
COMP 1006/1406
Assignment 1 – Carleton Foodorama (Part 1)

Due: Friday, July 14th 2006, before 11h55 pm

In this assignment, you will review basic concepts from COMP 1005. You will get to design a simple
text-based interface and a simple GUI window.

Part A (Reading a File):

On the web page, there is a file called menu.txt which contains a menu restaurant. Each line contains an
item on the menu as well as its price. It is formatted as below:

hot-dog 1.25
hamburger 2.00
cheeseburger 2.75
fries 1.75
poutine 3.75
pizza 10.00
drink 1.50

[10 pts] Write a java class called MenuItem which represents an item on the menu. A MenuItem has
two private instance variables: name (of type String) and price (of type float). You have to write:

– A constructor taking a name and a price as arguments.
– The get() methods for each private variable.
– A toString() method returning the name of the item, followed by a space and its price. The

price should be displayed using exactly two decimal digits. In order to do this, you can use
the DecimalFormat class of the java API.

[20 pts] Write a java class called Menu which represents a restaurant menu. It has one private instance
variable: items (of type ArrayList of MenuItem). You have to write:

– A constructor taking an ArrayList of MenuItem as argument.
– A constructor taking a file name (of type String) as argument. The file is formatted like

menu.txt. Each line corresponds to a MenuItem. You can assume that item names do not
contain spaces. You have to read the file line by line and add each MenuItem to the
ArrayList of items. In order to read the file, you can use the Scanner class of the java API.
You have already used that class in COMP 1005

– A print() method which displays the menu on the screen in a command line. Each menu
item has to be displayed on a separate line. Both the name and the price should be
displayed. Also, menu items should be numbered starting from 1 as shown below:

1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50

– A size() method which returns the number of items on the menu.
– A get(int i) method which returns the ith item on the menu.

[25 pts] Write a java class called Order which represents a customer order. An Order has two private
instance variables: items (an ArrayList of Menuitems) and quantities (an ArrayList of Integers). You
have to write:

– A zero-argument constructor.
– An add() method which takes both a menu item and a quantity. If the item is not already

present in the order, both the item and the quantity are appended to the lists. If the item is
already present, the quantity should be added to the one that is already there.

– A getSubTotal() method which returns the total amount of the order before taxes.
– A getTaxes() method which returns 15 percent of the sub-total.
– A getTotal() method which returns the sub-total plus the taxes.
– A toString() method which will be used to print the bill. Each item should appear on a

separate row, followed by the price and the quantity. The sub-total, the taxes and the total
should also appear on separate rows as shown below:

hot-dog 1.25 x 3
hamburger 2.00 x 2
fries 1.75 x 1
drink 1.50 x 1
Sub-Total: 11.00
Taxes: 1.65
Total: 12.65

Part B (The User Interface):

[20 pts] Write a java class called Cashier which represents a restaurant cashier. A cashier has one
private instance variable called menu (of type Menu). You have to write:

– A constructor taking a menu as argument.
– A private printListOfCommands() method which asks the customer about what he wants to

do. The first lines correspond to ordering menu items. You should use the print() method
you have done for the Menu class. The last line terminates the order. The customer
expresses his desire by choosing a command number as shown below:

What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.

– A private readNextCommand() method which reads the next custommer command. It must
return the integer typed by the user. Once again, you may use the Scanner class of the java API.

– A private askForQuantity() method which asks the customer for the quantity of a given item he

wants. It must return the integer typed by the user. Once again, you may use the Scanner class
of the java API.

– A takeOrder() method which takes and returns a customer order.
1. It first says welcome to the customer.
2. Then, it prints the list of commands the customer can do and reads it.
3. If he wants to order an item, it asks the customer for the quantity that he wants

and add it to the order. It then goes back to step 2.
4. If the customer is done, the order is printed and the method returns.

[5 pts] Write a java class called Restaurant. A restaurant has no instance variable and no instance
method. You have to write:

– A main() method which first create a menu object from the file menu.txt.
– It should then create a Cashier which will use that menu.
– Finally, the cashier should take an order and the program should exit.
– A full example of a program run is provided in Appendix 1.

Part C (Designing a Simple GUI):

[15 pts] Write a java class called OrderForm which extends JPanel. This will be
the basic component to display the menu. You have to write a constructor taking a
menu as argument.

– For each menu item, you have to
– create a JLabel displaying the name and the price of the item,
– create a JTextField for the user to write the quantity he wants

to order.
– You also have to create three JLabels and three JTextFields for the

sub-total, the taxes and the total. For this assignment, those fields do
not have to be operational.

– For this assignment, no fancy layout is required. It is sufficient to
have a layout as shown on the right.

[5 pts] Write a java class called OrderFrame which extends JFrame. This will be the main application
frame. You have to create:

– A constructor which takes a menu as argument. In the constructor, an OrderFrame is
created and added to the frame. The proper size is then set and the frame is displayed.

– A main() method which first create a menu object from the file menu.txt. It then creates an
OrderFrame using that menu.

Submission

As usual, you will submit to the Raven system. You should submit an entire directory that contains all
of your java files, your class files and any testing/output files that you created. Also, have a readme.txt
file that clearly indicates which files are which.

Good Programming and Good Practice Requirements.

These requirements pertain regardless of what your application is supposed to do (i.e. regardless of the
design requirements). These requirements are to ensure that your code is readable and maintainable by
other programmers (or TA's in our case), and that your program is robust (It does not crash from bad
object references). You will loose 5 marks from your total assignment mark for each of the following
requirements that are not satisfied. If you do not satisfy requirement R0 you will get nothing for the
assignment.

R0) IMPORTANT Uniqueness Requirement. The solution and code you submit MUST be unique. That
is, it cannot be a copy, or be too similar, to someone else's assignment, or other code found elsewhere.
A mark of 0 will be assigned to any assignment that is judged by us or the TA's not to be unique.

R1) All of your variables, methods and classes should have meaningful names that reflect their
purpose. Do not follow the convention common in math courses where they say things like: "let x be
the number of customers and let y be the number of products...". Instead call your variables
numberOfCustomers or numberOfProducts. Your program should not have any variables called "x"
unless there is a good reason for them to be called "x". (One exception: It's OK to call simple for-loop
counters i, j and k etc. when the context is clear.)

R2) All variables in your classes should be private, unless a specific design requirements asks for them
to be public (which is unlikely). We will design objects that provide services to others through their
public methods. How they store their variables is their own private business.

R3) Robustness Requirements: Your program should never crash because of a "null pointer exception".
This exception means that you are using a variable that does not actually refer to an object. We instruct
the TA's to try and crash your program for this reason so guard against it.

R4) Comments in your code must coincide with what the code actually does. It is a very common bug
in industry for people to modify code and forget to modify the comments and so you end up with
comments that say one thing and code that actually does another. (By the way, try not to over-comment
your code; instead choose good variable names and method names which make the code more "self
commenting".)

R5) Java 1.5 Requirement: Your code should compile with the Java 1.5SDK without warnings.

Appendix 1 (Example for Part A):

Welcome to Carleton Foodorama!

What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.
1
How many do you want?
3
What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.
2
How many do you want?
1
What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.
4
How many do you want?
1
What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.

7
How many do you want?
1
What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.
2
How many do you want?
1
What do you want?
1) hot-dog 1.25
2) hamburger 2.00
3) cheeseburger 2.75
4) fries 1.75
5) poutine 3.75
6) pizza 10.00
7) drink 1.50
Press 8 if you are done.
8
hot-dog 1.25 x 3
hamburger 2.00 x 2
fries 1.75 x 1
drink 1.50 x 1
Sub-Total: 11.00
Taxes: 1.65
Total: 12.65

Press any key to continue...

