 and
Boolean algebra )
() o (wr)o(zo("y A "2))oae(y +p 2) A

(
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~(ae("y A"2))e((zy Hae) A Tore A Tozg)a(y 4p 2)
( by Corollaries 4.26-2 and 3.21-3, and (3.6) )
"(ao("y A"2))o(zg Har)o(y +p 2) A
—Maa("y A"2))e(wg Hoe)=(y 4 2)
= ( by Corollary 3.21-6 )
(wg Hae)o(y 4p 2)
= ( by (4.5) with x,t := z,y, by (4.5) with z,¢ := z,"z and
Corollary 4.4-1 )
(wr2"y W w0"2)o(="20y A -Tyez A (y U 2))
= ( by (3.8), (3.6), Propositions 3.14-7 and 3.14-11,
Corollaries 3.21-4 and 3.21-3, and Boolean algebra )
oo (=zey A (y W 2)) Hano(-"yoz A (y U 2))
= ( by Propositions 3.14-7 and 3.14-20, and Corollary 3.21-15
)

o ((—zoy A zoy) W ("Tzoy Ayez)) W
zro((="yez ATysz) W (="y=z A Tzoy))
= ( by Corollary 3.21-6 and (3.8) )
rryoy Hano(—"zoy A Tysz) H znoz H xno(=Tyoz A Tzoy)
= ( by (4.43) once as is, once with y, z := z,y, and (3.11) )

Tryoy Hrnoz

9. (x+py) D2
= ( by Corollary 4.4-1 and Definition 4.16 )
(xdy)A-"zoyA="yox)oz A ((zHy) A -"zoy A="yor)roz
= ( by Corollaries 3.21-13, 4.30-1 and 3.21-4 )
((xHy)A-"zoy A ="yox)oz A
((zHy)e A"z Hy)o(="2oy)r A"z Hy)o-"(="Tzoy)o(=yox)r )0z

= ( by (3.21), Propositions 3.14-3 and 3.14-9, De Morgan and
Boolean algebra )

(zdy)A-"zoy A -"yox)oz A
(zHy)e A (22 A ="y)e(2woy)s A-"ya(2Tya)n )z
= ( by Proposition 4.22-5 and Boolean algebra )

((.73 H y) A _||TEL'Dy A ﬂ”—ynx)uz A ((x L y)n—z A ﬁ”—xuyn—z A ﬁr@uxn—z)uz
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= ( by (3.21), Propositions 3.14-3 and 3.14-9,
and Boolean algebra,
the domains of x Hy, —"roy and ="yox are pairwise disjoint;
by (3.21), Propositions 3.14-3 and 3.14-9,
(4.4) with z,¢ := z Uy, ™2 and Boolean algebra,
the domains of (z Hy)r, ="zoyr and —"yoxr,
are pairwise disjoint;
then apply Corollary 3.21-17 )

(xHy)ozA-"zroyoz A-"yozoz A (xHy)roz A—-"roynoz A -"yoxn oz

— ( by Theorem 4.23 and (3.9) )

(xozHyoz) A—"Troyoz A -"yoxoz A
("(yo="2)oxo"2 AT (yo="2) 0w A (202 Hyr) A
M2o="2)oyo"2 A T(2o="2)oyr, A (xr Hyo"2) A (2 Hyr))oz A
—Troynoz A -"yornoz
= ( by (3.21), Propositions 3.14-3 and 3.14-9,
Remark 4.8, Lemma 3.17-4 and Boolean algebra,
the domains of "(yo—t)oxot, "(yo—t)ox,, (xot Hyy),
T(xo=t)oyot, (xo—t)oy,, (z,Hyot) and (x, Hy;)
are pairwise disjoint,
then apply Corollary 3.21-17, (3.9) and Proposition 3.14-7 )
(xozHyoz) A—"Troyoz A -"yoxoz A
Myo="z)oxoz AM(yo-"2)oxno0z A (zoz Hynoz) A
Mzo="2)oyoz AM(2o="2)oyro2 A (znozHyoz) A (znoz Hynoz) A
—Troynoz A -"yornoz
= ( by (3.21), (3.20), Propositions 3.14-3 and 3.14-9,
Lemmas 3.17-2 and 3.17-4, Remark 4.8, (4.5) with z, ¢ :== z, "2,
(4.5) with z, ¢ := y, "2 and Boolean algebra,
the domains of the twelve operands of the eleven A are
pairwise disjoint,
then apply (3.25) )
(xozUHyoz)A(xozHynez) A (xnozHyoz) A (rnoz Hynoz) A
—Txoyoz A ="roynoz AT (zo="2)oyoz A T(2o—"2)oyr oz A
="yoxoz A="yoxroz A (yo="2)oxoz A (yo="2)oxn 02
= ( by Corollaries 3.21-14, 3.21-4 and 3.21-5, and (3.2) )
((xozRAznoz)H (yoz Aynoz)) A (=2 A T(20="2))o(yoz Aynoz) A
(="y A (yo-"2))o(zoz Axgoz)
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( by Definition 4.16 )
((@p2)U(yp2)A("wA(za0"2))e(y » 2) A
(="y A (y=—"2))e(z p 2)

( by Proposition 4.17-5 and De Morgan )
(p2)H(yp2)A-"zp2)e(yp2)A-"yp2)e(rp2)

( by Corollary 4.4-1)

TpZipY D=2

10. We work on 2™ =14 z p 2™ since this is equivalent (see remark 2.2).

[P AR A |

P =14pxpx™

A1) =1+4pao(xA1)~
( by Corollary 4.4-1)
A1) =1dzo(xA1))A-Tlozo(zA1)*A-"(zo(zA1)*)ol
( by Proposition 3.14-1 and Boolean algebra )
A1) =(1Hzo(zA1)*)A Toxo(zA1)*A-"(xo(zA1)>)
( by (3.6), Corollary 3.21-3 and (3.20) )
A1) =(1dxo(zA1)*)A-="(zc"((x A1)¥))
( by Lemma 4.20-1 and (3.7) )

—

A1) =(1Hxo(zA1)*)A-"x

Therefore, it is sufficient to show

and

Tro(x A1) ="Tzo((1Hxo(xA1)*) A ")

=Txo(z A1) = ="zo((1Hxo(zA 1)) A ")

by Proposition 3.20-17.

Case "z

Tro(x A1)

( by (3.2) and (3.16) )
Tro(1W (zA1)o(zA1)X)

( by Proposition 3.14-20 )

150

( by Definition 4.19, Lemma 4.20-1 and Proposition 4.17-4 )
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Tro(1W Tzo(x A 1)o(x A 1))

= ( by Corollary 3.21-7 and Proposition 3.14-7 )
Tro(1Wxo(z A 1))

= ( by Corollaries 3.21-4 and 3.21-3, and Boolean algebra )

Tro(1-xo(zA1)*) A1)
Case ="z

=Tre(z A1) =-"zo((1Hzo(zA 1)) A ")
= ( by Lemma 4.20-2; Corollary 3.21-8 and Boolean algebra )
=Tre(z A1) ="

Since 1 C (z A1)* by (3.16) and (3.15), it follows that ="z C ="zs(x A 1)*. Here
is the proof of ="ze(z A 1)* C ="z

=Tze(zA1)*C -z
— ( by (3.13) )
=Tze(zA1) LTz C =g
— ( by Corollary 3.21-8 and Boolean algebra )

true

11. This is direct from Corollary 4.4-2.

12. The proof of Theorem 4.31-12 is thirty pages long. Go to page 181 for the proof
of Theorem 4.31-13.

If we demonstrate
rpz<pz = P pz<pz (4.44)

then we are done as shown in the following derivation.

rTpztpy<p=z

— ( by Corollary 4.4-2 )
rp2<pz Ny<pz

- ( by (4.44) )

*,

P pz<pz N y<pz
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= ( by Theorems 4.31-11 and 4.31-8,
Y<pz=—=y4tpz=2=2P py4prP pz=2" pz
= 2™ py<pa® pz,
then apply Corollary 4.4-2 )

TP py<pz

So here is the beginning of the proof of (4.44).

First, we show

rpz<pz <= "zLC Tgo-"(zo="2) Azeoz CN(zoz)oz Awnoz C N(zg)oz . (4.45)

Tpz<pz
= ( by Definition 4.1 )
TZCNzp2z) N zpzCTNzpz)oz
= ( by Proposition 4.17-5, Definition 4.16 and Corollary 3.21-16 )
T2 CTpo—="(20-"2) A xozRAznoz E (M(zoz) AT (2noz))oz
— ( by Proposition 3.20-16 and Boolean algebra )
T2 € Tzo="(20="2) A M(zoz)o(zozAanoz) CN(zoz)oz A
( M(rroz)oz

—"(xoz)o(roz Aanoz) C ="(xoz)0
( by Corollaries 3.21-7 and 3.21-8, Propositions 3.14-7 and
3.14-9, (4.5) with z,t := x,"z and Boolean algebra )

T2 € Tgo="(z0="2) A 2oz EM(zoz)oz A znoz C "(zn)oz

<~

Suppose x p z <p z. By (4.45),

T2 C Tzo=(z0-"2) (4.46)
roz T Mzoz)oz (4.47)
rrnoz L Mon)oz (4.48)

all hold.

We have to show 2 - 2 <p z. By (4.45) with z := 2™ and Definition 4.19, this
means that we have to prove the following equations.

T2 & MzA1)*e="((zA1)“e"2) (4.49)
(xA1)*0z T "((zA1)%cz)oz (4.50)
(A1) )eer T (e A1))e)os (151)

Before embarking in these proofs, we need the following intermediate results. Note
that the proofs of all the subsequent identities depend directly or indirectly on
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(4.46). Therefore, the following results depend on the context and this is why

they are not stated in an independent proposition.

(a) Proof of (4.52).

T

MTrox A-"zogo-"2

= ( by (4.46) and Boolean algebra,
T2 AMzo="2) C g,

then apply Proposition 3.14-7 and Boolean algebra )

("2 AT(zo="2))0x

= ( by Boolean algebra )

("zA="20"(xo="2))0x

= ( Corollary 3.21-5 )

T2ox A ="20"(20="2)on
- (by (3.19) )

Tzox A—"z000-"2
(b) Proof of (4.53).

true
— ( by (4.52) )
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x="zox A-"zopo-"2

- ( by Proposition 3.14-9 and Boolean algebra,
T("Mzox)e"(=Tzoxo="2) = T20Tpo=T2a0M(2o="2) = T,
then apply Corollary 3.21-17 )

Tzoxo 2 A -"zog0-"20"2

= ( by Boolean algebra, (3.6) and Corollary 3.21-3 )

20"z = Tzoza™2

(c¢) Proof of (4.54). This follows from (4.52), Corollaries 3.21-4 and 3.21-3,
Boolean algebra and (3.6).

(d) Proof of (4.55).

—Tze(z A1)
= ( by Corollary 3.21-4 and Boolean algebra )

—Mzop A"z
= ( by (4.54), Corollary 3.21-2, Proposition 3.14-9, De
Morgan and Boolean algebra )

—|H_ZI:IJ}D—|H_Z |:1 —|n_ZD—|n_q,’D—|n_Z

= ( by Propositions 3.14-9 and 3.14-1, and Boolean algebra,
T(="zox)aM(="20="r) = 220 Tgo="20="T0 = T

then apply Corollary 3.21-17 )
(=Tzoz A ="z0-"x)o="2

= ( by Corollaries 3.21-4 and 3.21-2, and Boolean algebra )

b

—Tze(z A 1)a-"z

(e) Proof of (4.56).

Xy
- ( by (452) )
(Tzox A ="z000-"2)r
= ( by Corollary 4.30-1 )
("zox)n, A ="(Tzoz)o(m"2z000-"2)r
= ( by Proposition 4.22-5, Corollaries 4.26-1 and 3.21-3, and

(3.6) )

AN

The proof of z_r, = "Tzox_r, is similar.
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(f) Proof of (4.57). By Lemma 4.20-3 and Proposition 3.14-1, ="z C "((z A
1)*6="2). The proof of the other refinement follows.

T(xA1)*0="2) C =2

— ( by (3.22) )
"((zA1)e="2)E -T2

= ( by Corollaries 3.21-2 and 3.21-17 )
T(xo="zA=Tgo="2) C =2

= ( by Corollary 3.21-16 and Proposition 3.14-1 )
T(xo="2)A—Tre=2 C 2

= ( by De Morgan and Boolean algebra )
T(2o="2) E ="20(Tz A "2)

= ( by Boolean algebra )
T2 C Txo="(z0="2)

= ( by (4.46) )

true

(g) Proof of (4.58). This is direct from (4.57) by Boolean algebra.
(h) Proof of (4.59). By (4.57) and Proposition 3.14-7, ="za(2A1)* = (xA1)*o—-"2
is equivalent to ="ze(x A 1)* = ="za(x A 1)*o—"2. We prove the latter.

The refinement ="zo(zA1)* C ="zo(z A 1)*o="2 follows from Lemma 3.7-1.

The other refinement is proved as follows.

—T2o(zA1)*o="2 C ="20(x A1)

= ( by Proposition 3.14-6 )
(xA1)*e="2 C -"20(x A1)
= ( by (3.12) )
(xA1)o="z0(zA1)* ="z E-"z0(z A1)~
= ( by Proposition 3.3-1 )
(xA1)o="z0(xA1)* C=Tzo(xA1)a(x A1)
= ( by (4.55) and Proposition 3.14-6 )
true

(i) Proof of (4.60). We prove —="zo(z A 1)* E ="z first.
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=Tzo(z A1) C =g

— ( by (3.18) )
=Tzo(z A1) C ="

— ( by Corollary 3.21-4 and (3.7) )
—Tzox A -Tx E -

= ( by Proposition 3.14-17 and Corollary 3.21-3 )
true

The refinement d follows from Lemma 3.7-6.

(j) Proof of (4.61).

—"zo((z A 1))

= ( by Proposition 4.22-5 )
(=22 (z A 1)*)-m

_ ( by (4.59) )
(A1) e"2)

= ( by Corollary 4.26-1 )
T

(k) Proof of (4.62).
=Tze((xA1))n
= ( by Proposition 4.22-5 )
(="ze(rA1)%)-m
_ ( by (4.60) )

- (by (4.11))

(1) Proof of (4.63).

(@ A1))-r)
y (4.4) with z, ¢ ;== (x A1),z )

(

T((xA1)*a2)e="((z A1) 0="2)e"(x A1)
(
)

J

= by (4.58) and Lemma 4.20-1 )
="((xA1)*0"2)02
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(m) Proof of (4.64).

((zFA1)*)-n

= ( by (3.7) and Boolean algebra )
("2 A-"2)a((xA1)*)-m

= ( by Corollaries 3.21-17 and 3.21-3, and (4.61) )
ze((xA1)")w

(n) Proof of (4.65). First, one has ="zoxo(x A 1)* = ="zozo(z A 1)*o-"z by
(4.54) and (4.59). Then —"zo(xo(x A 1)*)or = T is shown like for (4.61).
Finally, the desired result is shown like (4.64).

(0) Proof of (4.66). This proof is similar to the one of (4.64).

And now back to the proof of (4.49), (4.50) and (4.51).
Proof of (4.49).

Mz A1) o="((xA1)*0="2)
= ( by (4.58) )
TaxA1)<e"2

( by Lemma 4.20-1 and Boolean algebra )

T2

Proof of (4.50).

(A1) o2z C"((zA1)*0z)0z

— ( by (3.12) )
zA1)e((x A1) 0z)ezHd 2 CT((z A1) 0z)0z
— ( by Propositions 3.14-7, 3.3-1 and 3.14-8, and (3.7),

z="z02="(loz)o2z C"((xA1)*0z)0z )

(xA1)"((x A1) ez)oz CT((z A1) 0z)oz

— ( by (3.19) )
T(xA)"((xA1)*e2))o(xAl)ez CT((z A1) 0z2)0z
= ( by (3.20) )

M(zA1)o(xA1)*02)o(zA1)oz E((xA1)*0z)0z
— ( by Proposition 3.3-1 )
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M(zA1)*o2)o(zA1)oz CE((xA1)*0z)0z
— ( by Proposition 3.14-6 )
(xA1)oz E"((zA1)*0z)0z
— ( by Proposition 3.3-2 )
Aoz E™((zA1)02)0z
= ( by Corollary 3.21-2, Boolean algebra and (4.52) )
TzoxA—"2000="2 A -"2)oz C"((Tzox A -"2000-"2 A ="z)02)0z

== ( by Propositions 3.14-9 and 3.14-1, Boolean algebra
and Lemma 3.17-2,
n_(n_zﬂx>ﬂn_(_|n_Z’DxD_|”_Z) = I-'_ZEI

n_<n_ZDx>D—| T = Zo xo—
—

and "(="zoz0-"2)o="Tr = =T20M(2o-"2)0="T0 = T,
then apply Corollaries 3.21-17 and 3.21-3, Proposition 3.14-17
and (3.6) )
Tzoxoz Aoz C(Tzox02 A —"ro2)0z
— { by Corollary 3.21-16 and Proposition 3.14-9 )

TzoxozA—"roz C (T20(xoz) A -"20"2)0z
= ( by Propositions 3.20-16, 3.14-7 and 3.14-9, Corollaries 3.21-4
and 3.21-3, Boolean algebra and (3.6) )

Tzoxoz €20 (zoz)oz A =0z C =Mgoz0z

= ( by Propositions 3.14-6 and 3.14-7, and Boolean algebra )
xoz CM(zoz)oz

— ( by (4.47) )
true

Proof of (4.51). Let

B = zo"zAzg AM(z0-"2) A", (4.67)
A = "(((zA1))r)oB* and (4.68)
C = (zA1)%e"z, (4.69)

By (4.4) with z,t := (x A 1)*,"z, (4.69), (4.58) and Lemma 4.20-1,

A= —"C"z0 B, (4.70)
Before proving (4.51), we will prove that the following properties hold for all
T, z,t.

Bz = "B (4.71)
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(a) Proof of (4.71).

Boz

= ( by (4.67) )

/o

[ |

IF

1

(@A)

=Txo(zAl) = -"zo(zA1)* ="z
T(zot)o(zo"20t Az ot AM(x0="2))
A"z

-

H_CDBX

Tzoxa(x A1) o2 (zo(z A1) )
20"z A o

(x0"z Az )0 B>

T(@n1))e)

Ad((zA1)")-m

A

(02 A g AM(zo="2) A ="z)o"2

= ( by Remark 4.8, Boolean algebra and Corollary 3.21-17 )

2oz Az AT(

xuﬁ”—z)\:”—z il ﬁ”—xn

T

159

= ( by Boolean algebra, (4.53), (4.5) with z,t := z,"z and

(4.56) )

T2ox0"2 A Tzoxn, AT20™(20"2) A T20-"2

= ( by Corollary 3.21-4 and (4.67) )

T20B
(b) Proof of (4.72).

"B

= ( by (4.67) )

T(zo"2 Az AT (2o="2) A ")

= ( by Corollary 3.21-16 and Proposition 3.14-1 )

T(2o"2)AMN(xn) A N(xo="2) A ="z

= ( by Remark 4.8 and Boolean algebra )
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Tr A"z
= ( by Boolean algebra )
1

(¢) Proof of (4.73).

TA
= ( by (4.68) and Proposition 3.14-9 )
"((zA1)*)=)a"(B¥)
= ( by (4.72) and Proposition 3.14-22,
true <= "B=1=— "(B*) =1,
then apply (3.7) )
"((zA1)*)e)
(d) Proof of (4.74). The equalities ="zo(z A1) = ="zo(z A 1)* = ="z follow
from Corollaries 3.21-4 and 3.21-3, Proposition 3.14-17, Boolean algebra and
(4.60).

Here is the derivation for ="zo B = —"x.

—"zoB
_ (by (467) )
="zo(ze"z Axng AM(2o="2) A -"r)

= ( by Corollaries 3.21-4 and 3.21-3, Proposition 3.14-17 and

Boolean algebra )
—Trorn A-"xo (xo="2) A -

= ( by (4.10), Lemma 3.17-2 and Corollary 3.21-3 )

—|ﬂ_x

The refinement —="x T ="zoB* follows from Lemma 3.7-6 and here is the
derivation for ="xoB* C -z,

—|”_x

y (3.13) )

T

C -y

ﬁn_xDBX

= (

IF

5 O

—|H_:CDB I:I =

= ( see the previous derivation )

true

(e) Proof of (4.75).
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"(zot)o B
- (by (4.67) )
T(zot)o(zo"2 Awe AT (zo="2) A -"2)
= ( by Boolean algebra and Corollary 3.21-4 )
T(xot)o(M(zot)oxo"z A (zot)oxg A(aot)o(2o="2) A M(zot)o-"z)
= ( by (3.19), Proposition 4.22-6, Lemma 3.17-2 and Boolean
algebra )
T(xot)o(xo"z0t A (wot)oxnot A ™(zot)o T (xo="2)AT)
= ( by Corollaries 3.21-3 and 3.21-4 )

T(xot)o(xo"20t A an ot AT(zo-"2))

(f) Proof of (4.76). We only need to show Aoz £ A, since the other refinement
follows from Lemma 3.7-1.

A"z C A

= ( by (4.70) )
T20B*cz E "20 B>

= ( by Proposition 3.14-6 )
B*az E 20 B>

= ( by Proposition 3.3-3 )
BTz C"20B

— ( by (4.71) )
true

(g) Proof of (4.77).
T(xe"C)e A
= ( by (4.70), (4.69) and (3.20) )
T(xoC)o="((x A 1)*c"2)o 20 BX
= ( by (3.16), (3.9), (3.21) and Proposition 3.14-1 )
T(2eC)o("((xA1)o(zA1)*0"2) LU 2)c 20 B>
= ( by Boolean algebra )
T(2eC)o="((x A 1)s(xA1)*c"2)aTz0 B>
( by (4.69) and Corollary 3.21-12 )
T(20C)o="(zoC)a"20 B>

I
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= ( by Boolean algebra and (3.6) )
T

(h) Proof of (4.78).

CLC"CaB~
= ( by (4.69) and (3.12) )
zA1)s"CeoB* Uz C"CeB>
= ( by (3.7), Propositions 3.14-1 and 3.3-1, and (4.69),
T2 =T(10"2)e1 E((zA1)*e"2)eB* ="CaB* )
(xA1)s"CeB* C "CoB*
= ( by (3.7), Proposition 3.3-1, (3.20) and (4.69),
T2 =T1oz) CT((zA1)*0z) ="((zA1)*a"2) ="C,
then apply Boolean algebra )
(2 A1)e"CoT20B* C "CoB*
= ( by Proposition 3.3-2, (3.20) and (4.69),
M(xA1)oz) ET((zA1)*0z) ="C,
then apply (3.19), (3.20), Proposition 3.3-1 and Boolean
algebra )

"(xA1)oC)o(x A1) 20 B* C"Co((zA1)o"2)a BoB*
= ( by Proposition 3.14-6 )
"Co"((zA1)eC)o(zA1)e"2aB* E"Co"((z A 1)0"2)0 Bo B>
= ( by (4.69) and Proposition 3.3-1,
M(zA1)oC) ="((zA)o(xA1)*a"2)
C"((zA1)*a"2) ="C,
then apply Boolean algebra )
"Co(xA1)e 20 B C"Ce"((xA1)e"2)o BoB*
=

(xA1)o"2 C™((zA1)o"2)0B
(

~

— by Corollaries 3.21-2, 3.21-17 and 3.21-16, and Boolean
algebra )
2oz A"z E (M(20"2) A ="20"2)o B
= ( by (4.67) and Corollary 3.21-4 )

20"z A"z E (M(2o"2) A ="2a"2)oz02 A
(Mo
T2

)A="xa"2)oxr A
(n_(g;u ) A ﬁn_xun_z)mn_(;puﬁn_z)
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((2o"2) A ="z0"2)o="z
— ( by Proposition 3.14-7, Boolean algebra, Lemmas 3.17-2
and 3.17-4, and Corollary 3.21-3 )

20z A-"xe"2 E o2 A (T(20"2) A "2 2)oxn A =202
— ( by Proposition 3.14-7, Boolean algebra, Remark 4.8, (3.6)
and Corollary 3.21-3 )

true

(i) Proof of (4.79).

(zA1))r

= ( by (4.64), (4.66) and (3.16) )
Tro"zo((zAl)e(zA1)*U1)n

= ( by Theorem 4.23, Boolean algebra and Proposition 3.14-1

)
To™; D( zo(zAD)o(z A1) o="2A"20((xA1)o(z A 1)) A
(zA1)e(x A1) e-"2H 1) R
T(xA)e(zA1)c"2)a="2A
T((zA1)s( T2
(zA1)s(xA1))-nH-"2)A
(e AD=(2A1))e U 1oe) )
= ( by (4.11), Corollaries 3.21-4 and 3.21-3, (3.8), Boolean
algebra and (3.4) )
Tro("Tzo(xA1)o(x A1) 0="2ATzo((x A1)o(x A1)*).r)
= ( by Corollaries 3.21-4 and 3.21-7, Boolean algebra,

Propositions 4.22-5 and 3.14-7, and (4.65) )
Tzozo(zA1)*o="2 A (xo(zA1)*)r

)
x A 1)XD )Dlﬂrz A
)

(j) Proof of (4.80).
Tro="(zo="2)oB
= ( by (4.8), Boolean algebra, Corollary 3.21-16 and (4.67) )
("(20"2) A™(2r))o (202 Axrg AT(2o="2) A ")
= ( by Remark 4.8 and Corollary 3.21-17 and (3.25) )
M(xo"2)o (202 Aan AM(2o="2) A -"2) A

"(zry)o(xrn, Azo"2 AT(20o="2) A 1)
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= ( by Corollary 3.21-7 and Proposition 3.14-7 )

xmn_zﬂxnjz

(k) Proof of (4.81).

(202 A wr)o B>
= ( by (4.80) )
Txo-"(20-"2)c Bo B*

( by Proposition 3.3-1, Lemma 3.7-1 and (4.68) )

IF

n—,’L'D—\”—(l'Dﬁ Z)DA
(1) Proof of (4.82).

AU ((zA1)*)w)
= ( by (3.21) and (4.73) )

(A1) )e) B (A 1))-r)
= ( by (4.4) with x,t := (x A1)*,"z and Boolean algebra )

"((zA1)*)=)
(m) Proof of (4.83).

(@A) )e)a(z A1) CAY((zA1))-x
= ( by (3.13) )
(AU ((zA1)*)-m)e(@ADE(((zA1))s) T AL (2 A1)*)-m
(3.7), Proposition 3.3-1 and (4.68),
1)) ="(((zA1))=)=1
C((xA1))r)aB* = A)
(A ((zA1))m)e(zA)C AU ((zA1))-n
= ( by (3.9), (3.15) and (3.3) )
As(zA1)C AL (A1) )-m A
(A1) )mo(xzA1)E (A1) )n
= ( by (4.6) with o, ¢ := (A 1)*,"z and (4.55) )
As(zA1)C AU ((xA1)")-m
(A1))-me(zA1)e"z E(( 1)%)-r
= ( by (4.5) with x,¢:= (xA1)*,"z, (4.6) with
z,t = (x A1), "2, (4.4) with z,t := (zA1)*,"2
Propositions 4.22- 2 and 3.14-7, and Corollary 4.26-10 )

— ( by (3

(=
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Ac(zA1)C AU ((x A1) )-m A
(A1) )omo(zA1)o=""2CT((zA1)*)po(x Al
— ( by (4.6) with x,t := (x A1)*,"z, (4.55) and Proposition
3.3-1)
Ac(zA1)C AU ((xA1))-m A
(zA1))me(zA1)CT((2A1) )pe(zA1)*e(xA1)
= ( by (4.68), (4.82) and Proposition 3.14-7 )
"((@A1))=)eB*a(zA1) EN(((zA1))m)e(A- (zA1))-m) A
(A 1))-n (xR 1) )m)=(x A1)

X

— ( by Propositions 3.14-6, 3.14-7 and 4.22-2, (3.15) and
(4.82) )
Bo(zA1)C AU ((zA1)")-n
= ( by Corollary 3.21-12 )
B*s(xA1)C (AU ((zA1)*)-n)AC
= ( by (3.12) )
Bo((AH((zA1))n)AC)H(zA1) E (AL ((zA1)*)n)AC
= ( By (4.69), (4.82), Remark 4.8 and Boolean algebra,

the domains of AW ((zA1)*)-r and C are disjoint
and thus, by Proposition 3.14-7 and Boolean Algebra,
MAH ((zA1)*)r)eC =C,
then apply Lemma 3.22-6 )
Bo((AY ((z A1) )n)AC)H(zAL) C AL ((zA1)")-n A
Bo((AY ((zA1))n)RC)H (zA1) CC
= ( By (4.69), (4.82), Remark 4.8 and Boolean algebra,
the domains of AL ((x A1)*).r and C are disjoint,
then apply (3.25), Corollaries 3.21-15 and 3.21-12, (3.8)
and (3.3) )
Ba(CRA)C A A
Bo(CA((zA1))m) TAU((xA1))an A
cAIC AU (A1) ) A
BoaCCC A
xA1CC
= ( by (4.73), (4.69) and Remark 4.8,
the domains of A and C' are disjoint
and the domains of ((zA1)*)-r and C are disjoint,
then apply (3.25) )
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Bo(ARC)C A A
Bo(((zA1))nAC)C AU ((xA1))n A
cAIC AU (A1) ) A

BoCTC A

zA1CC

Thus, we have to prove the five following properties in order to terminate
the demonstration of (4.83).

Be(ARC) C A (4.85)
Bo(((zxA1))sAC) T AU((zxA1))r (4.86)
zAl T AUd((zA1))m (4.87)

BsC C C (4.88)

rAl C C (4.89)

These proofs frequently use case analysis (Corollary 3.21-19) based on ap-

propriate tests. To be appropriate will mean that the tests must be disjoint

and cover "z, i.e., their meet must refine "z. Indeed, the test ="z can be

ignored, since all five properties hold for this case. This is easily seen by the
following.

Firstly,

—Tzo A

= ( by (4.68) )
—ze (2 A 1)")-r)o B~

= ( by Propositions 3.14-9 and 3.14-19, (4.62) and (3.6) )
T

so the right part of (4.85), (4.86) and (4.87) is T in the presence of ="z,
making them true when restricted to the test —"z.

Secondly, ="zaBaC' = ="zasC by (4.74), so (4.88) is true when restricted to
the test —"z.

Finally,
=Tzo(zx A1)
= ( by Corollary 3.21-8 and Boolean algebra )
—|n_,j(,’
C ( by Boolean algebra )
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_ ( by (4.60) and (4.69) )
=10

so (4.89) is true when restricted to the test —"z.
Here we go with the proof of the five aforementioned properties.
i. Proof of (4.85).
Be(ARC)
C ( by (4.78) and Lemma 3.22-1 )
Bos(ARTCsB>)
= ( by (4.69), Lemma 3.7-6 and Propositions 3.14-8
and 3.14-1,
true<= 2 CC = T2C"C,
then apply (4.70) and Boolean algebra )
Ba(="Ce"z0B*A"Co"20B>)
= ( by Corollary 3.21-6 )
Bo"z0 B~
= ( by (4.71) )
0B B*
( by Proposition 3.3-1, Lemma 3.7-1 and (4.70) )

IF

A
ii. Proof of (4.86). We use case analysis with the following tests
“_(x\:lﬁn—z)’ n_(an_C), n_(xDﬁH_C)Dﬁn_(ajDﬁn_Z), n_(xm)\]—ln_(l'ﬂ_\ﬂ_,?’,) .

They are disjoint by (4.69), (4.59), Boolean algebra, Lemma 3.17-4 and
Remark 4.8. They cover "z by Remark 4.8 and Boolean algebra.

A. Test M(xo—"2).
T(xo="2)eBo(((xA1)*)-rn AC)
C ( by Corollary 3.21-12 )
T(xo="2)eBo((zA1)*)n
= ( by (4.67) and Corollary 3.21-4 )

= ( by Propositions 3.14-7 and 3.14-9, Remark 4.8,
Boolean algebra, (3.6) and Corollary 3.21-3 )
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MwamT2)a(( 1))
in ( by (3.15) )
"(ze—"z)a(AH ((z A 1)*)-m)
B. Test "(z="C).
"(2a"C)eBa(((zA1)*)-=AC)
( by (3.14) )

IF

N
by (4.77) )

{
T(xe"C)o A

IF

(by (3.15) )
"(2="C)o(AU (A 1)*)-r)
C. Test M(zo="C)o="(xa="2).

((2o="0)e =" (zo="2)a(AH (2 A 1))r)
( by (3.15) )
Tao-TC)a-Tao2)o((@ A 1))or
= ( by (4.79) )
n_<xu—|”_0)m—|n_<q;\:|—|n_z)D(n_zngju(q; A 1)XD—|H_Z A
(zo(z A 1)*)-r)
= ( by Corollary 3.21-4, Boolean algebra, (4.59) and
Proposition 4.22-5 )
n_<xu—|n_0)m(n_zn—un_(xnﬁn_z)ngjuﬁ”_zu(Qj A 1>>< A
(="(zo="2)oze (2 A 1)*)-r)
= ( by Propositions 3.14-17 and 4.22-5, (3.6) and
Corollary 3.21-3 )
((ze"C)o="(zem"2)oza(z A 1)*) g
{

by Boolean algebra and (3.19) )

I

(""(zo"z)exs="Co(z A 1)*)
= ( by (4.3) with x,t := z,"z, Proposition 3.14-7,
Corollaries 3.21-4 and 3.21-3, Lemma 3.17-5 and
Remark 4.8 )
(202 A (zp H o n))e-"Co(z A1)*)
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( by Remark 4.8, (3.21), Proposition 3.14-3
and Boolean algebra
the domains of z0"z and xr, H 2, are disjoint,
then apply Corollary 3.21-17 and Propositions
3.14-7 and 3.14-20 )

(:L'D”TZD_\”_CD(:L‘ @ 1)>< il n_(l'n'z)ﬂ(l'ﬂ'z H Qfﬁﬂ‘z)ﬂ_ln_cﬂ(l' A 1)><)ﬁ"_z

( by Proposition 3.14-18, Boolean algebra,
Lemma 4.20-1, (3.20) and (4.4) with z,t := 2, "z,
true <= "(z0"2) C "(20"20-"C)
<= (20"20-"C) C ="(z0"2)
< (2o 20-"Ce(xA1)*) E "(zr)
< MzoTz0=-"Co(zA 1)) (2r) = T(zr),
then apply Corollary 4.30-1 and Propositions
4.22-5, 3.14-7 and 3.14-20 )

(20T20="Cla(z A 1) ) A((zn Haon)o"Co(x A 1))

( by (4.69), Lemma 3.7-6 and Propositions 3.14-8
and 3.14-1,
L,
then apply (3.9), (4.5) with z,t := z,"z, (4.6)
with z,¢ := z,"z and Boolean algebra )

(20T20="Co(x A 1)*)_ A

(anZDnTZDﬁn_CD((L‘ A ]_)X H x_,n'ZD_'n_ZD((L’ A ].)X)

(x

z

-z

( by (4.69), (4.63), Proposition 4.22-2, (3.8),
Boolean algebra and (4.59) )

o((z A1) )z Hzo((zA1))n) o A
(rro((z A1) )z Hane((zA 1)) Hzono(z A 1)0="2)

( (3 2), (4.5) with z,t := (zA1)*,"z, (4.6) with
= (zA1)*, "z, Boolean algebra and Corollary
4 26 9)

Txo((x A1) )g)oxe((xA1)*)n A

Mzno((zA1))g)o(reo((zA1)*) o Haoogo(z A 1)*0="2)

( by Propositions 3.14-20 and 3.14-7, (3.20), (3.19)
and (4.4) with x,t:= (xA1)*,"2 )

zo((zA1))n A (zro((z A1) )an Hao_ge(z A 1)*e"2)

(=

2o((zA1))nAzrne((zA1))n

)
( by Lemma 3.22-1 )
)
{

by (4.64), Remark 4.8 and Corollary 3.21-17 )



Chapter 4. Definition of Angelic Operators in DAD 170

(xo"zAzn)o((zA1))
| ( by (4.80) and Corollary 3.21-12 )

Tro="(xo="2)eBa(((x A 1)*)-n AC)

We have shown

]

Tro="(xo="2)oBo(((x A1) )-n AC)
C "(2o="C)o="(z0="2)s (AL ((x A1) )m) .

By Proposition 3.14-6 and Lemma 3.17-1, this is equivalent to

o€z 2)e Bo((2 L)) = AC)
C n—(.ﬁu_\n’c)gﬁ”—(xn—'”—z)n(/l H ((33 A 1)X)ﬁﬂ’z)

which corresponds to (4.86) restricted to the test
”_(xmﬁn_o)mﬁn_({,(}uﬁn_z) .

D. Test "(w)o—"(zo-"2).

Firstly, we show
rooC € M(xr)o="(zo="2)0 A . (4.90)

rr(xntv) D—|n_<I‘D—|n_Z> DA

= ( by (4.4) with z, ¢ := x,"C and Boolean algebra )

ﬂzxm)ﬂrxﬂﬁn_(x\]ﬁn?z)DA
I ( by (4.81) )
T(xr)o (202 A 2 )0 B
= ( by Corollary 3.21-9, (4.4) with z,t := x,"z,
Proposition 3.14-7 and Boolean algebra )
"z )o(z0"z Arqgon) Tn)o B
= ( by Propositions 3.20-8 and 4.22-5 )
("(@)oza"z Angon) (@) sz)rn)o B>
! ( by Propositions 4.22-2 and 3.20-14, and (3.15) )

(JZnCDn_Z Hn‘(xun};) (l’n@ H x—‘ﬂz’/‘)ﬂ'z>DBX
= ( by Lemma 3.7-6 and (4.69),
TZC(zA1)<a"z="C,
then apply (4.5) with x,t := z,"z, (4.6) with
x,t := x,"z, Corollary 4.26-5 and Boolean
algebra )
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(xr(j Arzomn) (ﬂ_(iL‘ﬂerD—'“_Z)DSCnC A (l‘nzj H (:L}m)ng))) o B
= ( by (4.4) with z,t := -, "2
and Boolean algebra,
(@ "2) e (20)n = "(2-)r,
then apply Propositions 3.14-7 and 3.14-20, and
Corollary 3.21-9 )
(W Areon) (T Ane_g,0-%) (o H (fkm)@))) o B~
I ( by (3.15) and Proposition 3.20-15 )
(2 Argor) (20 Ane_g,0-m) @) B

= ( by Proposition 3.20-13 )

l‘nCDBX

I

( by (4.5) with z,t := 2,"C" and (4.78) )
JZnCDC

Secondly, we prove

Nz-roez0((zA1)")-r)e
Mroo—Tzo(z A1) A (r—r)ne((zA1))e) = T . (4.91)

"(@-roeza((z A 1))-r)e
"(@-ozo(z A1) A (zo)me((z A 1)9)x)

I ( by Proposition 3.14-18 and Corollary 3.21-16 )
"(@-ee"2)e ((w-oe "z (¢ A 1)) A((z-0)me (2 A 1)*)-r))
=L

)e
( by Proposition 3.14-18 )
"(@-ra"2)o (2o "2) A((2-0)r))
( by Remark 4.8 and Boolean algebra )

-
Thirdly, we prove

e o((2 A 1)) A (2-r)o(2 A 1)) A
Too—Tze(z A1) (4.92)
C  ag)o-"(20-"2)a((zA1)")n

using (4.91).

o) -2)o((2 A1)
= ( by (4.79) and (4.59) )
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"(xre)o="(2o="2)o(Tzoxo="20(x A1)* A (zo(z A 1))
= ( by Corollary 3.21-4 and Proposition 4.22-5 )

)

"(2e)o="(20="2)0 " z0p0="20(x A 1)* A
((aw)e=(zo="z)oz0(z A 1)*)
= ( by Boolean algebra, Proposition 3.14-17, (3.6) and
Corollary 3.21-3 )
("(wr)o=(@o="z)ow0(z A 1)*)
= ( by (4.3) with z,t := z,"z, Propositions 3.14-7,
3.14-17 and 3.14-20, Corollarles 3.21-4 and 3.21-3,
Lemma 3.17-5, (4.4) with z,t := z,"z and Boolean
algebra )
("(aw)o(ze"2 A (zr Han))o(@A 1))
= ( by Remark 4.8,

the domains of 20"z and xr, H z_r, are disjoint,
then apply Corollaries 3.21-4, 3.21-17 and 4.30-2 )

("(z)eze"ze(z A 1)) ¢ A ((zo)o(ve Hrs)a(z A 1))
= ( by (3.8) and Propositions 4.22-5 and 4.22-2 )
(zoHaoro)o"ze(xA1)*)_ o A
<(($rc' H ZE—\HC’)H'Z H (1’!@ H :L'_\nzj)ﬁn-z)ﬂ(x A 1)X>
= ( by Lemma 3.7-6 and (4.69),
T2 (zA1)*"2="C,
then apply (3.9), (3.2), (4.5) with x,t := z,"C,
Boolean algebra and Corollaries 4.26-6 and 4.26-8 )
(roo(z A1) Haomozo(zA1)%) o A

z

<<(”_(xﬁncm—|”_z)mxnc A (zoH (roo)r)) Y

(2o A (2-)-) ) o (2 A 1))
= ( by (3.21), Remark 4.8 and Boolean algebra,
the domains of 2 H (z-ro)n and z_o-"z

-z

are disjoint
and the domains of "(z_o="2)oxr and (v-)-n
are disjoint,
then apply Lemma 3.22-7 )
(xroo(z A1) Haoogpozo(x A 1)*) o A

z

(((”_(xﬁnzjm—'”_z)mxm Hx_ro="z) A

(2 H (o) U (xﬁrc)ﬂrz)) o(2 A 1)x)

-z
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= ( by (3.21), Proposition 3.14-9 and Remark 4.8,
the domains of "(z_ro="2)oxe U rmo—"z
and zo H (2o0)n H (2ow)-n
are disjoint,
then apply Corollary 3.21-17 and (3.9) )

(zeo(z A1) Ha o ze(xA1)*) o A

((”’(xﬁmnﬂ”—z)nxmu(x A1) Hz_go-"20(zA1)*)A

(w2 (2 A1) U (20)e2 (2 A1) U (2-0)-22 (2 A1)) )
= ( by Propositions 3.14-20, 3.14-9 and 3.14-7,
(4.4) with 2, t := z_, "z and Boolean algebra,

-z

the domains of
"(2-oo="2)oxgo(x A1)  Haomo-"2zo(z A 1)~
and
xoo(x A1) H (zoo)ne(z A1) H (2og)-no(z A1)~
are disjoint,
then apply Corollary 4.30-2 )
(zeo(z A1) Ho o ze(xA1)*) o A
("@opo"2)oaeo(zAl)* Hrwo—"zo(x A 1)) o A
(xeo(x AL H (z-m)no(z A1) H (o) -mo(x A 1)) o
= ( by (4.5) with z,t := 2,"C, (4.6) with z,t := z,"C
and Proposition 4.22-7 )
(xee™Co(z A1) Hao-"Ceze(xA1)*)_ A
("(@orpo="2) oo Co(z A1) Uz mo—"z0(z
(xe"Co(z A1) H (2op)no—"Coze(z A 1) H
(o) moze(z A L)) o
- ( by (4.69), (3.19), (4.63), (4.59) and (4.4) with
b= (xA1)*,"2)
(zeo(z A1) 0"z Hz e (((zA1)*)r)o(z 1)) o A
("(zopo"2)oxeo(z A1) 0"z Hzwo(x A1) 0="z)_ - F
(xoo(x A1) 02 H (o) (2 A 1))g)o(z A1)~
(0o A1) o=T5)
= ( by Proposition 4.22-2 and (3.8) )

:I]

1) A

(iL‘nsz(33 A 1)XDIT,_Z H l'ﬁnsz\((CL' A 1)X)rz 4 :Cﬁnzjﬂ((l' ! 1)X)ﬁrz) A
("(@orpo"2)oaee(z A1) a2 Hzmo(x A1) 0="z)_ o F
(l’nzjﬂ([)? ! 1)XDan = ([E_‘n'c)rzﬂ((l‘ A 1)X)njz H

(z-)ro((x A1) )n H (2-)-no(z A1) 0x"2) o

-z
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= ( by (3.2), (4.5) with z,t:= (x A1), "z, (4.6) with
z,t = (xA1)*,"z, (3.9) and Corollary 4.26-9 )
Mxo(z A1) 02z mo((z A1) )g)oreo((zA 1)) A
"(M2eo—"2)oxmo(z A1) 2)oxpo(x A1)*a="2 A
"zeo(x A1) 0"z W (rog)no((z A 1)*)r )0
(z-re)me((x A1))m H (2-0) -z (z A 1)*22"2)
( by (4.59), (4.64), (3.15) and Lemmas 3.7-1 and 3.22-1
)
Mzeo(x A1) 0"z xoeo((z A1) )n)ozopeo zo0((x A 1)) A
"

I

T_o"2)oxo(x A 1)< o) oxmo-"zo(x A 1)< A
(-c)re((@F1))n
( by Lemma 3.7-1,
rogo—zo(z A1)
C "(M(z_eo—"2)oxeo(xAl) 0 2)oxmo"z0(2A1)x,
then apply Lemma 3.22-1 )
Mzeo(x A1) 0"z xoeo((z A1) )n)ozopo zo0((x A 1)) A
iL'ﬁnCDﬁn—ZD(x A 1)X A (.Tﬁnzj)rrz\:‘((x i 1)X)ﬁn‘z
a ( by Lemma 3.7-1,
roeozo((2A1)%)on
C "(amo(zA1) 02z mo((x A1) )g)o
oo zo((x A 1)) on;
by Proposition 3.14-9, (4.91) and Boolean algebra,
the domains of
Mxmo(zA1)* 02z mo((zA1))r)o
‘TﬂHUDH_ZD((.Tﬁ 1)X)_.njz
and
l'ﬁnzj\:‘_\”—ZD(iL' A 1)X A (l’ﬁn@)n’zﬂ((.’ﬂ A 1)X)ﬁrz
are disjoint;

I

then apply and Lemma 3.22-4 )
2o zo((2 A 1)) on Azoro="20(z A 1)* A
(z-rc)mo((zA1)%)n
= ( by Propositions 3.14-7 and 3.14-9, Boolean algebra
and Remark 4.8,
the domains of z_o—"20(z A1)~
and (ZE_.nzj)anD(((L’ A 1)X)_.njz
are disjoint,
then apply (3.25) )
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I'_‘nCDH_ZD«I' A 1)X)_\n} A (LL'_\r@)anD((l‘ A 1)X)_\njz A

iUﬁnCDﬂn—ZD(x A 1)X
Finally, we use (4.90) and (4.92) in the proof of (4.86) restricted to the
test

Nz)o"(2em"2)
"(wrg)o=(we-"2)e(AM (2 A 1)*)-x)
I ( by (3.8), (4.90) and (4.92) )
rrooCH (2o zo((z A 1)*) o A
(roe)no((x A 1)) on Azomo="zo(x A 1)%)
= ( by Corollary 3.21-14 )
(xreoC Wz zo((x A 1)*)-n) A
(xeeC U (2oro)o((xA1)*)-n) A
(xooC H xomoo="zo(z A 1)X)
I ( by Propositions 3.14-7 and 3.14-20, (3.15) and
Lemma 3.22-1 )
(zooCHz o 20((x A 1)) -n) A
(xoC U (2oo)me((x A 1)) on) AN (2omo"2)oxmeC
= ( by (4.69), (4.63) and Boolean algebra,
CM (A1) )e) =T,
then apply (4.5) with z,t := x,"C, (3.9),
Corollaries 3.21-4 and 3.21-3, Propositions 3.14-7
and 4.22-7, Boolean algebra and (3.6) )

(xo Haeo2)o(CA ((xA1)*).n) A
(e H (z-r0)r)o (CA (2 F1)*) ) A
- "z)eaes(C A ((x A1))-m)
= ( by Proposition 3.14-11, Remark 4.8 and Corollary
3.21-17 )
(2 H2om0™2) A (20 W (2-0)e) A T(2-o-"2)owg)o
(CA((zA1))m)
= ( by (3.21), Propositions 3.14-3 and 3.14-9,
and Remark 4.8,
(@ U (2-0)n) s ((@-go-"2)oze) =T
and "Co"(((zA1))-n) =T,
then apply (3.25) )

(2o Hooree2) AT (2o —"2) 0w A (2o H (2-)n) ) e
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(2R1)*)-=AC)
= ( by Lemma 3.7-6 and (4.69),
T2 (zA1)<:"2="C,
then apply (4.5) with x,t := z,"C, Boolean algebra
and Corollary 4.26-6 )
(2o 2ome"2) A (2o W zow)s)o (A 1)) s A O)
= ( by (3.9), Propositions 4.22-2 and 4.22-5, and
Corollary 3.21-4 )
"(xr)o(zo"zAan)o((xA1)*)s AC)
= ( by (4.4) with z,t := z,"C' and Boolean algebra,
T C "(arp),
then apply (4.80) and Boolean algebra )
Tar)a~Tas~T2)aBa((z A 1)) AC)
iii. Proof of (4.87). We use case analysis with the following tests

M(xo"2), M(2o="2), (2r) .

They are disjoint by Remark 4.8. They cover "z by Remark 4.8 and
Boolean algebra.

A. Test "(x0"2).
M(xo"2)o(x A1)
= ( by Proposition 3.14-18, Corollary 3.21-7 and

(3.19) )
xo'z
= ( by (4.67), Corollaries 3.21-4 and 3.21-3,
Proposition 3.14-7, Boolean algebra, Remark 4.8,
Lemma 3.17-2 and (3.6) )
T(xo"2)oB
C ( by Boolean algebra and Proposition 3.3-2 )
T(x0"2)e="Ce"z0 B>
_ ( by (170) )
T(zo"2)0 A
C ( by (3.15) )

(za"2)a(A- (2 A 1)) r)
B. Test "(zo-"2).
"(zo—"2)a(AU ((zA1)*)-x)
(by (3.15) )

I
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(ze="2)a((z A1)")-r
= ( by (4.79) )
T(2o="2)o(Tzozo(x A1) o="2 A (zo(x A 1)*).r)
= ( by Corollary 3.21-4, Boolean algebra and
Proposition 4.22-5 )
T20M(xo="2)oxo(x A1) o="2A (T(xo-"2)oxs(x A 1))
= ( by (3.19) )
Tzozo="zo(x A1) 0="2A (zo="zo(x A 1)*)-n
= ( by (4.59) and Boolean algebra )
Tzozo="zo(x A1) A (xo(zA1)*0="2)n
= ( by Corollaries 4.26-1 and 3.21-3 )
Tzoxo="zo(x A1)*

( by Lemmas 3.7-1 and 3.7-6 )

I

o=z
= ( by Proposition 3.14-18, Corollary 3.21-7 and
(3.19) )
T(zo="2)o(z A1)
C. Test "(zr).
"an)s(z A1) & Nzrn)o (AU (2 A 1))n)
— ( by (4.4) with z,t := x,"2, Boolean algebra and
Corollary 3.21-7 )
"(an)ox T "(2n)o(AH (2 A1)*)w)
= ( by Proposition 4.22-2 and (3.8) )
rro e n EM(2n)c A M(2n)o((x A 1)) n)
= ()
xr, EN(2n)0A A 2o EM(2g)o((2A1))-n
We show the two conditions of the last formula separately. The proof
of xr, € "(zr,)o A goes as follows.

Ty
= ( by (4.67), Corollaries 3.21-4 and 3.21-3,
Proposition 3.14-7, Remark 4.8, Boolean algebra
and (3.6) )
"(2z)oB

IF

( by Proposition 3.3-2 )
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(o) B
C ( by (4.68) and Lemma 3.7-1 )
"(7r)0 A
And here is the proof of .z C "(zg)e((z A 1)*)-n.
(or)e (€A 1)*)-m
= ( by (4.79), Corollary 3.21-4 and Proposition
4.22:5)
"(2r)o zoxo(z A1) 0="2A ((zr)ozo(x A1)*)n
= ( by Boolean algebra, (4.59) and Proposition
4.22:2)
Tzo(zn Haon)o—"20(x A1) A ((en Hron)o(z A 1)) s
= { by (3.9), (4.5) with z,t := z,"z, Boolean algebra
and (3.6) )
T2o(TH2omo"2)o(zA1)* A ((zn Hazon)o(z A 1)) n
= ( by (3.4), (3.6), Corollary 3.21-3 and (3.9) )
(ne(zA)*Hr_neo(zA1)")n
= ( by (4.6) with x,¢ := z,"z and (4.59) )
(rro(x A1) Haoono(zA1)*0="2)
= ( by Theorem 4.23 and Boolean algebra )
"(2oo(x A1) o="20"2)oxno(z A1) 0="2 A
"2ono(z A1) 0="20"2)e(zro(x A 1)) A
(zre(zA1)* ez (zono(x A 1)*e="2) ) A
1)*c"2)ox no(x A1) a2 A
T2)o(zono(x A1) 0="2)_r A
mHzno(zA1)0-"2)A
nH(rono(zA1)*0"2)r)
= ( by Boolean algebra, (3.6), Proposition 3.14-19,
Corollary 4.26-1 and (3.4) )
TATATAN(zno(xA1)*0"2)ozno(zA 1) o2 A
TA((rne(zA1))mHrne(zA1)*a="2)AT
( by Corollary 3.21-3, (3.15) and Lemma 3.22-1 )

(=

"weo(x A1) e"2)or no(r A1) 0"z Az no(r A1) 0"z
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I

( by Lemma 3.7-1,
rono(x A1) Caopo(zfA1) ez,
then apply Lemma 3.22-2, (4.59) and (4.6) with
x,t=x,"2)
.’Ifﬁrzﬂ(aj A 1)X
= ( by Proposition 3.3-1 and (3.7) )

T

iv. Proof of (4.88). We use case analysis with the following tests
T(@a"2), (2o-"2), (zr) .

They are disjoint by Remark 4.8. They cover "z by Remark 4.8.
A. Test (zo"2).
T(xo"2)e BaC
= ( by (4.67), Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, Boolean algebra, Remark 4.8,
Lemma 3.17-2 and (3.6) )

xozeC
= ( by Proposition 3.14-18, Corollary 3.21-7, (3.19)
and (4.69) )
T(xo2)e(x A 1)e(zA1)*c"2
C ( by Proposition 3.3-1 )
T(xo2)e(xA1)*a"2
= ( by (4.69) )
T(xe"2)eC
B. Test "(z0="z). Using (4.67), Corollaries 3.21-4 and 3.21-3, Proposi-
tion 3.14-7, Boolean algebra, Remark 4.8, Lemma 3.17-2 and (3.6)
yields
Mzo="2)oB = T(xo-"2) |
so that "(z0—"2)e BoC' = "(20-"2)aC.
C. Test "(xr).
n_(JZn;J)DBDC
= ( by (4.67), Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, Boolean algebra, Remark 4.8,
Lemma 3.17-2 and (3.6) )

.Tn'ZDC
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IF

( by (3.15) )
(xr H 2o )eC
= ( by (4.4) with z,t := x,"z, Boolean algebra,
Proposition 4.22-2, Corollary 3.21-7 and (4.69) )
"an)o(xA1)e(zA 1)z
C ( by Proposition 3.3-1 )
T(xr)o(zA1)*0"2
- (by (4.69) )
"(zr)oC
v. Proof of (4.89). By Proposition 3.3-2, Boolean algebra and (4.69),

rAl=(zA1)s1C(zA1)x"2=C .

(n) Proof of (4.84).

true
= ( by (4.83) )
(A1) )pe(zA)*C AU (A 1))n
( by Proposition 4.22-2 and (3.15) )
(A1) ) EAY((zA1)")-r
= ( by (4.5) with z,t := (x A 1)*,"z, (4.6) with
x,t = (xA1)*,"z and (4.76) )
A1) )2 C Aoz U (A 1)*) o2
= ( by Corollary 4.26-10 )
((#A1)*)=e ET(((zA1)*)-man"2)e A"z
— ( by (4.5) with z,t := (x A1)*,"z, (4.6) with
x,t:= (zA1)*,"z and (4.76) )
(A1) )e ET((zA1)*)raA
( by (4.68) and Boolean algebra )
(A1) )R C A

!

—~
—~

-1

And, finally, back to the proof of (4.51).

(zA1))rez LT (((zA1))r)=z
— { by (4.84) )
Aoz CT(((zA1)*)n )0z
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— ( by (4.68) )
M(x A1) )oB oz CT(((zA1)*)g)oz
— ()
B*oz C 2
— ( by (3.12) )
BozHzLC 2
= ( by (4.67) )

(x0"zAze AT(zo="2) A-"2)oz C 2
— ( by Remark 4.8 and Proposition 3.14-1,
the domains of 20"z, zr, "(x0="2) and ="z
are pairwise disjoint,
then apply Corollary 3.21-17 and Proposition 3.14-7 )
1oz Aoz AM2o-"2)o2 A-Txoz C 2
= ( by Remark 4.8,
the tests "(xo2), "(zr), "(xo="2) and —"z
are pairwise disjoint;
by Remark 4.8 and Boolean algebra,
M(xoz) AM(zn) AN(2o="2)A -z = 1;
then apply Corollaries 3.21-19, 3.21-4 and 3.21-3, Proposition
3.14-7, Remark 4.8, Boolean algebra and (3.6) )
zoz EM(zoz)oz A znoz CM(an)oz A
Mxo="2)oz C "(zo="2)oz A ="zoz C ="goz
= ( by (4.47) and (4.48) )

true
13. According to Definition 4.1, we need to obtain
zpr4py<pz="2LC "y pa?) (4.93)
and
zpr4py<pz=yprP LT (ypa™)oz (4.94)
in order to show y p ™ <p z from z p x +p y <p 2.

We begin with the proof of (4.93).

Z2prtpy<pz
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= ( by Remark 4.5 )
TCzpz+py)

= ( by Corollary 4.4-3 )
TCENzpz)ATy

= ( by Boolean algebra )
T2 C Ty

= ( by (3.20), Lemma 4.20-1 and (3.7) )
™ Myo(e A 1))

— ( by Lemma 4.20-1 and Proposition 4.17-4 )
2Ly p(zA1))

= ( by Definition 4.19 )
T2C "y pa™P)

And now we work on (4.94). The following two derivations will be helpful.

Z2prtpy<pz

= ( by Definition 4.1 )

zpr4pyE (2 px4py)ez

= ( by Corollary 4.4-3 and Proposition 4.17-5 )
zpx—4pyL (Tzo="(zo="2) ATy)oz

= ( by Boolean algebra )

zpx+4pyLyoz

= ( by Corollary 4.4-1)
((zp2x)Hy)A-"(2px)oyA-"yo(z p z) C "yoz
= ( by Definition 4.16, Proposition 4.17-5 and De Morgan )
((zox A zmox)Hy) A (22 AT(20="2))oy A ="y (202 A 2goz) C Tyoz
— ( by Propositions 3.14-9, 3.14-6 and 3.14-7 )
TyaTzo(((zox A zgoz) Hy) A ("2 A" (20-"2))oy A ="yo (202 A 2r01))
C Moz
— ( by Corollaries 3.21-4 and 3.21-3, Propositions 3.14-20 and
3.14-7, (4.4) with x, ¢ := z, "z, Boolean algebra, Lemma 3.17-1
and (3.6) )

((z0x A zox) Hy) AM(z0="x)oy C Tyoz
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ypx®? LMy paP)oz

= ( by Definition 4.19, Lemma 4.20-1 and Proposition 4.17-4 )
yo(x A1) C "(yo(xA1))oz

= ( by (3.20), Lemma 4.20-1 and (3.7) )
yo(r A1) E Tyoz

= ( by (3.13) )
Tyozo(zx A1) Hy C Tyoz

= ( by Propositions 3.14-7 and 3.14-20 )

zo(x A1)y E Tyoz

The previous two derivations teach us that it is sufficient to work on
((zox A zgoz)Hy)ATN(zo="2)oy CTyoz = zo(zA1)Hy L "yoz . (4.95)

It will be shown by using case analysis (Corollary 3.21-19) with the tests ="z,
T(z0"x), "(z0="2) and "(2r,). By Remark 4.8 and Boolean algebra, these tests are
disjoint and they satisfy

=2 AM(20™2) AM(20="2) A M(25) =1 .
Case ="'z

—"2o(zo(zA1)Hy) E —-"z0Tyoz
= ( Boolean algebra and Proposition 3.14-17 )

—zo(zo(zA1)Hy) T

= ( by (3.14) )
true
— ()

((zoz A zox) Hy) AM(zo-"2)oy C Tyoz

Case "(z0"z)
M(zo"z)o(z0(x A1) Hy) E "(20"x)oTyoz
= ( by Proposition 3.14-20 and (3.19) )

zoro(z A1) Hy C"(20"x)o yoz

— ( by Corollary 3.21-7 and Proposition 3.14-7 )
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zox Wy C"(z0"x)o yoz
— ( by Proposition 3.14-7, Remark 4.8, Boolean algebra, (3.6) and
Corollary 3.21-3 )
((zox AM(z0"x)oznox)Hy) AM(20"r)o™(20="2)oy & "(20"2)aTyoz

= ( by Propositions 3.14-7 and 3.14-20, (3.20) and Corollary 3.21-4

Too)ol

P

(zo A zox)Hy) AT(zo="2)oy) C "(20"2)oTyoz
)

((zoz A zox) Hy) AM(zo0-"2)oy C Tyoz

o~ o~ ~—

Case "(z0-"x)
Mzo="z)o(zo(z A1) Hy) C (zo-"2)oTyoz
— ( by (3.8), (3.19) and Boolean algebra )
zo="xo(z A1) H(z0="z)oy C Tyozo—Tz
= ( by Corollary 3.21-8 and Boolean algebra )
Tyozo="Te U T(zo="2)oy C Tyozo-y
= ( by (3.15), (3.3), (3.19) and Boolean algebra )

"(zo-"z)oy E T(zo="x)eyoz
— ( by Proposition 3.14-7, Remark 4.8, Boolean algebra, (3.6),
Corollary 3.21-3 and (3.4) )
(("(zo="x)oz00 A"(20-"2)0200) Hy) A (20="2)oy C "(20-"2)aTyoz

— ( by Corollary 3.21-4, Proposition 3.14-20 and Boolean algebra

)

Teom)o(((202 A 25ox) Wy) A Tz~ oy) E Mzo—Tr)oyo
= ()

((zoz A zox)Hy) AM(zo-"2)oy C Tyoz

Case "(zr;)
Marg)o(zo(z A1) Hy) E T(2g)oyoz
= ( by Propositions 3.14-20 and 4.22-2, and Boolean algebra )

(2 H 2o )o(z A1) Hy € Tyo(zn U 2og)
> ( by (3.9), Propositions 3.14-7 and 3.14-20, and (3.8) )
)

zro(r A1) H Tyozogo(z A1) Hy C Tyozrn U Tyoz n
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— ( by (4.5) with z,t := z,"z, (4.6) with z,¢ := z, "z, Corollaries
3.21-7 and 3.21-8, Proposition 3.14-7 and Boolean algebra )
zrox Moz Uy C Tyozn U Tyoz_n,
= ( by (3.3), (3.2) and (3.15) )
zor Hy C Tyozg HTyoz
= ( by (3.8), Proposition 4.22-2 and Boolean algebra )
zorHy L ”—(Z,@;)Dr@nz

= ( by Proposition 3.14-7, (3.20), Remark 4.8, Boolean algebra,
(3.6) and Corollary 3.21-3 )

(("(em)s 202 A" (2m)02m02) Hy) A (2 )a" (20m"2) oy & (2r)o"yo2
— ( by Corollary 3.21-4 and Proposition 3.14-20 )
"(2rz)s(((ze2 A zoz) Hy) A "(zo"z)0y) E T(2n)oys2
— ()

((zox A zgox)Hy) AM(zo="Tz)oy C Tyoz

O

Theorem 4.32. Suppose A is an algebra of decomposable elements. Then (test(A),
+p,p, 7, T,1) is a Boolean algebra, hence (A,test(A), +p,p, ™, T,1,7) is a KAT.

PROOF : We show that for all s,t € test(A),

sCt <= t<ps (4.96)
sdt = spt (4.97)
sAt = s+4pt . (4.98)

Therefore, since (test(A),H,A,—, 1, T) is a Boolean algebra, then so is (test(A), +p, b,
-, T,1) by Corollary 4.4.

(4.96) is true by Remark 4.5.

Proof of (4.97)

= ( by Proposition 3.14-3 )

sot
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= ( by Proposition 4.17-3 )

S'Dt

Proof of (4.98)

sAt
— { by Boolean algebra )

(sHt)A—tes A —sot
= ( by Corollary 4.4-1 )

S—|—Dt

O

Theorem 4.33. Suppose A is an algebra of decomposable elements. The following
inequalities are valid for all x,y € A and all t € test(A), hence (A, test(A), +p, p, ™, T,
1,-,7) is KAD.

1. 2<p " px
2. n_(t'DSU)SDt

PROOF :

<b ( by Corollary 4.4-2 )

= ( by Proposition 3.14-7 )

= ( by Proposition 4.17-3 )
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2. "t px)
— ( by Proposition 4.17-3 )
"(tex)
= ( by Proposition 3.14-9 )
tox
<p ( by Boolean Algebra and Theorem 4.32 )
t

3. Since <p is a partial order (see Corollary 4.4-2), it is sufficient to prove equality
instead of <p.

(@ py)
= ( by Proposition 4.17-5 )

n_xuﬁn_(muﬁn_y)

= ( by Propositions 3.14-1 and 4.17-5 )

JI'DH_Z/)



Chapter 5

A Duality Between KADs and
Algebras of Decomposable Elements

We are now ready for the ultimate goal of this text (refer to item 8 of Section 1.3). We
will establish an algebraic connection between the bottom part and the upper part of
the lattice of Figure 1.4 for any model of KAD.

In Section 5.1, having Figure 1.5 in mind, we are going to define a function F from
the set of all KADs to the set of all algebras of decomposable elements. Symmetrically,
we are going to define a function G from the set of all algebras of decomposable ele-
ments to the set of all KADs. Then, we will demonstrate that F(K) is an algebra of
decomposable elements for each KAD K. Also, we will demonstrate that G o F is the
identity on K.

In Section 5.2, we will demonstrate that G(A) is a KAD for each algebra of decom-
posable elements A. Also, we will demonstrate that F o G is the identity on A.

This chapter is the third and last step toward the desired duality (refer to Sec-
tion 1.3).

5.1 From KAD to DAD-A, and Back

In this section, we introduce two transformations between the angelic and demonic
worlds that will be studied all along this chapter. Then, we present a few useful lemmas
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and we finish with the main theorem of this section.

Definition 5.1. Let F denote the transformation that sends any KAD K = (K,
test(K),+,-,%,0,1,-,7) to

(K, test(K), s, 24, 4, 0,1, -, Fy, ™, Fa,)

where Hy, o4, A, Ay and Fly, are the operators defined in Proposition 2.10 and Defini-
tions 2.12, 2.1/, 2.17 and 2.18 respectively.

Stmilarly, let G denote the transformation that sends any algebra of decomposable
elements A = (A, test(A),H,0,*, T,1,-p,A, ™ R) to

(A,test(A), —|—D, ‘D, *D, T, 17 D, ”_) )

where +p, p, P and —p are the operators defined in Corollary 4.4-1, and Defini-
tions /.16, 4.19 and 3./ respectively (since no special notation was introduced in Defini-
tion 3.4 to distinguish DAT’s negation from KAT’s negation, we have added a subscript
D to = in order to avoid confusion in Theorem 5.5).

By this definition, the transformations F and G transport the domain operator and
the negation operator unchanged between the angelic and demonic worlds. Indeed, it
turns out that "x = "r and —t = —pt are the right transformations.

Having defined F and G, we can now state a crucial theorem. But before doing
that, we need to introduce the following three lemmas.

Lemma 5.2. Let K be a KAD. For all x € K and all t € test(K),

T=xoyt < x=x-1 .

PROOF :
rToyut==x
= ( by Definition 2.12 )
(x—=t)-z-t=x
— ( by Proposition 2.7-4 )

r—t)-x-t-t=x-t N (v—t)-x-t-~t=x-—t
— ( by Definition 2.8, Proposition 2.7-10, Boolean algebra and (2.6) )
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“(z-—t)-x-t-t=x-t N 0=z -t
= ( substituting 0 for = - =t in =(z - =t), by Proposition 2.7-10, (2.6)
and Boolean algebra )
r-tt=xz-t Nx-t-—-t=x--t
= ( by Proposition 2.7-4 )

r-t=x

O

Lemma 5.3. Let A, A" be algebras of decomposable elements. Let ¢ : A — A’ be a
homomorphism. Then

¢(x Ay) = o(x) Ag(y)
for all x,y € A.

PROOF :

P(zAy)
= ( by (3.24) )

¢(z Fr, y)

= ( since ¢ is a homomorphism )
() Aoty ¢(y)

= ( by (3.24) )

o(x) A o(y)

O

Lemma 5.4. Let A, A" be algebras of decomposable elements. Let ¢ : A — A be a
homomorphism. Then

d(xe) = O(x)g(0)
for allz € A and all t € test(A).

PROOF : We have to show that ¢(x;) and ¢ (z—) satisfy (4.3), (4.4), (4.5) and (4.6)
with z,t := ¢(x), ¢(1).

Proof of (4.3)
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P(2)o¢(t) A (x)a=¢(t) A (¢(2e) H ¢(21))

= ( since ¢ is a homomorphism and by Lemma 5.3 )
G(xot Aze—t A (z,Hxy))
(by (4.3))

¢(x)

Proof of (4.4)

"((x:))
= ( since ¢ is a homomorphism )
¢("(r))
= (by (4.4) )
¢(="(wat))o="(wet)a"x)

since ¢ is a homomorphism )

{
—(p(2)20(t))o="(d(z)2—0(1))="(p())

The derivation is similar for "(¢(z-;)) = ="(¢(x)od(t))o="(P(x)o=(t))a"(p(x)).

Proof of (4.5).

P(x)op(t)

= ( since ¢ is a homomorphism )

P(x0t)
- by (45) )
d(x+)

The derivation is similar for (4.6). O

Theorem 5.5. Let KC be a KAD and let F and G be the transformations introduced in
Definition 5.1.

1. F(K) is a DADR,.
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2. All elements of F(K) are decomposable and, for all x € K and all t € test(K),

xy = "(x-—t) -z -t

r—y = "x-t)-x-—t .
Hence, F(K) is an algebra of decomposable elements.

3. GoF is the identity on IC. In other words, the algebra (K, test(K),+p, p,™,0, 1,
—,") derived from the algebra of decomposable elements F(K) is equal to IC (only
the symbols denoting the operators differ).

4. Let K' be a KAD. If ¢ : K — K' is a homomorphism, then v is also a homo-
morphism from F(K) to F(K'). Thus, if K < K', then F(K) < F(K') (where <
denotes substructure).

PROOF :

1. This is direct from Theorem 2.23.

2. Let x be any element of K and t be any test. We have to show
xzxmAtHAqu—'tHA (fL’tl=|A$ﬂt) R

where x; and z_; have the unique solution given in the statement. Also we have
to verify that these solutions satisfy (4.4), (4.5) and (4.6). Remark 4.8 shows that
Tz can be split in three disjoint parts, namely "(z o4 t), "(2 54 ) and (z;). Thus,
by Proposition 3.20-17, the above equality holds if and only if the following four
equalities also do.

“xopx = —Twoy(rogtFyxog Py (v 2—y))
Mxoat)sax = T(woat)os (xogtFyxog Ry (2 2-y))
(woa—t)oaxr = T(wog—t)os (xoatFyxon—tFy (zH 2-))
x)eaxr = ") ca(zoatflyxog ot Ay (g 2y))

Using Propositions 3.14-17 and 3.14-11, Corollary 3.21-4, (4.4), Boolean algebra
and (3.6), the first equality reduces to T = T. The second one follows from Corol-
lary 3.21-7, Proposition 3.14-7 and (3.19), and the third one from Remark 4.8,
(3.25), Corollary 3.21-7, Proposition 3.14-7 and (3.19). The following derivation
is about the fourth equality and constructs the unique expressions for z; and z_;,
assuming that x; and x_; satisfy (4.4), (4.5) and (4.6). Uniqueness is due to the
sequence of equivalences.
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'_(I't) Hpg T = '_(ZL‘t) =V} (ZL‘ 0Aq t HA I Bp =t HA (ZL‘t |=|A ZE_\t)>

— ( by Corollary 3.21-8, (4.4) and Boolean algebra )
r(%:) IA T = ,_(xt) | (IE o4 1t Py (l‘t EHa xﬂt))
— ( by Corollary 3.21-8, (4.4) and Boolean algebra )
"(2¢) 2a = (@) o4 (2 4 21)
= ( by Proposition 2.13-2 )
Mxy) - ="(xy) - (2 b o)
= ( by Proposition 2.10, (4.4) and Boolean algebra )
(@) - =) - (e + 2¢)
= ( by (2.8), Proposition 2.7-6 and (4.4) )
2e) v =0 + 2
= ( by Proposition 2.7-4 )
r(l',g)'.fl?'t: (.Tt‘FZUﬁt) S AAN l_(ZEt)'ZE'_‘t: (.Tt‘i‘l’ﬁt)'_lt
= ( by (4.5), (4.6) and Lemma 5.2 )
) x-t=(ve-t+ay -—t)-t N (a) x-~t= (v -t+axy-—t) —t
= ( by (2.9), Boolean algebra, (2.6) and (2.4) )
May) x-t=ap-t N "(ay) - ~t=w —t
= ( by (4.5), (4.6) and Lemma 5.2 )
M) x-t=a4 N "(ay) x-—t=0y
= ( by (4.4), Propositions 2.13-4 and 2.7-6, and De Morgan )
(m(z—=t)+-"z) (0 —t)+-"2) - x-t =2 A

t)
—(x—t)+ ) (o — —t)+-"x)x -t =2y
{

= by Boolean algebra, (2.9), Proposition 2.7-9 and (2.4) )

rp=-(r—t)-~(xr—~t)-x-t A
T ="(r—t) ~(x—t) -zt
= ( by Definition 2.8, Boolean algebra and Propositions 2.7-6 and
2.7-10 )

="z -—t)-x-t N xy="x-t) x-—t

By Theorem 5.5-1 and since all elements of F(K) are decomposable, then F(K)
is an algebra of decomposable elements.

3. To show the third part of the theorem, it suffices to prove x+y = x+py, -y = zpy
and x* = 2™ for x,y € K, since = and " are unchanged either by F or G.
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(a) Firstly, we show that z <y <=z <pv.

T<py

= ( by Definition 4.1 )
"Wy A xCyTxoqy

= ( by Remark 2.11 and Definition 2.9 )
l—iCSFy/\l—(l—SCDAy)Sl—JC/\|—<|—Z’DAy)'l’§l—$DAy

= ( by Proposition 2.13-2 )
rxgl‘y/\r(rx_y)gl—a:/\F(Fx,y)_zgl‘x,y

= ( by Proposition 2.7-11 and Boolean algebra )
"t <"y NTz-Ty-x<Tz-y

= ( since "z < Ty and by Boolean algebra )
e <™y ANTx-x<Tx-y

= ( by Proposition 2.7-14 for <,

and by Proposition 2.7-6 for = since "z-z <"z -y <y

)

<y
Soxz+y=ux+py by (2.11) and Corollary 4.4-2.

(b) Ty
= ( by Proposition 4.17-7 )

(o4 "y Fa ) cay
= ( by (3.24), Definition 2.18 and Proposition 2.13-2 )

((@eay) oazoay+-"(@eay) eazn) uy
= ( by Propositions 3.14-7 and 3.14-1, (4.4) with z,t := x,"y
and Boolean algebra )
(Toa"y+ary) oAy
= ( by Definition 2.12, Proposition 2.7-10 and Theorem 5.5-2
)
(z—="y)-z-Ty+"z-=y)-2-y) oy
= ( by Definition 2.8, Proposition 2.7-10, (2.9), Boolean
algebra and (2.7) )
(@-"y) ey
= ( by Definition 2.12 and Proposition 2.7-6 )

(z-"y—y)-z-y
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= ( by Definition 2.8, Boolean algebra, (2.6), Proposition
2.7-10 and (2.7) )

= ( by Theorem 4.31 and Remark 2.2 )

f<p(y 2y o +p 1)
= ( by the previous two derivations )

pely gz + 1)
= ( by Remark 2.2 )

x*

4. If ¢ : K — K’ is a homomorphism, then

v(+y) = ¢(@)+Yy) , (5.1)
v(a-y) = ¥(@) v(y) , (5.2)
P(z") (¥(x))" (5.3)
»(0) = 0, (5.4)

(1) 1, (5.5)
v(=t) = (@), (5.6)
v(Tz) = T((z)) (5.7)

We need to derive

v(ethy) = Y(@)Hiv(y) (5.8)
V(T o4 y) (@) ea¥(y) (5.9)
P(™) = (¥(x)™ (5.10)
¥ (0) 0, (5.11)
(1) = 1, (5.12)
() —((1)) (5.13)
V() = "(Y(x)) | (5.14)
V(@ y) = Y() Fay ) Y(y) (5.15)

(a) Proof of (5.8).

Y(zEay)
= ( by Proposition 2.10 )

V(w-Ty - (v +y))
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= ( by (5.2), (5.1) and (5.7) )
() - "(W(y)) - (Y(x) + ¥ (y))

= ( by Proposition 2.10 )
(@) h ¥ (y)

(b) Proof of (5.9).

V(@ eay)
- ( by Definitions 2.12 and 2.8 )

Y= =y) -z y)

= ( by (5.2), (5.6) and (5.7) )
(@) - =W (y)) - () - (y)

= ( by Definitions 2.8 and 2.12 )
(@) 2a ¥ (y)

(c) Proof of (5.10).

P(x7)
= ( by Definition 2.14 )
(CICANYRED
= ( by the previous derivation, (5.3) and (5.7) )

(¥ ()" ea (W (2)))

= ( by Definition 2.14 )

(d) Proof of (5.11). This is direct from (5.
(e) Proof of (5.12). This is direct from (5.
(f) Proof of (5.13). This is direct from (5.
) Proof of (5.14). (5.
) Proof of (5.15).

This is direct from

(8

(h
Y(x Py y)

= ( by Definition 2.18 )

Wt -x+ -t -y)
= ( by (5.1), (5.2) and (5.6) )

196
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P(t) - () + = (t) - P(y)
= ( by Definition 2.18 )

V() Faye ()

5.2 From DAD-A to KAD and Back

This section is the dual version of Section 5.1. Essentially, we derive similar results but
starting with algebra of decomposable elements instead of KAD. Its main content is
the following theorem.

Theorem 5.6. Let A be an algebra of decomposable elements and let F and G be the
transformations introduced in Definition 5.1.

1. G(A) is a KAD.

2. Fo@ is the identity on A. In other words, the algebra (A, test(A),y, 04,4, T, 1,
=p, P, ™) derived from the KAD G(A) is equal to A (only the symbols denoting
the operators differ).

3. Let A’ be an algebra of decomposable elements. If ¢ : A — A’ is a homomorphism,
then ¢ is also a homomorphism from G(A) to G(A'). Thus, if A < A, then
G(A) < G(A") (where < denotes substructure).

Proor :

1. This is direct from Theorem 4.33.

2. To show the second part of the theorem, it suffices to prove x Hy = x Hy v,
roy =x 04y, ¥ = 2”4 and x F; y = £ Fy, y since =p and T are unchanged either

by G or F.
(a) Firstly, we show that 2 C y <= x L, y.

x Ly Yy
= ( by Definition 2.9 )

w<p"r AN Typr<py
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( by Remark 4.5 and Definition 4.1 )
LTy AN TYC(ypa) ATy pa Ty pa)oy
( by Proposition 4.17-3 )
"wETy A Ty L (Tyox) A Tyox ©(Tyox)ey
= ( by Proposition 3.14-9 and Boolean algebra )
Te Ty A Tyox © Tyoroy
( since "r C "y and by Boolean algebra )
e Ty A Tyox € Tyoy
( by Proposition 3.14-8 for <,
and by Proposition 3.14-7 for = since, by Lemma 3.7-1,
x E Tyox C Tyoy )
zLCy

So xHy =ax sy by (3.11) and Proposition 2.10.

reay
( by Definitions 2.12 and 2.8 )
"@o-pY)prDY
( by Propositions 4.17-5 and 4.17-3, Boolean algebra, De
Morgan and Definition 4.16 )
(=p"x A (ze"y))=(zey A 2g0y)
( by Corollary 3.21-5 and (3.20) )

D

—p'xs(xey Axgoy) A (zey)o(zoy A xgoy)
( by Corollary 3.21-4, Proposition 3.14-7, Boolean algebra,
(3.20) and Remark 4.8 )

(Tozoy A Tozgoy) A (zoy A Toxgoy)

( by (3.6) and Corollary 3.21-3 )
zoy
z7A

( by Theorem 2.20 and Remark 3.2 )

pe,(y sy sy 1)
( by the previous two derivations )

pe(y @ ysrH 1)
( by Remark 3.2 )
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:EX

(d) TPy
= ( by Definition 2.18 )

tpx+p-ptpy
= ( by Proposition 4.17-3 )

tox “+p —|Dt|:|y
= ( by Corollary 4.4-1 )

(tDI H —|Dtmy) A ﬁDn_(th)DﬁDtDy A —|D”_(—|Dtuy)utu;p
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= ( by Boolean algebra, Propositions 3.14-11 and 3.14-9, and

De Morgan )
Tm(tux H —|Dtmy) A (_|Dt A _|DH_LL’>D_|DtDy A (t A ﬁDn_y)DtDI
= ( by (3.6), Corollary 3.21-3 and Boolean algebra )

—ptoy Atox

= ( by Boolean algebra, Corollary 3.21-9 and Proposition

3.20-2 )
X Ht Yy

3. If p: A — A’ is a homomorphism, then

p(rdy) = o(x)Ho(y) ,
¢(roy) = ¢(x)o9(y) ,
o(z") (p(z)"
o(T) T,

o(1) = 1",

¢(—pt) —p(o(t)) ,
o("r) = "(o(x)) ,

P(xFy) = o(x) R ¢(y)

We need to derive

o(x+py) = ¢(x)+p d(y) ,
¢z py) o(x) b P(y) ,
Pz) = (o(x))™ ,

o(T) T,

o) = 1",
¢(—pt) (o)) ,
o("z) = "(¢(z))
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(a) Proof of (5.24).
o(z +p y)
= ( by Corollary 4.4-1 )

¢((xHdy) A—pTyez A -pTrey)
= ( by Lemma 5.3, (5.16), (5.17), (5.21) and (5.22) )

(6(x) Y o(y)) A —p"(d(y))=¢(z) A ~p"(d(x))=0(y)
= ( by Corollary 4.4-1 )

o(z) +p P(y)
(b) Proof of (5.25).
¢(z py)
= ( by Definition 4.16 )

¢(zoy A g oy)
= ( by Lemmas 5.3 and 5.4, (5.17) and (5.22) )

¢(2)2d(y) A G(@)mo(w) 2 b (y)
= ( by Definition 4.16 )
o(z) » d(y)
(c) Proof of (5.26).

¢(x™)
= ( by Definition 4.19 )

o((zF1)%)
= ( by (5.18), Lemma 5.3 and (5.20) )

(o(x) A1)~
= ( by Definition 4.19 )
¢(x)™
Proof of (5.27).
Proof of (5.28).
Proof of (5.29). This is direct from
Proof of (5.30).

( This is direct from (
(5 This is direct from (
© (
(© (

This is direct from

We easily deduce the following Galois connection from Theorems 5.5 and 5.6.

200
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Corollary 5.7. Let K be a KAD, A be an algebra of decomposable elements and let
F and G be the transformations introduced in Definition 5.1. Then

FIK) < A < K=<G(A) .

Theorem 5.5, Theorem 5.6 and Corollary 5.7 together with their proof show why it
is necessary and sufficient to work with algebras of decomposable elements in order to
establish the desired duality.



Chapter 6

Algebras of Ordered Pairs

Thanks to Theorems 2.20, 2.21, 2.22 and 2.23, one can use Lemma 4.11 to construct
models of DAD-A, from models of KAD-based DAD-F,. Lemma 4.11 can also be used to
construct models of DAD-F, from other models of DAD-F,. These models are algebras
of ordered pairs. It turns out that pair-based representations have been used numerous
times in program semantics, such as in [BZ86, Doo94, HMS06, MS05, Par83], to cite just
a few. In this chapter, we deal with algebras of ordered pairs related to our problems
of algebraic connections between the different parts of the lattice of Figure 1.4.

In Section 6.1, thanks to Lemma 4.11, we present a semantics of programs that might
help understand DAD-F,. In Section 6.2, we present a result from [DD06¢, DD08b] that
establishes an algebraic connection between the bottom part of the lattice and the whole
lattice of Figure 1.4.

These two sections talk about algebras of ordered pairs in two different contexts that
are close to our subject. One is related to semantics and the other to transformation.
This is a short chapter that displays several informations that are relevant to this thesis
but that did not fit the exact goals of the previous chapters.

6.1 DAD-f, and Program Semantics

The main results of Section 2.5, Section 4.5 and Chapter 5 are about algebras of decom-
posable elements. Any algebra of decomposable elements is isomorphic to a KAD-based
DAD-F, and vice versa. A legitimate question would be: what about nondecomposable
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Figure 6.1: Hasse diagram of Example 6.1.

elements? According to Definition 4.7, there are two ways for an element not to be
decomposable. It can either admit multiple decompositions or it can admit no decom-
position at all. How can we deal with all those elements in the realm of programs?

There is the beginning of an answer in Lemma 4.11. As we explained in Exam-
ple 4.12, this lemma enables to construct models of DAD-F, containing elements with
multiple decompositions.

Actually, it can also give birth to algebras of decomposable elements. Indeed, look
at the following example.

Ezample 6.1. Take A = test(A) = {T,1}. The operators defined by the following
tables, omitting F,, make (A, test(A),4,0,*, T,1,—,A,7 /) a DAD-R,.

H\Tl o | T 1 x \ﬁ \T
T[T T TIT T T[T T]1 TIT
11T 1 1T 1 1)1 1T 111

The refinement ordering corresponding to H is represented in the lattice of Figure 6.1.
Then, using Lemma 4.11, one gets a DAD-R, with £ = {(1,1),(1,T),(T,T)} and
T ={(1,1),(T,T)}. Since the only tests are 1 = (1,1) and T = (T, T), and since all
elements of a DAD-F, are 1-decomposable and T-decomposable by Remark 4.9, then
we have an algebra of decomposable elements.

We do not know whether there is a way to construct models of DAD-F, containing
elements that admit no decomposition using Lemma 4.11. However, we propose the
following interpretation for these algebras of ordered pairs. Let A be a DAD-F, and
take z € A and s € test(A). An ordered pair (x,s) (with "z C s) in such an algebra
created by Lemma 4.11 may be thought of as a program via the following semantics.

e For those states in s, we know that the program terminates successfully and it
behaves like sox.

e For those states in "z but not in s (read —s2"z), we do not know how the program
behaves with respect to termination. If ever the program terminates successfully,
it behaves like —soz.
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e For those states outside "z (read —"z), there is at least one possibility of unsuc-
cessful termination for the program x. The program may also terminate, but the
semantics is demonic and considers that the program has no output.

Therefore, for a test (s, s),

e for those states in s, we know that the program s terminates successfully and it
behaves like s.

e There are no such states that are in s but not in s.

e For those states outside s, there is at least one possibility of unsuccessful termi-
nation for the program s.

The elements having the form (z, "r) and the tests are the only elements for which there
is no doubt.

This semantics agrees perfectly with the definitions of the operators @, ®, @, ,
m, " and M, of Lemma 4.11. Further investigation needs to be done about Lemma 4.11,
Examples 4.10, 4.12 and 6.1, and this semantics (see Section 7.1).

At first sight, the semantics we just presented is not that far from the relational
semantics studied by Parnas [Par83]. However, they are different. In his paper, he
studies an algebra of ordered pairs (R,C'), where R is a relation and C C "R. C'is
called a competence set and it does not have the same interpretation as the tests in
the ordered pairs of Lemma 4.11. Indeed, look at Table 6.1 (taken from [Par83]) that
gives a summary of the semantics of an ordered pair (R, C') representing a program P in
Parnas’ algebra. Note that in this table,  and y do not stand for relations, but rather
for states.

Let us point out two differences between the algebra of ordered pairs of Lemma 4.11
and Parnas’ algebra. Those differences can be understood without explaining in detail
the work of Parnas. Firstly, Parnas supposes a complete knowledge of the programs rep-
resented by the ordered pairs. The semantics proposed with the algebra of Lemma 4.11
only supposes partial information (when the program is in those states in —so"zx). Sec-
ondly, Parnas’ point of view is both angelic and demonic, while ours is exclusively
demonic. Indeed, look at the definition of composition of ordered pairs. According to
Parnas’ algebra,

(R1,C4) o (R2,Cy) = (Ry - Ry, (C10Ry0Cy))
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Behavior of Competence "R R
program P set C
P terminates when Includes Includes x Includes (z,y) if P might
started in z terminate in y when
started in x
P sometimes Does not  Includes z Includes (z,y) if P might
terminates when include x terminate in y when
started in z started in z
P never terminates Does not Does not No pairs of the
when started in x include z include x form (z,y)
P never terminates Empty Empty Empty
P is never guaranteed Empty Nonempty Includes (z,y) if P might
to terminate terminate in y when
but may started in z

Table 6.1: Semantics of the algebra of ordered pairs of Parnas [Par83].
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where - is the usual (angelic) composition of relations and o is the standard demonic
composition of relations. But, according to Lemma 4.11,

(z,5) © (y,1) = (woy, (sowot))

6.2 Another Algebraic Connection

In this section, we cite an important result from [DD06¢, DD08b] stating that, under
suitable hypotheses, there is an algebraic connection between the bottom part of the
lattice and the whole lattice of Figure 1.4 (Theorem 6.7). It is a quick presentation but
it is so closely related to this thesis that it cannot be eluded. See [DD06¢, DD08b] for
demonstrations.

The suitable hypotheses mentioned above are related to the following operator.

Definition 6.2 (Divergence operator). Let K be a KAD and take x € K. The diver-
gence of © [DMS06a], noted Vz, is ariomatised by

ve < Hz-vVaz)
t<fz-t) = t<vaz

for all t € test(K).

The divergence of z is a test that characterizes those states from which x might
iterate indefinitely. One can demonstrate that Vo = v(¢ : test(K) : (= -t)). In order to
illustrate this new operator, let us calculate the divergence operator for some relations
defined over S3 = {1,2,3}. Take z = {(1,2),(2,1),(2,2),(3,3)}, v = {(1,2)} and
z ={(1,1)}. Then vz = {(1,1),(2,2),(3,3)}, Vy = {} and vz = {(1,1)}. Given a
KAD, we do not know whether Vz exists for all elements x. However, when needed,
we will suppose its existence.

We mentioned in the introduction (Chapter 1) that demonic refinement algebra with
enabledness (DRAe) [Sol07, SYWO06] is an algebraic structure that has the positively
conjunctive predicate transformers as its intended model. Moreover, it is an algebraic
description of the whole lattice of Figure 1.4 [DD06¢, DD08b]. The following definitions
are going to lead to DRAe (Definition 6.4). We skip many details, but what the reader
ought to keep in mind is that DRAe is an algebraic foundation for the whole lattice of
Figure 1.4.
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Definition 6.3 (Demonic refinement algebra). A demonic refinement algebra (DRA)
is a structure D = (D, +,-,*,%,0,1) such that the following properties are satisfied for
all x,y,z € D.

r+y+z2) = (x+y) +=2 (6.1)
rT+y = y+zx (6.2)
r+r = x (6.3)
O+z = = (6.4)
- (y-z) = (x-y)- 2 (6.5)
0-x = 0 (6.6)
l.z = z-1=2 (6.7)
r-(y+z2) = z-y+a-z (6.8)
(x+y)-z = x-24y-z (6.9)
= 2-x+1 (6.10)
¥ = a¥-x+1 (6.11)
¥ = 2t 42¥-0 (6.12)

There is a partial order < induced by + such that for all x,y € D,
r<y <= x+y=y . (6.13)

The next two properties are also satisfied for all x,y,z € D.

roz+y<z = z"-y<z (6.14)
zox+y<z = y-x"<z (6.15)
2<r-z+y — z<a“-y (6.16)

As in KA or in DA, it is easy to verify that < is a partial order. However, there are
two major differences between DRA and KA. Firstly, there is an additional operator in
DRA, namely “. Secondly, the laws of DRA do not ask for -0 = 0. If we compare DRA
to DA, again there is this extra operator “ in DRA. Also, DA does not contain any 0
element. However, as for DA, DRA admits a top element. Indeed, the top element is

T=1v.
One can show that in DRA, T -2 =T for all z € D, but that there exists € D such
that - T # T (unlike in DA). Indeed, 0- T =0 # T.
We now define a concept close to that of tests. Let D be a DRA. An element t € D
that has a complement —t satisfying

t-—t=-t-t=0 and t+-t=1
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is called a guard. Let guard(D) be the set of guards of D. Then (guard(D),+,-,—,0,1)
is a Boolean algebra.

Then we are ready to define DRAe. It includes the enabledness operator that re-
minds of the domain operator of KAD and DAD.

Definition 6.4 (Demonic refinement algebra with enabledness). A demonic refinement
algebra with enabledness (DRAe) is a structure D = (D, guard(D),+,-,*,%,0,1,—,7)
such that (D, +,-,*,%,0,1) is a DRA, guard(D) is the set of guards and the enabledness
operator " : D — guard(D) satisfies the following axioms for all x € D and all t €
guard(D).

v -x
(toa) <t

(-y) = "(=-Ty),
'z T = o-T .

I
8

The following proposition explains how one can always find a KAD at the bottom
of a DRAe, like in the lattice of Figure 1.4. Moreover, this KAD has two important
properties.

Proposition 6.5. Let D be a DRAe and consider Kp = {x : D | -0 = 0}. Then
(Kp,guard(D),+,-,*,0,1,—,7) is a KAD where Vx exists for all x € Kp. Also, for all
T,Y,z € KD;

vV ="z -0) and Ve=0Az2<z-24+y = z<1"-y.

So the structure of Figure 1.4 is not a coincidence.

Lastly, here is the algebra of ordered pairs that is behind the promised algebraic
connection.

Lemma 6.6. Let C be a KAD such that
vV exists for all v € K and Ve=0Az<z-z24y = z<z"-y . (6.17)

Consider E = {(z,t) : K xtest(K) |t-2 =0} and T = {(t,0) : test(K) x test(K)} and
define the following operations for elements of E, where x,y € K and s,t € test(K).

(2,8)® (y,t) = (=(s+1t) - (x+y),s+1)
(x,s) O (y,t) = (@-t) 2 y,s+(z-1))
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(,5)® = (2(z"-t)- 2", (2" 1))

(z,5)" (=(z" - t) - =~vax - ", )+ V)
—(t,0) (—t,0)

z,s) = (x+t,0)

Then (E,T,®,®,%,% (0,0),(1,0),~,7 ) is a DRAe and the partial order T related to
@ satisfies
(x,s) C(y,t) <= s<tAN-t-xz<y .

And here is the algebraic connection.

Theorem 6.7.

1. Every DRAe is isomorphic to an algebra of ordered pairs as in Lemma 6.6. The
1somorphism is given by

¢(x) = (=1(z-0) -2,z -0)) ,

with inverse
v((x,s)=x+s-T .

2. Every KAD K satisfying (6.17) can be embedded in a DRAe D in such a way that
Dy (see Proposition 6.5) is the image of K by the embedding.

In conclusion, thanks to Theorems 5.5 and 5.6, one can freely travel between KADs
and DAD-Rs, as long as the DAD-Fs are algebras of decomposable elements. Also,
thanks to Theorem 6.7, one can freely travel between KADs and DRAes, as long as the
KADs satisfy (6.17). We summarize these transformations in the lattice of Figure 6.2
which is a more complete version of the lattice of Figure 1.4. In this lattice, we use the
following notations.

~(00) () () ()
RSO RHRRh
MR ERGHEREH
(8 () () ()
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Semilattice of the

DAD-FR, of relations
over Sy (Figure 2. V \

>\
t) (h,t)

AN

(0,5) %M (0,1)

\

(d,0) (f, 0) (4,0) (1,0) (g,0) (e, 0)

Lattice of the KAN //
of relations over Sy

(Figure 2.1)

Figure 6.2: Lattice of the DRAe of positively conjunctive predicate transformers over
S,, a synthesis of the semilattices of Figures 2.1 and 2.3.
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The conjunctive predicate transformer f corresponding to a pair (x,t) is given by
f(s) = —t-="(x-—s). In words, a transition by z is guaranteed to reach a state in s if
the initial state cannot lead to nontermination (—t) and it is not possible for  to reach
a state that is not in s (= (z - —s)).

The predicate transformers for all pairs follow. The entry for line (k,0) and column
t, for instance, is s because f(t) = —0-—=(k - -t) =s.

0 st 1 0 s t 1 0 s t 1
(0,1){0 0 0 O (,0) |0t 0 1 (1,0)|0 s t 1
(e,s) |0 0 0 t (b,0)|0 0 t 1 (g,00{0 0 11
(d,t) |0 0 0 s (2,0) |0 s 0 1 (,0)|s s s 1
i,s) |0t O t (k,0)|0 0 s 1 (s,0) |t 1 t 1
(t,s) |0 0 t t (0,t) |s s s s (h,O) |t t 1 1
(¢,0) |0 0 0 1 (d,o)|t t t 1 (i,0) |s 1 s 1
(s,t) |0 s 0 s (f,0)|0 1 0 1 (t,0) |s s 1 1
(h,t) |0 0 s s (,0) |0t s 1 0,001 1 11
(0,s) |t t t t




Chapter 7

Conclusion

At the very beginning of this research, when we first got aware of Figure 1.4, we were
trying to answer two questions.

1. If we define demonic operators from the (angelic) operators of KAD and then
forget the angelic ones, what kind of algebraic structure do we get?

2. We can define demonic operators from the angelic ones. Is it possible to do the
opposite?

The goal of the first question was to get a better understanding of some of the algebraic
structures that exist in the landscape of the semantics of programs. The goal of the
second question (that is, somehow, also related to the first one) was to compare in an
algebraic way angelic semantics and demonic semantics. Our work led us to a new
algebraic structure that we call “demonic algebra with domain and t-conditional”.

Why did we have to define a new algebraic structure in order to understand other
algebraic structures that already exist? The lattice of Figure 1.4 (see also Figure 6.2)
that has been cited so many times hides a strong algebraic activity. There was an
algebraic foundation for the lower part (KAD) and for the whole lattice (DRAe), but
there was no algebraic foundation for the upper part. Once this upper part has been
given structure, then we were able to look for algebraic connections. Those connections
are described in Theorems 5.5, 5.6 and 6.7.

What we get if we define demonic operators from the (angelic) operators of KAD
and then forget the angelic ones turned out to be way more complicated than expected.
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What we first planned to be a gentle algebraic structure that we would have called’
“Demonic Kleene Algebra” turned out to be a deep algebraic object that is an algebra
of what we call decomposable elements. If one thinks about some complicated proofs
like the one of Theorem 4.31-12 that is thirty pages long, one might ask whether algebra
of decomposable elements is manageable enough to work with. What makes algebra of
decomposable elements powerful is not how easy it is to prove some of its properties. It
is rather its duality with KAD. Now that we have established an algebraic connection,
we can easily go from one world to the other. Let us say a demonic problem is easier to
solve in the angelic world. Then use G (from Definition 5.1) to get in a better context
for the resolution of the problem and translate back the answer with F (also from
Definition 5.1). In other words, we get the best of both worlds.

7.1 Open Questions

The passage between the lower part and the upper part of the lattice of Figure 1.4 is
not the only one that exists. Theorem 6.7 tells us that there is a connection with the
whole lattice too. Now, relations, predicate transformers, KAs, DRAes and DAD-R, are
intimately related. However, this work does not only reveal the beauties of that now-
famous lattice, it also raises many questions. We have gathered some open problems
related to this field of research in this final section.

Firstly, we know that the canonical models (i.e. the free algebras) of algebras of
decomposable elements are the same as for KAD-based DAD-F,. Indeed, these two
structures are isomorphic by Theorems 5.5 and 5.6. Once the problem is solved for KAD,
it is solved for the algebra of decomposable elements. Indeed, note M a canonical model
of KAD. Then F(M) is a canonical model of the algebra of decomposable elements.

Now, think about it as a decidability problem. Suppose we have an algorithm for
deciding equalities in KAD. Let A be an algebra of decomposable elements. Let us say
we want to know if = y is true (z = y being an equality in A). Then here is an
algorithm giving the answer.

1. In & = y, replace respectively the operators 4, o, *, =, ™ and F, by Hy, 04, *4, =,
™ and Fy,. The equality is now an expression in G(A).

2. In the equality obtained at the previous step, translate every operators using

'We kept the name “Demonic Kleene Algebra” for the title of this thesis because it says in three
words what we did in two hundred and twenty-nine pages.
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K K

Fl|9 F||G

A A’

Figure 7.1: Commutative diagram for Theorems 5.5 and 5.6.

Proposition 2.10 and Definitions 2.12, 2.14 and 2.18. The equality is now an
expression in G(A) written exclusively with angelic operators.

3. Apply the algorithm for KAD.

We now ask what are the canonical models for DA, DAT, DAD and DAD-F, (without
the restriction to decomposable elements)? And what about decidability?

We algebraically linked KADs, DRAes and DAD-FR,. Would it be possible to estab-
lish links with other structures? Since we want to put together angelic and demonic
semantics, it would be interesting to find a link with multirelations [MCR04, MCRO7,
Rew03] that basically mix those semantics. Moreover, links between predicate trans-
formers and multirelations have already been pointed out [RB06]. Thinking about
other algebraic structures, why would not there be a link with probabilistic algebraic
structures for semantics of programs? Among other aspects, the resemblance between
the probabilistic choice operator ,& from [MHO08, MS08a, MS08b] and the operator Fy
needs to be studied.

There is also the category theory point of view. We can rewrite Theorems 5.5 and 5.6
with the commutative diagram of Figure 7.1. What more can we learn from category
theory?

Finally, the discussion of Section 6.1 must be completed. On the one hand, what is
the difference between elements that admit no decomposition and elements that admit
multiple decompositions? On the other hand, we need to clarify how the semantics
suggested can be used in practice.
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Appendix A

Demonstration of Lemma 4.11

In this appendix, we demonstrate Lemma 4.11. We first recall its terms.

Lemma 4.11. Let (A, test(A),d,0,*, T,1,—,A, " FA,) be a DAD-R,. Consider E =
{(z,t) : Axtest(A) | "t Tt} and T = {(t,t) : test(A) xtest(A)} and define the following
operations for elements of E, where x,y € A and s,t,u € test(A).

(z,s)®(y,1) = (zHy,sH1)
(z,5) @ (y,t) = (zoy, (soxot))
(JI,S)@) = (xx7n_(xx']8)>
(s, s) (s, 7s)
(s,s)m(t, t) = (sAt,sAt)
"z, s) ("z, ")
(@, 8) Muw) (¥,1) = (#Fuy,sFut)
Then (E,T,®,®,%,(T,T),(1,1), ,m,".m) is a DAD-m, and the partial order
related to @ satisfies
(x,8) C (y,t) <= Ly AsLCt. (A.1)

PRrROOF : We first show that E is closed under @, @, ® and @M, and that 7" is closed
under &, ® and M (7 is trivially closed under and it is clear that the type of ™ is
T.E—T.)

e [ is closed under @.
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We have to show that "(z Hy) E s U ¢. This follows directly from (3.21) and
Boolean algebra, since (z, s), (y,t) € E.

e F is closed under ¢.

We have to show that "(xoy) E "(soxot).

true
— ( by the hypothesis )
Tt
= by Proposition 3.14-8 and (3.20) )

e [ is closed under ®.

We have to show that "(z*) E M(z*os). This follows directly from Proposi-
tion 3.14-18.

e T is closed under @.

Since (s,$) @ (t,t) = (sHt,sHt) by definition of @, then (s,s) @ (t,t) € T.

e T is closed under ©.

(s,8) @ (t,1)

= ( by definition of ® )
(sot,"(sosot))

= { by Boolean algebra and Proposition 3.14-1 )
(sot, sot)

So (s,s) @ (t,t) €T
e T is closed under M.
Since (s, s) M (¢t,t) = (sAt,sAt) by definition of M, then (s,s) m (¢,t) € T.

e [ is closed under M.

We have to show that "(xA,y) C sA,¢. This follows directly from Proposition 3.20-
20, since (z, s), (y,t) € E.
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So we know that the operators @, ®, ©, ,m, ™ and M, are well defined.

We immediately derive (A.1). It will be used later on. The proof uses (3.11), which
holds for & only if (3.1), (3.2) and (3.3) also hold for &. It is shown below that they
do hold, and the proof does not use (A.1).

(z,5) @ (y,t) = (y,1)

zHy=y N sHt=1¢
= ( by (3.11) )

rCy N sCt

Then we show that &, ® and ® satisfy the axioms of a DA. Take (z, s), (y,1), (z,u) €

e Axiom (3.1)
By definition of &, it follows directly from (3.1).

e Axiom (3.2)
By definition of &, it follows directly from (3.2).

e Axiom (3.3)
By definition of &, it follows directly from (3.3).

e Axiom (3.4)
By definition of &, it follows directly from (3.4)

e Axiom (3.5)

(z,5) © ((y,1) © (2,u))
— ( by definition of ® )
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(z,5) © (yoz, "(toy=u))
= ( by definition of ® )

(wa(yoz), "(sewo(toyou)))
_ { by (3.20) )
(zaysz, "(seastaysu))
= ( by (3.19) and Proposition 3.14-9 )
(Q;Dy527 ”_(”_(smxmt)mxuymu))
= ( by definition of ® )
(xoy, "(soxot)) @ (2, u)
= ( by definition of ® )

((z,5) © (y,1) © (2, u)

e Axiom (3.6)

(T, T)® (z,9)

= ( by definition of ® )
(Tox,"(ToTos))

= ( by (3.6) and Proposition 3.14-1 )
(T, 1)

= ( by (3.6) and Proposition 3.14-1 )
(x0T, (sowoT))

= ( by definition of ® )
(x,5) ©(T,T)

e Axiom (3.7)

(1,1) ® (z, )

= { by definition of ® )
(lox,™(1o10s))

= { by (3.7) and Proposition 3.14-1 )
(@, s)

= ( by (3.7))
(a1, Tsee1)
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= ( by definition of ® )
(z,5) © (1,1)

e Axiom (3.8)

(z,5) © ((y,1) ® (2, u))

- ( by definition of & )
(r,8) ® (yHz,tHu)

— ( by definition of ® )
(xo(yH 2),(soxo(tHu)))

— ( by (3.8) and (3.21) )
(xoyHxoz, M(soxot) H "(soxou))

— ( by definition of @ )
(q;uy) ”_(smxut)) ) (J}DZ, IT(SD.TDU))

— ( by definition of ® )
(z,5) ® (y,t) ® (z,5) © (2,u)

e Axiom (3.9)

((z,5) ® (y,1)) © (2, u)
= ( by definition of & )
(eby,540) O (2 u)
= ( by definition of ® )
((zdy)oz, "((sUt)o(zHy)ou))
= ( by (3.9), Proposition 3.14-3, (3.8) and (3.21) )
(xozHyoz, "(sotoxou) H "(sotoyou))
= ( by Proposition 3.14-9 and Boolean algebra )
(zozUyoz, "(sozou) H "(toyou))
= ( by definition of & )
(zoz,"(sozou)) ® (yoz, "(toyou))
= ( by definition of ® )

(2,8) ® (z,u) ® (y,t) © (2, u)
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e Axiom (3.10)

(z,5)° © (z,5) & (1,1)
= ( by definition of ® )
(2%, T(z*2s)) © (2,5) ® (1,1)
= ( by definition of ® )
(w0, "(M(x*0s)ox*0s)) & (1,1)
= ( by definition of & )
r*ox H1, r*os)ox*os)
1, ™(™( 1
= ( by (3.10), Proposition 3.14-7 and Boolean algebra )
(z*,"(z*=5))
= ( by definition of ® )

(z,5)®

Rather than demonstrate (3.12) and (3.13), we work on Laws (3.17) and (3.18)
which are equivalent (see Remark 3.2).

o Law (3.17)

(,8) ® (z,u) T (z,u)
= ( by definition of ® )
(xoz,"(soxou)) C (z,u)
= (by(A1))
zoz Lz A T(soxou) Cu
= ( by Proposition 3.14-9 and Boolean algebra )
zozCz A sCu A Nzou) Cu
— ( by (3.17) and (3.22) )
r*0zCz A sCu A "a*ou) Cu
— ( by Proposition 3.14-8 )
oz 2 A Ma*os) ET(z*ou) A "(a*ou) Cu
- ( by Boolean algebra and Proposition 3.14-9 )

oz C 2z A T(M(x*os)ox”ou) Cu
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= {(by (A.1))
(x70z,"(M(z*os)ox*ou)) C (2, u)
( by definition of ® )
(

2, M(2%08)) ® (2,u) C (2,u)

<~
= ( by definition of ® )

(2,8)® ® (z,u) C (2,u)

e Law (3.18)

(z,u) ® (x,8) C (2,u)

= ( by definition of ® )
zox,"(uozo8)) C (z,u)

= ( by (A.1))
zox Cz A (uozes) Cu

— ( by Proposition 3.14-9 and Boolean algebra )
zox Lz A M(zos) Cu

— ( by (3.18) )

zoz* Cz A M(zos) Cu

= ( by Proposition 3.14-8 )
zox* E 2z A M(zoxXos) CM(zos) A M(zos) Cu
— ( by (3.20) )
zox* Ez A T(z20™(2%0s)) Cu
= ( by Boolean algebra and Proposition 3.14-9 )
zox* E 2z A M(uoze(z*0s)) Cu
= { by (A.1))
(zox*, Muozo"(x*0s))) C (2, u)
= ( by definition of ® )
(z,u) ® (%, "(x*0s8)) C (2,u)
= ( by definition of ® )
(z,u) ® (z,5)® C (2,u)
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The fact that (T, @, m, ,(1,1),(T,T)) is a Boolean algebra directly follows from
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the fact that (test(A),d,A, =, 1, T) is a Boolean algebra. So (E,T,®,®,(T,T),(1,1),
,M) is a DAT.

Then we show that ™ satisfies all the axioms of a DAD. Take (z,s), (y,t) € E and
(u,u) € T.

e Axiom (3.19)

(2, 5) © (u,u) © (2, 5)
= ( by definition of ® )
T(zou, "(sowou)) © (z,s)
— ( by definition of ™ )
("(zou), "(zow) © (z, )
= ( by definition of ® )
("(wou)ox, (M(wou)o"(zou)os))
= ( by (3.19), Boolean algebra and (3.20) )
(xou, "(soxou))

= ( by definition of ® )
(z,5) © (u,u)

e Axiom (3.20)

"((2,5) © (y.1))

— ( by definition of ® )
"(zoy, "(soxat))

— ( by definition of ™ )
("(zoy),"(zoy))

_ ( by (3.20) )
("(za"y), "(2="y))

— ( by definition of ™ )
Moy, (soz0y))

= ( by definition of ® )

"((z,8) © ("y,"y))
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= ( by definition of ™ )

"((z,5) © "y, 1))

e Axiom (3.21)

((z,5) @ (y,1))
— ( by definition of @ )

MxHy,sdt)
= ( by definition of ™ )
(Mwdy),(zdy))
( by (3.21) )
("w ey, "y Ty)
= ( by definition of & )
("z,"z) & ("y, "y)
= ( by definition of ™ )

(z,5) @ "y, 1)

e Axiom (3.22)

((z,5) © (u,u)) T (u,u)

= ( by definition of ® )
M(zou, "(soxou)) E (u,u)

= ( by definition of ™ )
("(wou), (zou)) T (u,u)

= { by (A.1))
T(xou) Eu

= ( by (3.22) )
Tx*ou) Cu

= {(by (A.1))
("(z*ew), (2 ou)) T (u, u)

= ( by definition of ™ )

T(z*ou, "("(x*os)ox*ou)) C (u,u)

= ( by definition of ® )
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(7, (2 es)) © (u,u)) T (u, u)
= ( by definition of ® )

((z,9)® © (u,u)) T (u, u)

Then we show that M, satisfies (3.23) so (E,T,®,®,®,(T,T),(1,1), M, m,)
is a DAD-m,. Take (z,s), (y,t),(z,u) € E and (v,v) € T.

(.T, S) rm(v,v) (y7t) - (Z,U)
= ( by definition of m, )

cR,y=2 N sA,t=u
= ( by (3.23) )

vox = voz A —woy = —woz A vos=vou A —wot = —wou

!

( by Boolean algebra and Proposition 3.14-1 )

voxr =wvoz A —woy = —woz A T(voves) = T(vovou) A
T(—wo—wot) = "(—wo—wou)

= ()

vox, (voves)) = (voz, (vovou)) A

—voy, T(—mn—muf;)) = (—|?JDZ, T(—mu—muu))

= ( by definition of ® )
(U,’U) © (:Ij', 5) = (va U) © (Za u) A (_'Uv _'v) © (yat) = (_'va _'U> © (27 u)
= ( by definition of )

0,0) O (z,5) = (v,0) @ (z,u) A (V,0)O (y,t) = (v,0) O (2,u)
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Competence set, 204

DA, see Demonic algebra (DA)

DAD, see Demonic algebra with domain
(DAD)

DAD-F,, see Demonic algebra with do-
main and ¢-conditional
(DAD-R,)

DAT, see Demonic algebra with tests
(DAT)

Decomposition, 79, 80

Demonic algebra (DA), 34

Demonic algebra with domain (DAD),
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Demonic algebra with domain and
t-conditional (DAD-R,), 54, 55

Demonic algebra with tests (DAT), 38,
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Demonic composition, 20

Demonic iteration operator, 21

Demonic join, 19
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Disjoint, 39

Divergence operator, 206

Domain operator, 16, 42

DRA, see Demonic refinement algebra
(DRA)

DRAe, see Demonic refinement algebra

with enabledness (DRAe)
Enabledness operator, 208
Guard, 208

KA, see Kleene algebra (KA)

KA-implication, 18

KAD, see Kleene algebra with domain
(KAD)

KAT, see Kleene algebra with tests
(KAT)

Kleene algebra (KA), 3, 12, 13

Kleene algebra with domain (KAD), 16

Kleene algebra with tests (KAT), 14, 15

Left annihilator, 46
Left preserver, 46
Locality, 16, 43

Maximal subalgebra of decomposable
elements, 85

Positively conjunctive, 4, 206
Predicate transformer, 3, 206
Probabilistic choice operator, 214

RA, see Relation algebra (RA)
Relation algebra (RA), 2

Zorn’s Lemma, 85
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