
Consider a chat application using the GUI shown here. 
Part of the code is given below. The chat application 
has four GUI components:

• A JTextPane, used to display the conversation.
• A JTextField, used to type the text to send.
• Two JButtons, one to send the text typed in the 

JTextField, the other one is to close the 
connexion.

In addition to the four GUI components, a chat 
application has four other instance variables:

• A Socket, to maintain the connexion.
• An BufferedReader, to receive messages.
• An BufferedWriter, to send messages.
• A boolean indicating whether the connexion 

thread is still active.

The chat application uses the TCP port 1000. Your 
tasks are the following:

• Program a makeGUI() method which layouts 
the components as shown above.

• Complete the code for the server and the client 
side. You have to 

• establish the connexion;
• initialize the BufferedReader/Writer with the Input/OutputStream of the connexion;
• start a Thread which Runnable object will be the chat application.

• Complete the appendText() method. That method appends the String given as argument to the 
JTextPane which holds the conversation.

• Complete the actionPerformed() method. 
• If the event source is the send button, then:

• send the text which is in the JTextPane to your pal using the BufferedWriter;
• append that text to the conversation using the prompt “you said”;
• clear the content of the JTextPane.

• If the event source is the close button, then:
• set the running variable to false;
• close the connexion.

• Complete the run() method. 
• That method first initializes the running variable to true.
• Then, as long as the running variable is true it

• reads a line from the BufferedReader;
• if that line is null, then the running variable is set to false; this will happen if the 

connexion is closed by the remote host;
• otherwise, the text that is read is appended to the conversation with the prompt “your 

friend said”.
• When the running variable is false, then the connexion is closed.
• Do not forget that the readLine() method on BufferedReader may throw an IOException if 

the connexion has been closed. This will happen if the connexion is closed locally.



public class ChatApplication extends JFrame implements Runnable, ActionListener{

public static final int PORT = 1000;

private JTextPane conversation;
private JTextField textToSend;
private JButton send;
private JButton close;

private Socket socket;

private BufferedReader input;
private BufferedWriter output;

private boolean running;

public ChatApplication() throws IOException{
super("Carleton Chat (Server)");
makeGUI();
/* add your code here */

}

public ChatApplication(String ip) throws IOException{
super("Carleton Chat (Client)");
makeGUI();
/* add your code here */

}
private void appendText(String text){

/* add your code here */

}

public void actionPerformed(ActionEvent e){
/* add your code here */

}

public void run(){
/* add your code here */

}
}


