COMP 3803 — Fall 2025 — Problem Set 3

Question 1: Is the language

$$\{a^k b^\ell a^m : k \ge 0, \ell \ge 0, m \ge 0, k + \ell + m \ge 2025\}$$

regular? As always, justify your answer.

Question 2: For any string $w \in \{a, b\}^*$, we denote the number of a's in w by $N_a(w)$, and we denote the number of b's in w by $N_b(w)$. Consider the language

$$A = \{w \in \{a, b\}^* : N_a(w) = N_b(w)\}.$$

Assume that we are going to use the Pumping Lemma to prove that A is not regular. As always, we assume that A is regular. The Pumping Lemma gives us a pumping length p.

- 1. Explain in a few sentences why we may assume that p is even.
- 2. Given that p is even, can we choose the string $s = a^{p/2}b^{p/2}$ to obtain a contradiction?

Question 3: Use the Pumping Lemma to prove that the following languages are not regular.

- 1. $\{a^kb^\ell a^m: k \geq 0, \ell \geq 0, m \geq 0, \text{ and } k = \ell \text{ or } \ell \neq m\}$. The alphabet is $\{a, b\}$.
- 2. $\{a^mb^n: m \ge 0, n \ge 0, m+n \text{ is a prime number}\}$. The alphabet is $\{a,b\}$.
- 3. $\{a^m(ab)^n(ca)^{2m}: m \ge 1, n \ge 1\}$. The alphabet is $\{a, b, c\}$.
- 4. $\{a^i b^m c^n : i \ge 1, m \ge 1, n \ge m+1\}$. The alphabet is $\{a, b, c\}$.

Question 4: Even though Justin Bieber is enjoying COMP 3803, he is confused about the Pumping Lemma. Here is Justin's confusion:

- 1. Justin knows that any finite language is regular. Can you prove this in a few sentences?
- 2. Let A be a finite regular language. By the Pumping Lemma, there is an integer pumping length $p \ge 1$. Take an arbitrary string s in A, with $|s| \ge p$. By the Pumping Lemma, we can write s = xyz, such that for every integer $i \ge 0$, the string xy^iz is in A. Since there are infinitely many integers $i \ge 0$, this seems to imply that A contains infinitely many strings. Therefore, the Pumping Lemma is not valid for finite languages.

Is Justin's reasoning correct?

Question 5: Let A be an arbitrary regular language, let M be a DFA that accepts A, and let p be the number of states of M.

Prove that A is non-empty if and only if there is a string s in A whose length is strictly less than p.

Hint: There is a reason why the letter p is used to denote the number of states of M.

Question 6: Consider the context-free grammar $G = (V, \Sigma, R, S)$, where the set of variables is $V = \{S, A, B\}$, the set of terminals is $\Sigma = \{a, b\}$, the start variable is S, and the rules are as follows:

$$S \rightarrow abB$$

$$A \rightarrow \varepsilon \mid aaBb$$

$$B \rightarrow bbAa$$

Prove that the language L(G) that is generated by G is equal to

$$L(G) = \{ab(bbaa)^n bba(ba)^n : n \ge 0\}.$$

(Remember: To prove that two sets X and Y are equal, you have to prove that $X \subseteq Y$ and $Y \subseteq X$.)

Question 7: Give context-free grammars that generate the following languages. For each case, justify your answer.

- (7.1) $\{a^{n+3}b^n : n \ge 0\}$. The set of terminals is equal to $\{a, b\}$.
- (7.2) $\{a^nb^m : n \ge 0, m \ge 0, 2n \le m \le 3n\}$. The set of terminals is equal to $\{a, b\}$.
- (7.3) $\{a^mb^nc^n: m \geq 0, n \geq 0\}$. The set of terminals is equal to $\{a, b, c\}$.