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Abstract

In this paper we describe the randomized parallel algorithm proposed by Blelloch
et al. [BFS12] to compute a Maximal Independent Set (MIS) of a given graph. We
implemented their algorithm as well as the fastest sequential algorithm and compared
their performance with different input graphs. Furthermore, we compared the number
of rounds in both the sequential and parallel algorithms and present empirical evidence
of the intrinsic parallelism in the algorithm proposed by Blelloch et al. [BFS12].

1 Introduction

Let G = (V,E) be an undirected graph. An independent set of G is a subset I of V
such that no two vertex in I are adjacent in G. A Maximal Independent Set (MIS) of
G is an independent set such that adding any other vertex to it forces the set to contain
an edge between two of its vertices. A Maximum independent Set (MaxIS) is a largest
maximal independent set contained in V ; see Fig. 1. The problem of finding a MaxIS has
been proved to be NP-hard. Moreover, it is even hard to find an ε-approximation unless
P = NP [EH00]. However, finding a MIS is relatively easy and many (greedy) linear time
algorithms are known to solve this problem. The idea to construct a MIS I is usually the
following: Given an ordering of the vertices of G, process each vertex by adding it to I as
long as it is not adjacent to a vertex already in I. In this way, it is not hard to see that a MIS
would be produced. The output of this algorithm is known as the Lexicographical Maximal
Independent Set (LFMIS) for the given order. In fact, if the vertices are sorted by degree,
from minimum to maximum, then the output of the algorithm is a 1

∆+1 -approximation of
the MaxIS, where ∆ is the maximum degree of a vertex in G. That is, the size of the
computed approximation MIS has at least k

∆+1 where k is the size of a MaxIS in G.
In this work we are interested in the study of the MIS and LFMIS problem in parallel

computing. In this setting, the MIS problem has been extensively studied: Vliant [Val82]
noted that the MIS problem, which has an easy sequential algorithm, may be one of the
problems for which no fast parallel algorithm exists. Cook [Coo85] strengthened this belief
by proving that obtaining the LFMIS for any arbitrary ordering of V is P -complete. Where
P is the class of all problems solvable in polynomial time. In other words, there is no
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Figure 1: A Maximum Independent Set of the graph is depicted in blue.

parallel algorithm to find the LFMIS for any given order of V unless P = NC. Therefore,
to solve the MIS problem, researches needed to look for a different approach.

The study of the MIS problem in the parallel setting was inspired by the growing number
of parallel algorithms using the MIS algorithm as a subroutine. Karp and Wigderron [KW85]
gave NC1 reductions from the Maximum Set Packing and the Maximal Matching problems
to the MIS problem, and an NC2 reduction from the 2-Satisfiability problem to the MIS
problem. Luby [Lub86] also showed an NC1 reduction from the Maximal Coloring problem
to the MIS problem.

Karp and Wigderson [KW85] surprised the research community by developing a fast par-
allel algorithm for the MIS problem. They presented a randomized algorithm with expected
running time O(log4 n) using O(n2) processors, and a deterministic algorithm with running

time O(log4 n) using O( n3

log3 n
) processors on a EREW PRAM. That is, they established that

the MIS problem is in NC4. Independently, Goldberg and Spencer showed a deterministic
parallel algorithm running in O(log4 n) time on the EREW PRAM model [GS89]. Later
on, Luby [Lub86] and Alon et al. [ABI86], independently proved the existence of a Monte
Carlo algorithm in the EREW PRAM running in expected O(log2 n) time using O(|E|)
processors. Furthermore, Alon et al. showed that in the CRCW PRAM, the MIS problem
can be solved in O(log n) time using O(|E|∆) processors. Both papers show a way to de-
randomized their algorithms at the expense of using O(mn2) processors, obtaining in this
way efficient deterministic parallel algorithms for the MIS problem.

A few years later, Coppersmith [CRT89] studied the problem in the setting of random
graphs. He showed that in a random graph with n vertices, the LFMIS can be found in
O(logO(1) n) expected time using linearly many processors in the CRCW PRAM model
for any given order. Recall that LFMIS is P -complete for general graphs. However, this
is not contradiction and simply shows that in the “average” case, the LFMIS problem is
highly parallelizable. Calkin and Frieze further analyzed this algorithm and proved that the
expected running time of Coppersmith’s algorithm is in fact O(log n) for random graphs
of arbitrary edge density. Nevertheless, these results were only theoretical and couldn’t be
implemented to solve real-life applications.

The greedy sequential algorithm to compute a MIS loops over the vertices according to
the given order, adding them to the resulting set only if no previous neighboring vertex has
been added. In this loop, each iterate depends only on a subset of the previous iterates.
That is, to decide the fate of a vertex we need only to know if any one of the vertex’s
previous neighbors (in the given order) is in the partially computed MIS. This leads to a
dependence structure among the iterates. If this structure is shallow (has a polylogarithmic
depth), then running each of the iterates in parallel, while respecting the dependencies,
leads to an efficient parallel implementation that mimics the sequential algorithm. The
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depth of this dependance structure is called the dependence length.
Using these abstraction, Blelloch et al. [BFS12] revisited the ideas of Coppersmith and

Calkin et al., and showed that by randomly permuting the order in which the vertices
are given, the dependence length of the sequential algorithm for the LFMIS problem has
O(log2 n) depth with high probability, where the probability is with respect to the random
permutation. That is, for almost every permutation of the vertices the dependance structure
will be shallow. Furthermore, this result was followed by a new parallel implementation
providing a continuous trade-off between total work and running time. To achieve this
result, they fix a permutation of the vertices and instead of processing all of them at once,
they process only a prefix of the vertices in parallel. By reducing the size of the prefix, the
parallelism is reduced but so is the redundant work. When the prefix is of size one, the
algorithm mimics the sequential algorithm with no redundant work. Using this trade-off,
they showed that by choosing and appropriate size for the prefix, they can obtain linear work
while computing the solution after a polylogarithmic number of steps. Another interesting
property of their algorithm is that even though their algorithm is randomized, it produces
the same output whenever the same ordering of the vertices is given as input. This can be
a desirable property for parallel algorithms as shown in [BAAS09].

Results

We implemented both the parallel algorithm presented by Blelloch et al. [BFS12] and the
sequential algorithm in Cilk and C, respectively. The experiments we ran provide empirical
proof of the shallowness of the dependence structure of the parallel algorithm. That is,
we prove that the theoretical results that Blelloch et al. [BFS12] presented hold for several
benchmark graphs. Furthermore, we provide empirical evidence of the advantage of using
a parallel approach to compute a MIS.

Our benchmarks are based on sparse graphs such as the 3D-grid, hypercube and random
graphs, where the probability of the existence of an edge is inversely proportional to the
distance between the indices of the vertices. These graphs have been the benchmarks used
to test similar algorithms [CZF04, BPT11, BFS12].

In Section 3 we describe the classical sequential algorithm to compute a MIS, as well
as the parallel algorithm presented by Blelloch et al. [BFS12]. We give an overview of its
properties and provide the intuition behind its efficiency. In Section 4 we show the results
we obtained through our implementation and describe the empirical evidence that they
provide.

Related work and applications

Given a graph G, the Set Cover problem asks for the smallest set of points (called a vertex
cover) such that every edge of the graph is incident to an element of the vertex cover. The
relation between Set Cover and MIS is tight since a set of vertices is a vertex cover if and
only if its complement is an independent set. An immediate consequence is that a big MIS
produces a small vertex cover.

While a vertex cover can be found in polylogarithmic time using parallel algorithms for
MIS, its output may be arbitrarily big (bad) compared with the size of a minimum vertex
cover. Therefore, another branch of study is dedicated to compute good approximations for
graph problems using parallel algorithms for MIS.

While the Set Cover problem is NP-hard, good approximation algorithms exist in the
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sequential setting as shown by Chvatal in [Chv79]. Blelloch et Al. [BPT11] studied the Set
Cover problem in the parallel setting and showed the existence of a (1+ε)Hn-approximation
parallel algorithm using linear work, where Hn =

∑n
k=1

1
k . To obtain this result they use a

set of tools related to MIS’s. They introduced the concept of Maximal Nearly Independent
Set (MaNIS) and presented an O(m) work and O(log2m)-time parallel algorithm for the
MaNIS problem in the EREW PRAM model. The MaNIS problem is to find a subset of
the power set of the vertices of G such that they are nearly independent (their elements do
not overlap too much), and maximal (no set can be added without introducing too much
overlap). The MaNIS abstraction generalize de MIS problem and allows them to use the
duality to solve several set-cover like problems.

The MIS problem is a basic problem in Graph Theory since several problems can be
reduced to it. For example, finding small proper colorings or finding maximal matchings in
a graph. A vertex coloring of a graph G = (V,E) is an assignment of colors to the vertices
of G. A vertex coloring is proper if no two adjacent vertices are assign with the same color.
A proper coloring of G is minimum if G cannot be properly colored with less colors. One
important remark is that every chromatic class of a proper coloring is a MIS of G. Therefore,
one way to compute a proper coloring with “few” colors is to compute a large MIS, assign
the same color to all its vertices and remove it from G afterwards. By repeating this process
recursively, we obtain an algorithm to compute a proper coloring of G. However, the quality
of the coloring depends heavily on the choice for the MIS algorithm. Therefore, having good
and fast algorithms to compute MIS translates into efficient algorithms to compute a proper
coloring of G.

Another classical problem in graph theory is the matching problem. A set of edges of a
graph G is a matching if no two edges in it share an endpoint. The problem of computing
a Maximal Matching (MM) can also be solved using an algorithm for MIS. Consider the
edge-graph of G. That is, the graph whose vertex set are the edges of G and where two of
these edges are adjacent if they share a common endpoint. Therefore, a MIS of the edge-
graph of G corresponds to a MM of G. While this algorithm is straightforward, it requires
the computation of the edge-graph of G, which can be expensive. Therefore, direct parallel
algorithms are of great interest. In this direction, Blelloch et al. in [BFS12] provided a
variation of their techniques to solve the MIS and applied them directly to find a MM.

Other problems such as the vertex covering and maximal clique problems are also closely
related to MIS. The consequences and applications of a good algorithm to find a MIS are
too many and just a few are mentioned in this work. These remarks, together with the fact
that finding a MaxIS is NP -hard and a LFMIS is P -complete, show that the study of this
problem is fundamental and that the consequences of any development in this field are of
great importance.

2 Preliminaries

Let G = (V,E) be an undirected graph such that |V | = n and |E| = m. Given two vertices
v, u ∈ V , we say the u and v are neighbors if the edge uv ∈ E. For each vertex v ∈ V ,
let N(v) = {u ∈ V : uv ∈ E} be the neighborhood of v. Let δ(v) = |N(v)| be the degree
of v and let ∆ be the maximum degree among the vertices in V . Given a subset W ⊂ V ,
let N(W ) = ∪w∈WN(w) be the neighborhood of the set W . Given a set V ′ ⊆ V , let
G[V ′] = (V ′, E′) be the induced graph by V ′ where E′ = {uv : u, v ∈ V ′}.

Let π be a total ordering of the vertices of G. Given two vertices v, u ∈ V , we say that
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u has higher priority that v if u lies before v according to π.
A directed graph is a graph where each edge has an orientation from one endpoint to the

other. Given a directed graph, the in-degree of a vertex v is the number of edges incident
on v that are directed towards v.

3 The algorithm

In this section we provide a quick overview of the algorithm presented in [BFS12] and the
techniques used to prove its efficiency. To do this, we first revisit the classical sequential
algorithm to compute a MIS and show how to modify it to work in the parallel setting. All
algorithms presented in this section are assumed to be in CRCW PRAM model.

The sequential algorithm for the MIS problem is simple: Take the vertex v with highest
priority, according to π, among the remaining vertices in the graph, add v to the MIS and
then remove v and all vertices in N(v) from the graph. Repeat this process until the graph
is empty. The pseudo code of this algorithm is shown in Algorithm 1. The MIS returned
by this algorithm is called the LFMIS with respect to the ordering π or π-MIS for short.

Algorithm 1 Sequential greedy algorithm for the MIS problem

1: procedure SequentialGreedyMIS(G, π)
2: if |V | = 0 then
3: return ∅
4: else
5: let v be the first vertex in V according to π
6: V ′ = V \ (v ∪N(v))
7: return v ∪ SequentialGreedyMIS(G[V ′], π)
8: end if

The idea of the parallel algorithm will be to process many vertices as in Algorithm 1 at
the same time. However, we have to be careful as we want to avoid a situation in which a
vertex u is added to the MIS by one process while discarded by some other process running
in parallel.

Notice that if a vertex v has no higher-priority neighbors in the graph, then it will
be added to the MIS regardless of what happens with vertices of higher priority than v.
This is the key fact to obtain parallelism from Algorithm 1, i.e., if we process all vertices
with no higher-priority neighbors in the graph at the same time, they won’t interfere with
each other. By allowing the vertices to be added to the MIS as long as they don’t have
higher-priority neighbors, we obtain Algorithm 2.

Algorithm 2 Parallel greedy algorithm for the MIS problem

1: procedure ParallelGreedyMIS(G, π)
2: if |V | = 0 then
3: return ∅
4: else
5: let W be the set of vertices with no higher-priority neighbors (based on π)
6: V ′ = V \ (W ∪N(W ))
7: return W ∪ParallelGreedyMIS(G[V ′], π)
8: end if
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Figure 2: Left: The priority DAG after directing the edges from of higher to the lower priority
endpoint. Right: The roots of the priority DAG for the given ordering of the vertices.

Lemma 1 Given a total ordering π of the vertices of G. Parallel Algorithm 2 returns the
same π-MIS as sequential Algorithm 1.

Even though both algorithms return the same π-MIS, in order to have any speedup in
Algorithm 2, we need to accept vertices into the MIS at earlier times than the sequential
algorithm. In other words, we need to have many vertices with no higher-priority neighbors
on each recursive call of the algorithm that can be processed in parallel.

Notice that if Algorithm 2 computes a new random permutation π on each recursive
call, we effectively have the same algorithm presented by Luby [Lub86]. Thus, the key fact
is the use of a single permutation through the whole process, this makes the analysis of the
algorithm more difficult but provides better results.

Priority Directed Acyclic Graph

The structure of G, together with the given ordering π, provide a dependence structure on
the vertices of G that can be better understood in terms of a directed acyclic graph (DAG).
The priority DAG of G with respect to π is obtained by directing the edges of G from
higher priority to lower priority endpoints (according to π). A root in the priority DAG is
a vertex with in-degree zero; see Fig. 2.

Each recursive call of Algorithm 2 is called a step. Notice that on each step, Algorithm 2
process all the roots of the priority DAG in parallel and removes them along with their
children from the priority DAG. The number of steps that Algorithm 2 requires before
obtaining an empty priority DAG is called the dependence length. Though the length of
the longest directed path in the priority DAG upper bounds the dependence length, they
can be quite different as it is the case in a tournament (complete directed graph). Thus, a
different technique needs to be used to bound the dependence length.

The idea is to take a random permutation π and show that with high probability, the
dependence length of the priority DAG based on π is polylogarithmic. Blelloch et al. [BFS12]
showed this to be true. They considered the priority sub-DAG’s induced by small subsets of
vertices and proved that they have small longest paths and hence small dependence length
(although this may not be true for the complete DAG). Aggregating all these bounds on
the sub-DAG’s provides an upper bound on the total dependence length.

Specifically, they proposed a more restricted, less parallel algorithm whose pseudo-code
can be found in Algorithm 3. This algorithm considers only a subset of the remaining
vertices in the graph rather than all of them on each of its recursive calls. This may cause
some vertices to be processed later than they would be in Algorithm 2; however, no vertex
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Algorithm 3 Prefix parallel greedy algorithm for the MIS problem

procedure PrefixParallelMIS(G = (V,E), π)
if |V | = 0 then

return ∅
else

Let Pδ be the subset containing the first δ vertices of V according π.
let W = ParallelGreedyMIS(G[Pδ], π)
V ′ = V \ (Pδ ∪N(W ))
return W ∪PrefixParallelMIS(G[V ′], π)

end if

is processed before. Therefore, when we add up all steps performed in the recursive calls to
ParallelGreedyMIS, Algorithm 3 requires more steps than Algorithm 2. Consequently,
by showing a polylogarithmic bound on the number of steps of Algorithm 3, we implicitly
obtain an upper bound for the number of steps in Algorithm 2.

Let π be a random ordering of the vertices in V . Each recursive call of Algorithm 3 is
called a round. For any parameter δ a δ-prefix is the subset containing the first δ vertices of
V according to the ordering π. While considering larger prefixes of vertices on each round
decreases de numbers of rounds, it also increases the number of steps in each round. With
some fine tuning of the size of the subset we obtain a polylogarithmic bound on both, the
number of rounds and the steps in each round.

The main advantage in the analysis of Algorithm 3 is that the order of the vertices left
in the graph remains uniform. Due to lack of space, we will not go into details of the proof
but mention the highlights and the main ideas presented by Blelloch et al. [BFS12].

The first step in the proof is to show that after the i-th round, the degree of each vertex
in the graph is at most ∆/2i with high probability. Hence, after log ∆ rounds, all vertices
have degree 0 with high probability and can be processed in one more round.

Theorem 1 (Rephrasing of Corollary 3.2 of [BFS12]) By setting δ = Ω(2i logn
∆ ) for the i-th

round of Algorithm 3, all vertices after the i-th round have degree at most ∆/2i with high
probability.

The next step is to bound the number of steps in each round of Algorithm 3. To do
this, Blelloch et al. [BFS12] presented an upper bound on the length of the longest path in
the priority DAG induced by the chosen prefix of vertices. Recall that the length of this
path provide a bound on the dependence length. The way they do it is by showing that if
the subset is not too large, then the longest path in the priority DAG of that subset has
length O(log n).

Theorem 2 (Rephrasing of Lemma 3.3 of [BFS12]) Assume that all vertices in G have
degree at most d. For any O( logn

d )-prefix of vertices with respect to a random ordering π,
the longest path in the priority DAG of this subset has length O(log n) with high probability.

As Theorem 1 provide a bound on the number of rounds of Algorithm 3 and Theorem 2
bounds the number of steps on each of this rounds, we obtain the following.

Theorem 3 (Rephrasing of Theorem 3.5 of [BFS12]) For a random ordering π of the
vertices, the dependence length of the priority DAG is O(log ∆ log n) = O(log2 n) with high
probability. Equivalently, Algorithm 2 requires O(log2 n) steps in total when adding the steps
on each round.
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Figure 3: The running time of the sequential algorithm and parallel algorithm in computers with
4 and 8 cores with a 3D grid as input. Parallel algorithm outperforms the sequential algorithm for
sufficiently large 3D grids proving that the parallel algorithm is asymptotically faster with as few as
4 processors. For the hypercube, we didn’t manage to outperform the sequential algorithm but got
a significant improvement when going from 8 to 4 processors (around 1.25 times faster), suggesting
that with more processors, we will outperform the sequential algorithm.

4 Results

The objective of this section is to show empirical data that supports the theoretical results
presented in the previous sections. Specifically, we implemented parallel Algorithm 2 and
counted the number of steps it requires to compute a MIS in different input graphs such
as hypercubes, 3D grids and random graphs. These graphs have been used as benchmark
for the MIS and related problems [CZF04, BPT11, BFS12]. The idea is that sparse graphs
provide the hardest inputs to compute a MIS. Moreover, from the implementation point
of view, 3D grids and hypercubes provide an easy way to obtain the set of neighbors of a
vertex without storing the whole graph. This allowed us to work with larger inputs that
helped us obtain a better view of the asymptotic behavior of the algorithms.

We worked with random graphs, where the probability of the existence of an edge is
inversely proportional to the distance between the indices of the vertices. These graphs
proved to be hard to work with since the storage in RAM memory of large graphs was
not possible. By using main memory, we wouldn’t have been able to compare the results
with the hypercubes or 3D grids since the impact on performance was significant. Thus,
we decided to keep the size of the graph to fit in RAM memory. To construct random
graphs, we need to perform a quadratic number of operations (one for every pair of vertices
to decide if there is an edge between them). Thus, to deal with vertex sets as large as the
ones used in the 3D grids or hypercubes (tenths of million vertices), we would have needed
a computation time that we didn’t have at hand. Therefore, the size of random graphs
was restricted to tenths of thousand vertices. Furthermore, it is known that random graphs
are “good” inputs for the sequential algorithm [CRT89], providing a bigger challenge to
outperform it using parallelism.

We implemented sequential Algorithm 1 and optimized its performance. We then com-
pared the running time of Algorithms 1 and 2 with the same set of input graphs. We ran
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Figure 4: Left: The running time of the sequential and parallel algorithms with random graphs
as input. The sequential algorithm is faster than the parallel for small random graphs. As random
graphs were proved hard to work with, we have no intuition of the asymptotic behavior. Nevertheless,
when going from 4 to 8 processors we obtained a significant improvement suggesting that many
processors suffice to outperform the optimized sequential algorithm. Right: The number of rounds
with random graphs as input for the sequential and parallel algorithms with a linear and logarithmic
behavior, respectively.

the algorithm 30 times for every input size and average the results obtaining in this way
significant information on the performance of the algorithm.

Our implementation was done in Cilk in a procedural manner. While Algorithm 2
appears simple at first glance, its implementation requires further details. The main problem
is to compute the set of roots on each step of the algorithm. If we use a näıve approach, we
will require to check every vertex in the graph to compute the next set of roots. Instead,
we look only at a subset of vertices containing all the possible candidates. We maintain
the roots of the DAG explicitly in an array, in this way is easy to identify the neighbors
of the roots in parallel and remove them from the graph. However, it is trickier to find
the new roots afterwards. Notice that when a vertex is processed, it is removed from the
graph together with all its neighbors. Therefore, the vertices that can become roots are
those lying at distance two from the processed vertices (current roots). By looking only at
the neighbors of the neighbors of each processed vertex we can check each candidate and
determine which ones belong to the new set of roots. This require extra care since a vertex
can be at distance two from several processed vertices. Duplicates can be avoided, however,
by having the neighbor write its identifier into the processed vertex using concurrent writing.
Whichever write succeeds is responsible for adding the neighbor into the new root array.

The implementation of the algorithm to find new roots has O(log n) depth using O(m)
processors (Lemma 4.1 [BFS12]). Therefore, as the number of steps in Algorithm 2 is at
most O(log2 n) by Theorem 3, we obtain an implementation having in theory, O(log3 n)
depth when using O(m) processors.

The overhead of the parallelization is evident as depicted in Fig. 3 where the running
time of the parallel algorithm is asymptotically better than that of the sequential algorithm.
This can be observed, however, only for graphs larger than 70 million vertices for 4 cores
and 11 million vertices for 8 cores suggesting large hidden constants in the big O notation.
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Similar results can be observed for the hypercube where we didn’t manage to outperform
the sequential algorithm, but obtained charts suggesting that, for larger inputs, the parallel
algorithm will be able to outperform the sequential with as few as 8 cores. The decrease on
the running time when going from 4 to 8 cores provides concise proof that as we utilize more
processors, we obtain better performance and outperform the sequential algorithm faster.
It is worth noting, however, that Cilk doesn’t provide the best platform for this algorithm as
a large number of processors are required to outperform the optimized sequential algorithm
for small input graphs. Further work could involve implementing this algorithms in MPI
(message passing) or GPU (graphics processing unit).

Regardless of the implementation, we provide empirical proof of the intrinsic parallelism
of Algorithm 2. In Figures 4 and 5, we observe slow increase in the number of rounds as
the size of the graph gets larger. That is, the dependence length of the priority DAG is
shallow with almost every random ordering π of the vertices. This provides empirical proofs
supporting the theoretical results of Theorem 3. In practice, however, for the hypercube,
3D grid and for random graphs, the number of steps required by Algorithm 2 is in fact
logarithmic, suggesting that bounds presented by Blelloch et al. [BFS12] may not be tight.

These results prove that with sufficiently many processors and a good implementation
to find new roots, Algorithm 2 should outperform the sequential algorithm.
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Figure 5: The number of rounds of the sequential and parallel algorithms as a function of the size
of the input graph (3D grid and hypercube). In the former algorithm we obtain an almost perfect
linear behavior while in the latter, we have a logarithmic behavior.

5 Final remarks

Despite the fact that LFMIS is P -complete, the randomized approach to compute a MIS
generates a lot of parallelism. The overhead of the parallel algorithm, however, is huge and
requires either for the input size to be large, or to use many processors in order to outperform
an optimized sequential algorithm. Also, languages like Cilk may not be optimal for this
problem since we need many processors to obtain efficient performance. Hence, the study
of this problem in massive parallel computers should be of interest for further research.
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